104 research outputs found

    Machine Learning to Classify Cardiotocography for Fetal Hypoxia Detection

    Get PDF
    Fetal hypoxia can cause damaging consequences on babies' such as stillbirth and cerebral palsy. Cardiotocography (CTG) has been used to detect intrapartum fetal hypoxia during labor. It is a non-invasive machine that measures the fetal heart rate and uterine contractions. Visual CTG suffers inconsistencies in interpretations among clinicians that can delay interventions. Machine learning (ML) showed potential in classifying abnormal CTG, allowing automatic interpretation. In the absence of a gold standard, researchers used various surrogate biomarkers to classify CTG, where some were clinically irrelevant. We proposed using Apgar scores as the surrogate benchmark of babies' ability to recover from birth. Apgar scores measure newborns' ability to recover from active uterine contraction, which measures appearance, pulse, grimace, activity and respiration. The higher the Apgar score, the healthier the baby is.We employ signal processing methods to pre-process and extract validated features of 552 raw CTG. We also included CTG-specific characteristics as outlined in the NICE guidelines. We employed ML techniques using 22 features and measured performances between ML classifiers. While we found that ML can distinguish CTG with low Apgar scores, results for the lowest Apgar scores, which are rare in the dataset we used, would benefit from more CTG data for better performance. We need an external dataset to validate our model for generalizability to ensure that it does not overfit a specific population.Clinical Relevance- This study demonstrated the potential of using a clinically relevant benchmark for classifying CTG to allow automatic early detection of hypoxia to reduce decision-making time in maternity units.</p

    A Comprehensive Review of Techniques for Processing and Analyzing Fetal Heart Rate Signals

    Get PDF
    The availability of standardized guidelines regarding the use of electronic fetal monitoring (EFM) in clinical practice has not effectively helped to solve the main drawbacks of fetal heart rate (FHR) surveillance methodology, which still presents inter- and intra-observer variability as well as uncertainty in the classification of unreassuring or risky FHR recordings. Given the clinical relevance of the interpretation of FHR traces as well as the role of FHR as a marker of fetal wellbeing autonomous nervous system development, many different approaches for computerized processing and analysis of FHR patterns have been proposed in the literature. The objective of this review is to describe the techniques, methodologies, and algorithms proposed in this field so far, reporting their main achievements and discussing the value they brought to the scientific and clinical community. The review explores the following two main approaches to the processing and analysis of FHR signals: traditional (or linear) methodologies, namely, time and frequency domain analysis, and less conventional (or nonlinear) techniques. In this scenario, the emerging role and the opportunities offered by Artificial Intelligence tools, representing the future direction of EFM, are also discussed with a specific focus on the use of Artificial Neural Networks, whose application to the analysis of accelerations in FHR signals is also examined in a case study conducted by the authors

    Multiparametric Investigation of Dynamics in Fetal Heart Rate Signals

    Get PDF
    In the field of electronic fetal health monitoring, computerized analysis of fetal heart rate (FHR) signals has emerged as a valid decision-support tool in the assessment of fetal wellbeing. Despite the availability of several approaches to analyze the variability of FHR signals (namely the FHRV), there are still shadows hindering a comprehensive understanding of how linear and nonlinear dynamics are involved in the control of the fetal heart rhythm. In this study, we propose a straightforward processing and modeling route for a deeper understanding of the relationships between the characteristics of the FHR signal. A multiparametric modeling and investigation of the factors influencing the FHR accelerations, chosen as major indicator of fetal wellbeing, is carried out by means of linear and nonlinear techniques, blockwise dimension reduction, and artificial neural networks. The obtained results show that linear features are more influential compared to nonlinear ones in the modeling of HRV in healthy fetuses. In addition, the results suggest that the investigation of nonlinear dynamics and the use of predictive tools in the field of FHRV should be undertaken carefully and limited to defined pregnancy periods and FHR mean values to provide interpretable and reliable information to clinicians and researchers

    Extracting fetal heart beats from maternal abdominal recordings: Selection of the optimal principal components

    Get PDF
    This study presents a systematic comparison of different approaches to the automated selection of the principal components (PC) which optimise the detection of maternal and fetal heart beats from non-invasive maternal abdominal recordings. A public database of 75 4-channel non-invasive maternal abdominal recordings was used for training the algorithm. Four methods were developed and assessed to determine the optimal PC: (1) power spectral distribution, (2) root mean square, (3) sample entropy, and (4) QRS template. The sensitivity of the performance of the algorithm to large-amplitude noise removal (by wavelet de-noising) and maternal beat cancellation methods were also assessed. The accuracy of maternal and fetal beat detection was assessed against reference annotations and quantified using the detection accuracy score F1 [2*PPV*Se / (PPV + Se)], sensitivity (Se), and positive predictive value (PPV). The best performing implementation was assessed on a test dataset of 100 recordings and the agreement between the computed and the reference fetal heart rate (fHR) and fetal RR (fRR) time series quantified. The best performance for detecting maternal beats (F1 99.3%, Se 99.0%, PPV 99.7%) was obtained when using the QRS template method to select the optimal maternal PC and applying wavelet de-noising. The best performance for detecting fetal beats (F1 89.8%, Se 89.3%, PPV 90.5%) was obtained when the optimal fetal PC was selected using the sample entropy method and utilising a fixed-length time window for the cancellation of the maternal beats. The performance on the test dataset was 142.7 beats2/min2 for fHR and 19.9 ms for fRR, ranking respectively 14 and 17 (out of 29) when compared to the other algorithms presented at the Physionet Challenge 2013

    Influence of Gestational Diabetes on Fetal Heart Rate in Antepartum Cardiotocographic Recordings

    Get PDF
    In pregnancy, diabetes is known to increase the risk of adverse maternal and neonatal outcomes. It would be beneficial to find techniques that allow early investigation of the physio-pathological mechanisms involved to provide clinicians with tools for prevention and therapies. For that, cardiotocography (CTG) is a promising tool. However, the evidence is still scarce and the impact on clinical practice little. In this study, we aim at characterizing the changes induced by gestational diabetes (GDM) on the fetal heart rate series. To do so, we performed a retrospective cohort study on a CTG dataset containing more than 20000 recordings of which 852 belong to 301 GDM-diagnosed patients. We divided the recordings by gestational age (G.A.) into 4 groups (weeks: 31-35, 36, 37, 38 to delivery) and for each we identified a control population of equal size matched by comorbidities. We analyzed a comprehensive set of parameters from the time domain, frequency domain and non-linear analysis and assessed variations in median values on each feature. For all G.A. below the 38th week, we found a significant increase in the power in the movement frequency band (p&lt;0.01) and an increase in the absolute value of Deceleration Reserve (p&lt;0.01) in GDM vs control. Other significant values were also identified and are discussed in more detail in the paper

    Evaluation of the Acceleration and Deceleration Phase-Rectified Slope to Detect and Improve IUGR Clinical Management

    Get PDF
    Objective. This study used a new method called Acceleration (or Deceleration) Phase-Rectified Slope, APRS (or DPRS) to analyze computerized Cardiotocographic (cCTG) traces in intrauterine growth restriction (IUGR), in order to calculate acceleration- and deceleration-related fluctuations of the fetal heart rate, and to enhance the prediction of neonatal outcome. Method. Cardiotocograms from a population of 59 healthy and 61 IUGR fetuses from the 30th gestation week matched for gestational age were included. APRS and DPRS analysis was compared to the standard linear and nonlinear cCTG parameters. Statistical analysis was performed through the -test, ANOVA test, Pearson correlation test and receiver operator characteristic (ROC) curves (). Results. APRS and DPRS showed high performance to discriminate between Healthy and IUGR fetuses, according to gestational week. A linear correlation with the fetal pH at birth was found in IUGR. The area under the ROC curve was 0.865 for APRS and 0.900 for DPRS before the 34th gestation week. Conclusions. APRS and DPRS could be useful in the identification and management of IUGR fetuses and in the prediction of the neonatal outcome, especially before the 34th week of gestation

    Machine learning and disease prediction in obstetrics

    Get PDF
    Machine learning technologies and translation of artificial intelligence tools to enhance the patient experience are changing obstetric and maternity care. An increasing number of predictive tools have been developed with data sourced from electronic health records, diagnostic imaging and digital devices. In this review, we explore the latest tools of machine learning, the algorithms to establish prediction models and the challenges to assess fetal well-being, predict and diagnose obstetric diseases such as gestational diabetes, pre-eclampsia, preterm birth and fetal growth restriction. We discuss the rapid growth of machine learning approaches and intelligent tools for automated diagnostic imaging of fetal anomalies and to asses fetoplacental and cervix function using ultrasound and magnetic resonance imaging. In prenatal diagnosis, we discuss intelligent tools for magnetic resonance imaging sequencing of the fetus, placenta and cervix to reduce the risk of preterm birth. Finally, the use of machine learning to improve safety standards in intrapartum care and early detection of complications will be discussed. The demand for technologies to enhance diagnosis and treatment in obstetrics and maternity should improve frameworks for patient safety and enhance clinical practice
    • …
    corecore