29,875 research outputs found

    Optimal low-rank approximations of Bayesian linear inverse problems

    Full text link
    In the Bayesian approach to inverse problems, data are often informative, relative to the prior, only on a low-dimensional subspace of the parameter space. Significant computational savings can be achieved by using this subspace to characterize and approximate the posterior distribution of the parameters. We first investigate approximation of the posterior covariance matrix as a low-rank update of the prior covariance matrix. We prove optimality of a particular update, based on the leading eigendirections of the matrix pencil defined by the Hessian of the negative log-likelihood and the prior precision, for a broad class of loss functions. This class includes the F\"{o}rstner metric for symmetric positive definite matrices, as well as the Kullback-Leibler divergence and the Hellinger distance between the associated distributions. We also propose two fast approximations of the posterior mean and prove their optimality with respect to a weighted Bayes risk under squared-error loss. These approximations are deployed in an offline-online manner, where a more costly but data-independent offline calculation is followed by fast online evaluations. As a result, these approximations are particularly useful when repeated posterior mean evaluations are required for multiple data sets. We demonstrate our theoretical results with several numerical examples, including high-dimensional X-ray tomography and an inverse heat conduction problem. In both of these examples, the intrinsic low-dimensional structure of the inference problem can be exploited while producing results that are essentially indistinguishable from solutions computed in the full space

    Uniform Sampling for Matrix Approximation

    Full text link
    Random sampling has become a critical tool in solving massive matrix problems. For linear regression, a small, manageable set of data rows can be randomly selected to approximate a tall, skinny data matrix, improving processing time significantly. For theoretical performance guarantees, each row must be sampled with probability proportional to its statistical leverage score. Unfortunately, leverage scores are difficult to compute. A simple alternative is to sample rows uniformly at random. While this often works, uniform sampling will eliminate critical row information for many natural instances. We take a fresh look at uniform sampling by examining what information it does preserve. Specifically, we show that uniform sampling yields a matrix that, in some sense, well approximates a large fraction of the original. While this weak form of approximation is not enough for solving linear regression directly, it is enough to compute a better approximation. This observation leads to simple iterative row sampling algorithms for matrix approximation that run in input-sparsity time and preserve row structure and sparsity at all intermediate steps. In addition to an improved understanding of uniform sampling, our main proof introduces a structural result of independent interest: we show that every matrix can be made to have low coherence by reweighting a small subset of its rows

    Iterative Row Sampling

    Full text link
    There has been significant interest and progress recently in algorithms that solve regression problems involving tall and thin matrices in input sparsity time. These algorithms find shorter equivalent of a n*d matrix where n >> d, which allows one to solve a poly(d) sized problem instead. In practice, the best performances are often obtained by invoking these routines in an iterative fashion. We show these iterative methods can be adapted to give theoretical guarantees comparable and better than the current state of the art. Our approaches are based on computing the importances of the rows, known as leverage scores, in an iterative manner. We show that alternating between computing a short matrix estimate and finding more accurate approximate leverage scores leads to a series of geometrically smaller instances. This gives an algorithm that runs in O(nnz(A)+dω+θϵ−2)O(nnz(A) + d^{\omega + \theta} \epsilon^{-2}) time for any θ>0\theta > 0, where the dω+θd^{\omega + \theta} term is comparable to the cost of solving a regression problem on the small approximation. Our results are built upon the close connection between randomized matrix algorithms, iterative methods, and graph sparsification.Comment: 26 pages, 2 figure

    A literature survey of low-rank tensor approximation techniques

    Full text link
    During the last years, low-rank tensor approximation has been established as a new tool in scientific computing to address large-scale linear and multilinear algebra problems, which would be intractable by classical techniques. This survey attempts to give a literature overview of current developments in this area, with an emphasis on function-related tensors
    • …
    corecore