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Abstract

This thesis presents the concept of a neural network starting from its corresponding
biological model, paying particular attention to the learning algorithms proposed by
Oja and Bienenstock Cooper & Munro. A brief introduction to Data Analysis is then
performed, with particular reference to the Principal Components Analysis and Singular
Value Decomposition.
The two previously introduced algorithms are then dealt with more thoroughly, going to
study in particular their connections with data analysis. Finally, it is proposed to use
the Singular Value Decomposition as a method for obtaining stationary points in the
BCM algorithm, in the case of linearly dependent inputs.

Sommario

In questa tesi viene presentato il concetto di rete neurale partendo dal suo corrispet-
tivo modello biologico, ponendo particolare attenzione agli algoritmi di apprendimento
proposti da Oja e Bienenstock Cooper & Munro. Si esegue poi una breve introduzione
alla Data Analysis con particolare riferimento alla tecnica di Analisi delle Componenti
Principali e alla Decomposizione ai Valori Singolari.
I due algoritmi introdotti precedentemente vengono poi trattati più approfonditamente,
andando a studiare in particolar modo le loro connessioni con l’analisi dati. Viene infine
proposto l’utilizzo della Decomposizione ai Valori Singolari come metodo per ricavare i
punti stazionari, nell’algoritmo BCM, nel caso di input linearmente dipendenti.
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Part I

Introduction to neural networks and
Data Analysis
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Chapter 1

Neural networks

1.1 Neurons

The human nervous system (and animal in general) is formed by nervous tissue, which
is in turn formed by cellular units: neurons. These are highly specialized cells dedicated
to the transfer, storage and elaboration of information. Tasks that are being carried out
thanks to their ability to create an action potential, an electric signal that travels long
distances along the nerve fiber.
Neurons can also ”communicate” with each other via a mechanism called synapse, that al-
lows the transmission of the electrical pulse from a cell to another through the use of neu-
rotransmitters (chemical synapse) or by a communicating junction (electrical synapse).

1.1.1 Structure and functional classification

As seen in figure (1.1), a neuron is composed of four principal parts, having a specific
function each:

• the central part of the neuron is called cellular body, or soma, and this is where
the nucleus and others organelles assigned to cellular functions (Golgi apparatus,
neurofilaments, endoplasmatic reticulum, etc.) reside.

• the minor fibers which spread from the body are called dendrites, their function is
to receive electrochemical signals from the adjacent cells and to carry it towards
the center of the neuron.

• the terminal part of the cellular body is called emergence cone and it is from this
zone that the axon and the action potential originate.

• the extension of the cone is called axon and it has dimensions that may vary
depending on the function of the cell. It is covered in a double layer of protective
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membranes (neurilemma and myelin sheat) with an electrical insulating function,
that interrupts in nodes of Ranvier which facilitate the transmission of the signal.

Figure 1.1: Typical structure of a neuron.

Neurons can also be classified in three categories, according to their function and the
direction of propagation of the electrical impulse:

• Afferent neurons (or sensory neurons): they acquire stimulus and transmit
information from sensorial organs to the central nervous system.

• Interneurons: they are in the central nervous system, combining the arriving
signals from afferent neurons and transmitting them to efferent neurons.

• Efferent neurons (or motor neurons): they emanate motor type impulses
to peripheral organs. They can be distinguished in somatic motor neurons that
innervate the voluntary striated muscles, and visceral motor neurons that innervate
the involuntary smooth muscles.

1.1.2 Nervous impulse and synapses

As said before, neurons are capable of transmitting electrical signals along the axon. The
signal is generated and propagated through the action potential, a rapid charge variation
between the inside and the outside of the cell. Because of the insulating membranes,
the nervous information is transmitted between each Ranvier node, in which there is the
effective exchange of ions thanks to Na+ and K+ channels, that make the passage of the
current faster.
Once the signal is generated it propagates, usually unidirectionally, from the dendrites to
the axon. From here it goes to the synaptic terminal and is transmitted to the adjacent
neuron through the synapse.
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Electrical synapse

In the electrical synapse, two different neurons are connected to each other through a
communicating junction. These allows the direct passage of electrical current from a cell
to the other, so there are no delays in the conduction of the signal.
In general these kind of synapses, unlike the chemical ones, allow the conduction in both
directions. It is usually found in nerve connections that regulate the ”reflexes”, in this
case it is necessary indeed a fast transmission between cells.

Chemical synapse

In a chemical synapse the electrical current doesn’t pass directly between cells but it is
mediated by neurotransmitters. It is formed by three elements: the presynaptic termi-
nal, the synaptic gap and the postsynaptic membrane.
The presynaptic terminal is a highly specialized zone situated at the end of the axon,
which contains the neurotransmitters incapsulated in small vesicles (called synaptic vesi-
cles) that are released, upon the arrival of the action potential, in the synaptic gap.
Here neurotransmitters enter in contact with the post-synaptic membrane and, after be-
ing absorbed by specific neural receptors, generate another action potential in the new
cell.

1.1.3 Synaptic plasticity and learning

By the term ”synaptic plasticity” is meant the ability of the nervous system to change
the strength of interneural relations (synapses) during time, in response to increasing or
decreasing activity. It is also believed that neurons are able to create new connections
and eliminate some.
This property allows the nervous system to modify its structure and hence its function-
ality in a more or less durable way, so the analogy with the concept of ”experience” is
obvious.

Hebb’s Principle

Hebb’s principle, proposed by scientist Donald Hebb in 1949, is an attempt to describe
the process of modifying synaptic weights as a consequence of the stimulation, by the
presynaptic cell, of the postsynaptic cell. Hebb stated that:

”When an axon of neuron A is close enough to neuron B to activate it repeat-
edly and persistently, some growth or metabolic change in one or both cells
occurs, causing an increase in neuron A’s effectiveness in exciting neuron B”.
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The models that follow this principle are called Hebbian learning models. However, this
rule alone does not fully explain the model of synaptic plasticity, but rather provides a
wrong and unstable one, as synaptic weights can only increase over time.

Stent’s Principle

The Stent principle, proposed by scientist Gunther S. Stent in 1973, is an attempt to
correct the neural learning model proposed by Hebb introducing a process that explains
the decreasing of synaptic weights. Stent said that:

”When the attempt by a presynaptic neuron A to activate a postsynaptic
neuron B cell fails repeatedly and persistently, some process of decreasing or
metabolic change occurs in one or both cells, causing a decrease in neuron
A’s effectiveness in exciting neuron B”.

The two principles are therefore in competition with each other and, together, are respon-
sible for synaptic plasticity. This process is in fact also known as ”spatial competition
between neurons”.

1.2 Artificial neural networks

An artificial neural network is a mathematical model, made up of artificial neurons,
inspired by the neural network’s biological model where neurons are densely connected
to each other. These artificial neurons are really simpler models, they receive several
input and transmit just a single output, it’s in fact the non-linearity of interconnections
the cause of the complexity of the system.

1.2.1 The perceptron

The simplest model for a neuron goes under the name of perceptron. The perceptron
takes some variables (x1, x2, . . . , xn), one for each synapse, as input and returns only one
binary output y. We also introduce the synaptic weights (w1, w2, . . . , wn), that express
the importance of inputs on the output.
The neuronal output (0 or 1) will then be determined by the fact that the weighted sum
of the inputs

∑
j wjxj is greater than or equal to a threshold value indicated with θ.

Written in algebraic form:

y =

{
0

∑
j wjxj ≤ θ

1
∑

j wjxj > θ
(1.1)

By joining together some of these fundamental units, the artificial neural network is
formed, as shown in figure(1.2).
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(a) perceptron (b) artificial neural network

Figure 1.2: Structure of a perceptron and of an artificial neural network

Also from the figure it is noted that the perceptrons are divided into subgroups
called network layers. Although the first of these simply does the weighted average of
the inputs, the second performs the weighted average on the results of the first layer,
thus giving rise to levels of deeper complexity and abstractness than the previous ones.
A multi-layered perceptron is therefore able to perform complex and highly sophisticated
calculations of a single-layered one.

1.2.2 Non-linear perceptron

To allow a perceptrons network to learn how to solve a real problem, it needs to be
able to independently modify the weights and threshold values. This ability is achieved
through what is called the learning algorithm. However, in the perceptron model defined
above, a small variation of a single weight can result in a large variation in output.
To solve this problem a small change of the artificial neuron, called sigmoid neuron (or
nonlinear) is introduced. Just like normal perceptron, the nonlinear neuron receives the
inputs (x1, x2, . . . , xn) and, also in complete analogy, has a θ threshold value, but the
output will not be only 0 or just 1. Indeed, neuronal output now follows the sigmoid
function given by:

σ(z) ≡ 1

1 + e−z
=

1

1 + e−
∑

j wjxj−θ
(1.2)

whose trend is shown in figure (1.3).

15



Figure 1.3: Trend of the sigmoid function

We note that the function is a smoother version of the step function (typical of the
perceptron). It is for this reason that for small variations of ∆wj and ∆θ small variations
∆y are produced.

1.3 Learning algorithms

The study of synaptic plasticity consists in analyzing how synapses are modified, as a
consequence of their activation during what is called the learning period: a time frame
during which a set of predetermined inputs and outputs is presented and the network
response is then evaluated.
The way neurons learn can be divided into three categories:

• in unsupervised learning a neural network responds to a set of inputs during a
training period only based on its intrinsic connections and neural dynamics.
The network then self-organizes according to the chosen learning rule and the type
of the inputs presented.

• in supervised learning instead a set of relationships between input and output from
the outside is imposed. The network then changes its synapses until the same
pattern emerges as a result of the learning process.

• reinforcement learning is an intermediate case between the previous ones. Neuronal
output is not imposed from the outside but there is a feedback rule that alters
synaptic weights based on the network performance over time.
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The synaptic change rules assume the form of differential equations describing the
change of synaptic weights according to the presynaptic activity, postsynaptic activity
and other possible factors.
In the various rules we will study, neuronal activity is described by a continuous variable.
Presynaptic activity is nothing but the input provided and will be denoted, in vector
notation, with the column vector x = (x1, x2, . . . , xn) while synaptic weights are indicated
by the column vector w = (w1, w2, . . . , wn). The neuronal output therefore assumes the
form of the scalar product:

y =
∑
j

wjxj = w · x (1.3)

1.3.1 The Basic Hebb Rule

The simplest synaptic plasticity rule that follows the Hebb’s principle takes the form:

τw
dw

dt
= yx (1.4)

where τw is a time constant that controls the rate at which the weights change, it’s
reciprocal is called learning rate.
This equation, which is called the basic Hebb rule, implies that if to a determinated
presynaptic activity corresponds an high postsynaptic activity then the synaptic weight
grows. The direct way to compute the weights changes, induced by a series of inputs, is
to sum the small changes caused by each of them separately.
A convenient alternative is to average over all of the different inputs and compute weights
change induced by this average. As long as the synaptic weights change slowly enough,
the averaging method provides a good approximation of the weight changes produced by
the set of inputs. The Hebb rule of (1.4) becomes

τw
dw

dt
= 〈yx〉 (1.5)

In unsupervised learning, y is determined by (1.3) and then we can rewrite the aver-
aged plasticity rule as

τw
dw

dt
= 〈w · x · x〉 = w ·Cx (1.6)

where Cx is the input correlation matrix given by Cx = 〈x · x〉.
Whether or not the pre and postsynaptic activity variables are restricted to nonnegative
values, the basic Hebb rule is unstable: the length of the weight vector grows continuously
and diverges.
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Sometimes, synaptic modification is modeled as a discrete rather than continuous
process, particularly if the learning procedure involves the sequential presentation of
inputs. In this case, equation (1.6) is replaced by a discrete updating rule:

w→ w + εCx ·w (1.7)

where ε is a parameter analogous to the learning rate 1/τw.

1.3.2 The BCM Rule

In 1982 Bienestock, Cooper and Munro suggested an alternative plasticity rule that
introduces a new mechanism

τw
dw

dt
= yx(y − θ) (1.8)

where θ acts as a threshold on the postsynaptic activity that determines whether the
synapses are strengthened or weakened.
If the threshold θ is held fixed, the BCM rule, like the basic Hebb rule, is unstable.
Synaptic modification can be stabilized then by allowing the threshold to vary. The
critical condition for stability is that θ must grow more rapidly than y as the output
activity grows large. The sliding threshold is then determined by the equation

τθ
dθ

dt
= y2 − θ (1.9)

where τθ sets the time for modification of the threshold. This is usually slower than the
presentation of the individual presynaptic inputs, but faster than the rate at which the
weights change, which is determined by τw.

1.3.3 Oja’s Rule

The BCM rule stabilizes Hebbian plasticity by means of a sliding threshold that reduces
synaptic weights if the postsynaptic neuron becomes too active. A more direct weight to
stabilize a Hebbian rule is to add terms that depend explicitly on the weights. This leads
to some form of weight normalization, which corresponds to the idea that postsynaptic
neurons can support only a fixed total synaptic weight.

A constraint on the sum of the squares of the synaptic weights can be imposed by
using a modification of the basic Hebb rule known as the Oja’s rule

τw
dw

dt
= yx− αy2w (1.10)
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where α is a positive constant. The stability can be established by taking the dot product
of the equation (1.10) with the vector w to obtain

τw
d|w|2

dt
= 2y2(1− α|w|2) (1.11)

This indicates that |w|2 will relax over time to the value 1/α, which prevents the weights
from growing without bound.
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Chapter 2

Data Analysis

From the previous chapter, it is clear that the high utility of neural networks lies in their
flexibility due to their ability to learn, in fact these networks can be used to simulate
any function using only data observations. This is particularly useful in data analyzation
where the complexity or size of these is very high, and therefore processing is too difficult
through normal procedures.
In statistical analysis, data that enclose a high number of features are called high-
dimensional data, when analyzing this type of data it’s easy to get into what goes under
the name of curse of dimensionality. What happens when working with many dimen-
sions is that space volume increases so rapidly that data becomes ”scarce”: so there is a
need for data that increases exponentially with dimensions to achieve significant static
results.

To solve this problem, is used a statistical technique called projection pursuit : this
method allows the analysis of the ”most interesting” data distributions, projected on
appropriate subspaces. The underlying idea is to find the representations that retain
most of the data structure information but which can be analyzed using traditional
techniques. As each projection is found, the data are reduced by removing the component
along that projection, and the process is repeated to find new ones. Often, projections
which deviate more from a normal distribution are considered to be more interesting due
to the central limit theorem.

2.1 Principal Component Analysis

Principal component analysis (PCA) is a multivariate technique that analyzes data with
the goal to extract important information and to represent it as a new set of orthogonal
variables called Principal Components.
Mathematically, Principal Component Analysis is defined as an orthogonal linear trans-
formation that transports the data to a new coordinate system, such that the greatest
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variance by some projected distribution of the data comes to lie on the first coordi-
nate (called the first Principal Component), the second greatest variance on the second
coordinate and so on.

2.1.1 Relation between basis and covariance

Consider a data matrix X, composed of all the possible inputs vectors, with row zero
mean (this could be done by simply shifting all the values, without loss in generality),
where each of the m rows represents a particular kind of measure, and each of the n
columns is a different sample of our data set.

X =



x11
x21
...

xm1



x21
x22
...

xm2

 . . .


x1n
x2n

...
xmn




We now want to seek a linear transformation matrix T, to re-express the original
data set into the new bases Y:

Y = TX (2.1)

where we note that T must be m×m.
Geometrically the expression (2.1) can have many interpretations:

• T is a rotation and a stretch that transform X into Y

• the rows of T, {e1, . . . , em}, are a set of new basis vectors for expressing the
columns of X.

The best basis to re-express the data contained in X, is the one that has as directions
the ones with largest variances in our measurement space, as these contain the dynamic
of interest.

Figure 2.1: Example of data acquisition with low noise.
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In figure (2.1) an example of a possible data acquisition with low noise is represented.
We can define the signal-to-noise ratio (SNR) as:

SNR =
σ2
signal

σ2
noise

A high SNR (� 1) indicates a high precision measurement, while low SNR indicates
very noisy data. Obviously we want to isolate the signal from the noise and consider
only the first one.

To do so we need first to define the covariance. Consider two sets of measurements
with zero means

A = {a1, a2, . . . , an} B = {b1, b2, . . . , bn}

the variance of A and B are then defined as

σ2
A =

1

n

∑
i

a2i σ2
B =

1

n

∑
i

b2i

The covariance between A and B is a generalization of the latters

σ2
AB =

1

n

∑
i

aibi

The covariance then measures the degree of linear relationship between two variables, in
particular:

• σAB is zero in and only if A and B are uncorrelated.

• σAB = σA = σB if and only if A = B.

To generalize this concept in higher dimensional spaces we may note that the sets A
and B can be expressed through the vector notation

a = (a1, a2, . . . , an)

b = (b1, b2, . . . , bn)

the covariance is then

σ2
ab =

1

n
abT

Let us consider the m × n matrix X defined above, each row then corresponds to
all measurements of a particular type (for example vector a or b) and each column

23



corresponds to a repetition of the measure:

X =


(a1, a2, . . . , an)
(b1, b2, . . . , bn)

...
(m1,m2, . . . ,mn)


Now we can define the covariance matrix CX:

CX =
1

n
XXT

that is obviously m ×m. It may be noted that the diagonal terms are the variance of
particular measurements tipes, the off-diagonal terms instead are the covariance between
measurement types.

The covariance matrix CY (the covariance matrix CX expressed in the new basis)
should now be optimized in a precise way:

• all off-diagonal terms in CY should be zero. Thus, CY must be a diagonal matrix.
In this way every different type of measurement is meant to be uncorrelated with
the others.

• each successive dimension in Y should be rank-ordered according to variance.

2.1.2 The eigenvector decomposition

The easiest way to diagonalize CY is to assume the base {e1, e2 . . . , em} to be orthonor-
mal (so T is orthonormal) and using the eigenvector decomposition.
We need to find some orthonormal matrix T in Y = TX such that CY = 1

n
YYT is a

diagonal matrix. The rows of T are then the principal components of X.
We begin by rewriting CY in terms of T:

CY =
1

n
YYT =

1

n
(TX)(TX)T =

=
1

n
TXXTTT = T(

1

n
XXT )TT = TCXTT

(2.2)

By the spectral theorem of linear algebra it is known that any symmetric matrix A
is diagonalized by an orthogonal matrix of its eigenvectors, A=EDET , where D is a
diagonal matrix and E is a matrix of eigenvectors of A arranged as columns.
If the matrix T is a matrix where each row ei is an eigenvector of CX the equation (2.2)
can be rewritten as follows

CY = TCXTT = T(EDET )TT =

= T(TTDT)TT = (TTT )D(TTT ) = D
(2.3)
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beacuse we have selected A = CX, then TT = E. Note also that TT = T−1.

It is now evident that the choice of T diagonalizes CY, that is exactly the goal of
PCA. To summarize:

• the principal components of X are the eigenvectors of CX = 1
n
XXT , which in turn

are the rows of the transformation matrix T.

• the i th diagonal value of CX is the variance of X along ei.

2.2 Singular Value Decomposition

An useful procedure used in Principal Component Analysis is the Singular Value Decom-
position of a matrix, a technique that generalizes the concept of eigenvalues, eigenvectors
and inverse of a non-square matrix.

Let X be a m× n matrix as described in the previous section and XXT be a square,
symmetric m×m matrix. Then the factorization exists:

X = UΣVT

where U is a m ×m orthogonal matrix, Σ is a diagonal rectangular m × n matrix and
VT is the transpose of a n× n orthogonal matrix.
The diagonal elements of Σ are called singular values and they have the following prop-
erties

σi ≥ 0 σ1 ≥ σ2 ≥ · · · ≥ σr ≥ 0

where r is the rank of X.
The SVD is so important because the columns of V (called right-singular vectors) are the
eigenvectors of XTX, and the columns of U (called left-singular vectors) are the eigen-
vectors of XXT . The covariance matrix CX can be written (except for a normalization
constant) as

CX = XXT = UΣVTVΣTUT = UΣ2UT (2.4)

from which we deduce that the eigenvectors of the covariance matrix CX are exactly
the left-singular vectors of U, and the singular values σi are the square root of the λi,
eigenvalues of the covariance matrix.
Since there are algorithms that can calculate the singular values of a matrix without
evaluating the CX, the SVD is a very efficient method to obtain the principal components
from a data matrix X.
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SVD as a pseudo-inverse

The importance of SVD also lies in considering the decomposition as a generalization of
the concept of inverse matrix. In fact, if a matrixm×n has a singular value decomposition
X = UΣVT then its pseudoinverse is

X−1 = VΣ−1UT (2.5)

where Σ−1 is the pseudoinverse of Σ, which is formed by replacing every non-zero diagonal
entry by its reciprocal and transposing the resulting matrix.

The importance of polynomial moments

Although many models of synaptic plasticity are based on second order statistics, for
example the extraction of the principal components, not always second order polynomial
moments are sufficent to classify the important aspects of a distribution. Consequently,
polynomials of high order must be used, paying attention to their sensibility to the
outliers.
The BCM model, for example, uses moments of greater order and is therefore a great
candidate as learning algorithm for projection pursuit.
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Part II

Comparison between Oja’s and
BCM models
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Chapter 3

Detailed treatment of neural
networks models

Oja’s learning rule, or simply Oja’s model, named after scientist Erkki Oja, is a model
of how neurons in artificial neural networks change connection strength, and learn, over
time. It is a modification of the Basic Hebb’s Rule (1.4) that, through weights normaliza-
tion, solves the stability problems and generates an algorithm for principal components
analysis.

BCM model, named after scientists Bienenstock Cooper and Munro, unlike Oja, is
based on biological considerations, in particular how the connections of the visual cortex
change according to the inputs presented. We will find however that this is also a useful
model for statistical analysis.

3.1 Oja’s model and PCA

Oja’s rule is closely related to the Principal Component Analysis, in fact if an artificial
neural network uses this learning algorithm, the weight vector then converges, after a
while, to the first eigenvector of the covariance matrix. To prove this we need to express
the rule (1.10) in a more convenient way.
As explained in the first chapter, Oja’s rule for synaptic plasicity is (combining the two
learning constants in a single one for simplicity):

dw

dt
= α(yx− y2w) (3.1)

Now this can be expressed through the vector notation, where y = x ·w = xTw = wTx
as we are using column vectors:

dw

dt
= α(xxTw−wTxxTww) (3.2)
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The condition for the convergence of the equation to a stable point is dw
dt

= 0, or the
non-variation of synaptic weights. Furthermore, when the learning algorithm is run for
a long time with a continuously change of inputs, one can look at the average behaviour
because it is assumed that the time for a synaptic variation is faster than the analysis
time. If it is also assumed that the inputs have row zero mean (without loss in generality)
then the former equation becomes:

Cw−wTCww = 0 (3.3)

where C = E[xxT ] is the covariance matrix. It must be noted that the quadratic form
wTCw is a scalar, which will be called λ for an obvious reason, the new equation therefore
is:

Cw = λw (3.4)

that clearly is the eigenvalue-eigenvector equation for the covariance matrix C.

This shows that if the weights converge in the Oja learning rule, then the weight
vector becomes one of the eigenvectors of the input covariance matrix, and the output of
the neuron becomes the corresponding Principal Component, as Principal Components
are defined as the inner products between the eigenvectors and the input vectors. Then
the simple neuron following Oja’s model becomes a Principal Component analyzer.
However what is found in this case is only the first Principal Component, for a more
in-depth analysis we need to extend the algorithm for a single neuron to a complete
network.

3.2 Oja’s Rule extension to a network

The most used algorithm, that extends Oja’s rule to a lateral connections network, was
developed by scientist Terence Sanger who called it the Generalized Hebbian Algorithm.
This algorithm combines Oja’s rule and the Gram-Schmidt orthogonalization process to
realize the synaptic weights modification rule:

∂wij
∂t

= αyi(xj −
i∑

k=1

wkjyk) (3.5)

where wij represents connection strength between the j-th input and the i-th output (see
figure 3.1 for clarification).
We note the term (−αyi

∑
k wkjyk), which represents a decay term, is the weighted sum

of the first i-th neuronal activations.
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Figure 3.1: Example of the structure of a
single-layer artificial neural networks with
several outputs.

The Generalized Hebbian Algorithm can be seen as the application of Oja’s rule for
a single neuron, in fact, by rewriting the former equation as:

∂wij
∂t

= α[(yixj − yi
i−1∑
k=1

wkjyk)− y2iwij]

and introducing the modified input

x
(i)
j = xj −

i−1∑
k=1

wkjyk (3.6)

the equation (3.5) can now be written in the same form of (3.1):

∂wij
∂t

= α(yix
(i)
j − y2iwij) (3.7)

The input driving yi is modified by subtracting all the i-th exctracted components. Such
a technique is called deflation.

From these equations it’s easy to see that the first neuron is using the simple Oja’s
rule:

∂w1j

∂t
= α(y1xj − y21w1j)

but the second one uses a slightly different rule:

∂w2j

∂t
= α[(y2xj − y2y1w1j)− y22w2j]

and so on. From these considerations we may note that this algorithm in non-local, or
the i-th neuron, to properly perform the Principal Component Analysis, needs to know
the wij synaptic weights of neurons before him.
Extended in this way the algorithm, the weights vectors of each of the neurons converge to
a different Principal Component direction. We can therefore have a Principal Component
for each neuron that forms the network.

31



3.3 BCM model

BCM model is an unsupervised learning algorithm that uses a sliding threshold to solve
the problem of the instability of the Basic Hebbian Rule.

In the original article Bienenstock Cooper and Munro proposed that, for a generic
learning algorithm, the modifyng rule is:

dw

dt
= α[φ(y, θ) · x− εw] (3.8)

where φ(y) is a scalar function of the postsynaptic activity y that changes sign when
this reaches the threshold value θ. The −εw term produces a uniform decrease for all
synaptic weights but ε is usally very small and can be neglected.
We then have two possible behaviours of the synaptic rule:

• dwj

dt
> 0 (increased synaptic efficiency), when xj > 0 and y > θ

• dwj

dt
< 0 (decreased synaptic efficiency), when xj > 0 and y < θ

For their model they chose θ = E[y2] and a quadratic form for the φ function:

φ(y, θ) = y(y − θ)

Figure 3.2: Trend of the φ function. It’s important to note that θ is a sliding threshold
that depends on output over time.

Then, as explained in chapter one, the BCM rule for synaptic plasticity becomes simply:

dw

dt
= αy(y − θ)x (3.9)
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The main objective of the BCM model, derived from biological considerations, is to
maximize the index of selectivity defined as:

s(w) = 1− E[xTw]

max[xTw]
(3.10)

which describes the reactivity of a neuron for various inputs. This is clearly maximized
when the neuron responds only to a single input (or a few), like the w vector is orthogonal
to almost x input vectors.

Figure 3.3: The original image about neuronal selectivity of the article by Bienestock
Cooper and Munro. The right image shows how a neuron develops a certain preference
among a different types of inputs (in this case the orientation of a light rod). The left
image instead shows the increasing of neural selectivity index s(w) over time, as the
neuron begins to develop preference.

3.3.1 Statistical aspects of BCM model

The BCM model’s theory can also be formulated through the definition of an objective
function to minimize. This allows the interpretation of the model behaviour from a
statistical point of view by studying the polynomial moments of the distribuition.

We define the threshold as before θ = E[y2] and two functions φ̂(y, θ) = y2− 1
2
yθ and

φ(y, θ) = y(y − θ) for simplicity of notation.
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The purpose is now to find directions for which the projected distribution is far from
Gaussian; for computational efficiency we have to use low degree polynomial moments,
but at least of third degree as second ones do not give any information on multimodality.
Then the loss function can be defined as:

Lw(x) = −α
∫ (x·w)

0

φ̂(s, θ)ds =

= −α
{

1

3
(x ·w)3 − 1

4
E[(x ·w)2](x ·w)2

} (3.11)

as we recall that y = x ·w. The risk function then is (the expectation value of the loss):

Rw = −αE
[

1

3
(x ·w)3 − 1

4
E[(x ·w)2](x ·w)2

]
=

= −α
(

1

3
E[(x ·w)3]− 1

4
E2[(x ·w)2]

) (3.12)

Since the risk is continuously differentiable, its minimization can be achieved via the
gradient descent method with respect to w:

dwi
dt

= −∂Rw

∂wi
= α{E[(x ·w)2xi]− E[(x ·w)2]E[(x ·w)xi]} =

= αE[φ(x ·w, θ)xi]

(3.13)

that is exactly the equation (3.9). The weight vector will then converge, following this
rule, to the direction in which the data follow a distribution that looks more like gaussian.
Once projected along this direction, data then have a smaller dimension and a higher
probability to differ from a normal distribution.

3.3.2 Extension to a nonlinear neuron

This learning algorithm can be improved by making the risk function, and then the BCM
rule, insensitive to eventual outliers. To do so we consider a nonlinear neuron in which
the neuron’s activity is defined to be y = σ(x ·w), where σ is the already known sigmoid
function.
For the nonlinear neuron, the only difference is that the threshold is defined as θ =
E[σ2(x ·w)]. The loss function is then given by:

Lw(x) = −α
∫ σ(x·w)

0

φ̂(s, θ)ds =

= −α
{

1

3
σ3(x ·w)− 1

4
E[σ2(x ·w)]σ2(x ·w)

} (3.14)
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and the gradient of the risk is then:

∇wRw = −αE[σ2(x ·w)σ′x]− E[σ2(x ·w)]E[σ(x ·w)σ′x] =

= αE[φ(σ(x ·w), θ)σ′x]
(3.15)

where σ′ represents the derivative of σ at the point (x ·w). It is the multiplication by σ′

that reduces the sensitivity to outliers in the differential equation, since for outliers σ′ is
close to zero.

Howewer what is found in this case is only one of the possible directions, as for Oja’s
one we now need to extend the algorithm for a single neuron to a complete network.

3.4 BCM Rule extension to a network

We now define a network where the activity of a single neuron is inhibited by the others
(the so called Feed-Forward Inhibition). The activity of neuron k in the network is
yk = x ·wk, where mk is the synaptic weight vector of the neuron. The inhibited activity
and threshold of that neuron is defined as:

ỹk = yk − α
∑
j 6=k

yj θ̃k = E[ỹ2k]

For the feed-forward network the loss function is similar to the one defined in a single
feature extraction, with the exception that the activity y is now replaced by ỹ.
Therefore the risk for neuron k is given by:

Rk = −α
{

1

3
E[c̃3k]−

1

4
E2[c̃2k]

}
(3.16)

and then the total risk is given by

R =
N∑
k=1

Rk

To find the gradient of R it is better to express some terms first as:

∂ỹk
∂wj

= −αx
∂ỹk
∂wk

= x

∂Rj

∂wk
=
∂Rj

∂ỹj

∂ỹj
∂wk

= −α∂Rj

∂wj
∂Rk

∂wk
=
∂Rk

∂ỹk

∂ỹk
∂wk

= −α{E[ỹ2kx]− E[ỹ2k]E[ỹkx]}
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the total gradient then becomes:

∂R

∂wk
=
∂Rk

∂wk
− α

∑
j 6=k

∂Rj

∂wj
=

= α

{
E[φ(ỹk, θk)x]− α

∑
j 6=k

E[φ(ỹj, θj)x]

} (3.17)

When the nonlinearity of the network is included, the inhibited activity is defined as
ỹ = σ(yk − α

∑
j 6=k yj). θk and Rk are defined as before, however in this case we have:

∂ỹk
∂wj

= −ασ′(ỹ)x
∂ỹk
∂wk

= σ′(ỹ)x

therefore the total gradient becomes:

∂R

∂wk
= α

{
E[φ(ỹk, θ̃k)σ

′(ỹk)x]− α
∑
j 6=k

E[φ(ỹj, θ̃j)σ
′(ỹj)x]

}
(3.18)

This equation performs a constrained minimization in which the derivative with re-
gard to one neuron can become orthogonal to the sum over the derivatives of all other
synaptic weights. Therefore, it demonstrates the ability of the network to perform an
exploratory projection pursuit in parallel, since the minimization of the risk involves
minimization of the neurons 1, . . . , N .

36



Chapter 4

Analysis of the fixed points for the
BCM rule

Unlike Oja’s model, which has a simple treatment, for the BCM model it’s worth doing
an in-depth study of the fixed points. To do so we will now assume that the input vector
can be chosen among many, contained in matrix X. This one is a m× n matrix, where
each of the m rows is a different kind of measure and each of the n columns is a different
sample of the data, as described in section 2.1.
We also define the probability matrix P, a diagonal n×n matrix, where the i-th diagonal
element describes the probability of having the i-th input vector.

The neural activation function φ is, as before:

φ(y, θ) = y(y − θ)

but now θ must be expressed according to the input probability:

θ = E[y2] =
n∑
i=0

pi(xi ·w)2 (4.1)

where xi is obviously a column of matrix X.
The output equation is now:

y = XTw (4.2)

where y is a n× 1 vector. Then the equation 3.9 becomes:

dw

dt
= ẇ = XPφ (4.3)

where φ is intended as a column vector of activation functions, one for every different n
output: φi = yi(yi − θ).
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4.1 Linearly independent ambient

We now want to describe, as an example for the linearly independent ambient, the
bidimensional case and then generalize it to higher dimensons.

4.1.1 Bidimensional case

In this case we have a single linear neuron operating in a bidimensional space (with
m = 2 synapses) that receives n = 2 different inputs, the X and P matrix then are
defined as:

X =

[
x11 x12
x21 x22

]
P =

[
p1 0
0 p2

]
while neuronal response and activation function are given by:

y =

[
y1
y2

]
φ =

[
y1(y1 − θ)
y2(y2 − θ)

]
The components of vector ẇ, calculated from the general equation (4.3), are then:

ẇ1 = y1(y1 − θ)p1x11 + y2(y2 − θ)p2x12
ẇ2 = y1(y1 − θ)p1x21 + y2(y2 − θ)p2x22

(4.4)

The purpose is to find the fixed points, or those points that satisfy the equation:

ẇ = 0 (4.5)

It can be noted from equation (4.3) that this is only valid if φ = 0, as input vectors are
assumed linearly independent and then the determinant of the correspondent matrix X
is not zero (det X 6= 0). From this we can rewrite the condition (4.5) as:

y1(y1 − (p1y
2
1 + p2y

2
2)) = 0

y2(y2 − (p1y
2
1 + p2y

2
2)) = 0

(4.6)

Solving this equation it is possible to find the fixed points of the system, given by
the following possible output vectors:[

y1
y2

]
=

{
(0, 0),

(
1

p1
, 0

)
,

(
0,

1

p2

)
,

(
1

p1 + p2
,

1

p1 + p2

)}
(4.7)

By stability analysis, it is possible to determine that only those in the form
(

1
p1
, 0
)

or(
0, 1

p1

)
are stable (and are then points of maximum selectivity).

The stable solutions of vector w are then found by the inverse transformation of (4.3):

w = (XT )−1y (4.8)
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4.1.2 K-dimensional case

We will now generalize the linearly independent case to higher dimensions, so our neuron
now has m = K synapses and can receive n = K different inputs.
The neuronal dynamics, described in equation (4.3), appears now as:

ẇ1

ẇ2
...
ẇK

 =


x11 x12 . . . x1K
x21 x22 . . . x2K
...

...
. . .

...
xK1 xK2 . . . xKK



p1 0 . . . 0
0 p2 . . . 0
...

...
. . .

...
0 0 . . . pK



φ1

φ2
...
φK

 (4.9)

As in the bidimensional case, the stationary condition (4.5) implies φ = 0, and the
equations to find the fixed points are then:

yi

[
yi −

(
K∑
j=0

pjy
2
j

)]
= 0 i = 1, . . . , K (4.10)

which leads to finding the following fixed points:


y1
y2
...
yK

 =



(0, 0, . . . , 0)(
0, 0, . . . ,

1

pi
, . . . , 0

)
(

0, 0, . . . ,
1

pi + pj
, . . . ,

1

pi + pj
, . . . , 0

)
(

0, 0, . . . ,
1

pi + pj + pk
, . . . ,

1

pi + pj + pk
, . . . ,

1

pi + pj + pk
, . . . , 0

)
...

(1, 1, . . . , 1)



(4.11)

By stability analysis it’s found, as before, that only the fixed points
(

0, 0, . . . , 1
pi
, . . . , 0

)
are stable, and the solutions of vector w are found by the same equation (4.8).

4.2 Linearly dependent ambient

We now want to extend the theory to the linearly dependent case which is the most
probable in Data Analysis. Consider a neuron with m = K synapses that can receive
n = N different inputs, where N > K to ensure linear dependence.
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Then the matrix X is now K ×N :

X =


x11 x12 . . . . . . x1N
x21 x22 . . . . . . x2N
...

... . . .
. . .

...
xK1 xK2 . . . . . . xKN

 (4.12)

while vector w is K × 1 and vector φ is N × 1.
Deriving from respect to time the output equation:

y = XTw

and replacing in it the synaptic weight equation:

ẇ = XPφ

we can now obtain a new neuronal activity rule:

ẏ = XTXφ̃ (4.13)

where φ̃ = Pφ is written for simplicity. The stability condition now can be imposed by
requiring that neuronal output doesn’t change over time, or ẏ = 0.
This is satisfied if:

XTXφ̃ = 0 (4.14)

but, being X a matrix of linearly dependent inputs, the equation has different solutions
apart from the trivial one φ̃ = 0: the kernel of XTX has then a dimension Q 6= 0.
As a consequence the rank of XTX has a dimension W = N − Q, where N is the
dimension of matrix XTX, from the linear algebra dimension theorem.
We can then define a basis for the kernel composed by Q vectors:

Bker(XTX) = {v1,v2, . . . ,vQ}

and it is possible to write the first W components of φ as a function of the remaining Q
components with the system:

φ1 = v11φ
(1)
N + v21φ

(2)
N−1 + · · ·+ vQ1φ

(Q)
W+1

φ2 = v12φ
(1)
N + v22φ

(2)
N−1 + · · ·+ vQ2φ

(Q)
W+1

...

φW = v1Wφ
(1)
N + v2Wφ

(2)
N−1 + · · ·+ vQWφ

(Q)
W+1
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that can be written down in a simpler form as:

φi =

Q∑
j=1

vjiφN+1−j

From that, thanks to φi = yi(yi − θ), the output equation is:

y2i − yiθ −
Q∑
j=1

vjiφN+1−j = 0

with solution:

yi =
1

2

θ ±
√√√√θ2 + 4

Q∑
j=1

vjiφN+1−j

 i = 1, . . . ,W (4.15)

These are then the form of the fixed points for the linearly dependent case.

4.2.1 Bidimensional neuron in a fourth-dimensional ambient

It is now presented, as an example, the case in which K = 2 synapses and N = 4 different
inputs. The input matrix X is then:

X =

[
x11 x12 x13 x14
x21 x22 x23 x24

]
while the output and neural activation are:

y =


y1
y2
y3
y4

 φ =


y1(y1 − θ)
y2(y2 − θ)
y3(y3 − θ)
y4(y4 − θ)


It is now possible to find a base for the kernel:

Bker(XTX) = {v1,v2}

where we assumed that Q = 2 for simplicity (as it can also be 3 or 4). The W = 2
components of φ can therefore be expressed as:

φ1 = v11φ3 + v21φ4

φ2 = v12φ3 + v22φ4
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Finally, the output stable solutions of the (4.15) are:

y1 =
1

2

(
θ ±

√
θ2 + 4v11φ3 + 4v21φ4

)
y2 =

1

2

(
θ ±

√
θ2 + 4v12φ3 + 4v22φ4

) (4.16)

From this it can be also be noted that it’s possible to come back to the linearly indepen-
dent case by assuming that the neuron does not responds to certain inputs:

y1 = 1
2

(
θ ±

√
θ2 + 4v11φ3 + 4v21φ4

)
y2 = 1

2

(
θ ±

√
θ2 + 4v12φ3 + 4v22φ4

)
y3 = y3

y4 = y4

→


y1 = 1

2
(θ ± θ)

y2 = 1
2

(θ ± θ)
y3 = 0

y4 = 0

and the possible fixed points are exactly:

y =

{
(0, 0, 0, 0),

(
1

p1
, 0, 0, 0

)
,

(
0,

1

p2
, 0, 0

)
,

(
1

p1
,

1

p2
, 0, 0

)}
as written in section 4.1.

4.2.2 Using the SVD to find a base for the kernel and as a
pseudoinverse

A method is now propose to find both a base for the kernel (and then the components
vji for the output equation) and an inverse formula for the weight vector.

Writing the input matrix through the Singular Value Decomposition X = UΣVT ,
it must be remembered in fact that the columns of VT are the normalized eigenvectors
of XTX. Then the components vji of the kernel basis can be taken exactly from these
eigenvectors, obviously only those with zero eigenvalue.
The SVD also does not only provide the components for the output equation, but also
furnish a valid inverse equation:

w = UΣ−1VTy (4.17)

generalizing the equation (4.8) to the linearly dependent case.
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Chapter 5

Conclusions

After an in-depth analysis of the Oja’s and BCM models, it’s now possible to rapidly
summarize the principal analogies and differences between them.

The model

From a general point of view, they both are artificial neural network models formed
by perceptrons, that follow an unsupervised learning algorithm based on the Hebbian
model. They however differ in the goal:

• Oja’s rule extracts the principal components through diagonalizations of the co-
variance matrix

C = 〈xTx〉

thanks to eigenvector decomposition;

• BCM rule instead maximizes the selectivity of a neuron

s(w) = 1− E[xTw]

max[xTw]

so it only responds to certain inputs.

The learning algorithm

Generally speaking, any learning algorithm can be reconducted to the simple rule:

dw

dt
= φ(y)x− εw

but, while in BCM ε→ 0 and φ(y) = y(y − θ), in the Oja’s rule ε = y2 and φ(y) = y.
Furthermore, both rules set a limit to the weights growth: BCM by introducing a sliding
threshold θ and Oja by synaptic normalization.
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Biological aspects

While the BCM model is entirely based on mathematical modeling of neurons of the
visual cortex, Oja’s model has nothing to do with biological aspects. We can in fact
observe that, when extending Oja’s rule to a network of artificial neurons, the algorithm
is required to be non-local to correctly extract the principal components, proving that it
is not based on reality.

Statistical aspects

Both models are very important in finding useful projections with statistical signifi-
cance. The BCM model allows to extract relevant structures from high dimensional data
distributions while Oja’s model extracts the principal components. The two learning
algorithms are then very similar from this point of view except for the BCM that, being
extendeable to a non linear model, has lesser sensibility to outliers.

44



Bibliography

[1] A. Nielsen, Neural Networks and Deep Learning, Determination Press (2015)

[2] P. Dayan, L. F. Abbott, Theoretical Neuroscience - Computational and Mathemat-
ical Modeling of Neural Systems, MIT Press (2001)

[3] C. Giraud, Introduction to High-Dimensional Statistics, CRC Press (2014)

[4] H. Abdi, L. J. Williams, Principal Component Analysis, (2010)

[5] J. Shlens, A Tutorial on Principal Component Analysis, (2014)

[6] E. Oja, Oja learning rule, Scholarpedia (2008)

[7] E. Oja, A Simplified Neuron Model as a Principal Component Analyzer, (1982)

[8] T. Elze, Modeling of a Recurrent Neural Network for Principal Component Analysis,
(2003)

[9] T. Sanger, Optimal Unsupervised Learning in a Single-Layer Linear Feedforward
Neural Network, (1989)

[10] E. L. Bienenstock, L. N. Cooper, P. W. Munro, Theory for the Development of Neu-
ron Selectivity: Orientation Specificity and Binocular Interaction in Visual Cortex,
(1981)

[11] N. Intrator, L. N. Cooper, Objective Function Formulation of the BCM Theory of
Visual Cortical Plasticity: Statistical Connections, Stability Conditions, (1992)

[12] L. N. Cooper, N. Intrator, B. S. Blais, H. Shouval, Theory of Cortical Plasticity,
World Scientific (2004)

[13] L. Acquaviva, Soluzione del Modello di Apprendimento BCM in Presenza di Ambi-
ente Generalizzato, (2015)

[14] G. C. Castellani, N. Intrator, H. Shouval, L. N. Cooper, Solutions of the BCM
Learning Rule in a Network of Lateral Interacting Nonlinear Neurons, (1999)

45


	I Introduction to neural networks and Data Analysis
	Neural networks
	Neurons
	Structure and functional classification
	Nervous impulse and synapses
	Synaptic plasticity and learning

	Artificial neural networks
	The perceptron
	Non-linear perceptron

	Learning algorithms
	The Basic Hebb Rule
	The BCM Rule
	Oja's Rule


	Data Analysis
	Principal Component Analysis
	Relation between basis and covariance
	The eigenvector decomposition

	Singular Value Decomposition


	II Comparison between Oja's and BCM models
	Detailed treatment of neural networks models
	Oja's model and PCA
	Oja's Rule extension to a network
	BCM model
	Statistical aspects of BCM model
	Extension to a nonlinear neuron

	BCM Rule extension to a network

	Analysis of the fixed points for the BCM rule
	Linearly independent ambient
	Bidimensional case
	K-dimensional case

	Linearly dependent ambient
	Bidimensional neuron in a fourth-dimensional ambient
	Using the SVD to find a base for the kernel and as a pseudoinverse


	Conclusions
	Bibliography


