
Selection of our books indexed in the Book Citation Index 

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us? 
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected. 

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International  authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

122,000 135M

TOP 1%154

4,800

CORE Metadata, citation and similar papers at core.ac.uk

Provided by IntechOpen

https://core.ac.uk/display/322386147?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


17

Image-based Subspace Analysis for 
Face Recognition 

Vo Dinh Minh Nhat and SungYoung Lee 
Kyung Hee University 

Korea

In classical statistical pattern recognition tasks, we usually represent data samples with n-
dimensional vectors, i.e. data is vectorized to form data vectors before applying any 
technique. However in many real applications, the dimension of those 1D data vectors is 
very high, leading to the “curse of dimensionality“. The curse of dimensionality is a 
significant obstacle in pattern recognition and machine learning problems that involve 
learning from few data samples in a high-dimensional feature space. In face recognition, 
Principal component analysis (PCA) and Linear discriminant analysis (LDA) are the most 
popular subspace analysis approaches to learn the low-dimensional structure of high 
dimensional data. But PCA and LDA are based on 1D vectors transformed from image 
matrices, leading to lose structure information and make the evaluation of the covariance 
matrices high cost. In this chapter, straightforward image projection techniques are 
introduced for image feature extraction. As opposed to conventional PCA and LDA, the 
matrix-based subspace analysis is based on 2D matrices rather than 1D vectors. That is, the 
image matrix does not need to be previously transformed into a vector. Instead, an image 
covariance matrix can be constructed directly using the original image matrices. We use the 
terms “matrix-based“ and “image-based“ subspace analysis interchangeably in this chapter. 
In contrast to the covariance matrix of PCA and LDA, the size of the image covariance 
matrix using image-based approaches is much smaller. As a result, it has two important 
advantages over traditional PCA and LDA. First, it is easier to evaluate the covariance 
matrix accurately. Second, less time is required to determine the corresponding eigenvectors 
(Jian Yang et al., 2004). A brief of history of image-based subspace analysis can be 
summarized as follow. Based on PCA, some image-based subspace analysis approaches 
have been developed such as 2DPCA (Jian Yang et al., 2004), GLRAM (Jieping Ye, 2004), 
Non-iterative GLRAM (Jun Liu & Songcan Chen 2006; Zhizheng Liang et al., 2007), MatPCA 
(Songcan Chen, et al. 2005), 2DSVD (Chris Ding & Jieping Ye 2005), Concurrent subspace 
analysis (D.Xu, et al. 2005) and so on. Based on LDA, 2DLDA (Ming Li & Baozong Yuan 
2004), MatFLDA (Songcan Chen, et al. 2005), Iterative 2DLDA (Jieping Ye, et al. 2004), Non-
iterative 2DLDA (Inoue, K. & Urahama, K. 2006) have been developed until date. The main 
purpose of this chapter is to give you a generalized overview of those matrix-based 
approaches with detailed mathematical theory behind that. All algorithms presented here 
are up-to-date till Jan. 2007. 

Source: Face Recognition, Book edited by: Kresimir Delac and Mislav Grgic, ISBN 978-3-902613-03-5, pp.558, I-Tech, Vienna, Austria, June 2007
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1. Introduction 

A facial recognition system is a computer-driven application for automatically identifying a 
person from a digital image. It does that by comparing selected facial features in the live 
image and a facial database. With the rapidly increasing demand on face recognition 
technology, it is not surprising to see an overwhelming amount of research publications on 
this topic in recent years. In this chapter we briefly review on linear subspace analysis 
(LSA), which is one of the fastest growing areas in face recognition research and present in 
detail recently developed image-based approaches.  

Method Reference Section 

PCA (M. Turk & A. Pentland 1991) 2.1 

LDA (Belhumeur P.N., et al., 1997) 2.2 

2DPCA
(Jian Yang et al., 2004) 
MatPCA (Songcan Chen, et al. 2005) 

3.1

2DLDA
(Ming Li & Baozong Yuan 2004) 
MatFLDA (Songcan Chen, et al. 2005) 

3.2

GLRAM 
(Jieping Ye, 2004) 
Concurrent subspace analysis (D.Xu, et al. 2005) 
2DSVD (Chris Ding & Jieping Ye 2005) 

4.1

Non-iterative GLRAM (Zhizheng Liang et al., 2007) 4.2 

Iterative 2DLDA (Jieping Ye, et al. 2004) 4.3 

Non-iterative 2DLDA (Inoue, K. & Urahama, K. 2006) 4.4 

Table 1. Summary of these algorithms presented in this chapter 

LSA has gained much attention in a wide range of problems arising in image processing, 
computer vision and especially pattern recognition. In LSA, the singular value 
decomposition (SVD) is usually the basic mathematical tool. The most popular LSA 
methods used in Face Recognition (FR) are Principal Component Analysis (PCA) and Linear 
Discriminant Analysis (LDA). PCA (M. Turk & A. Pentland 1991) is a subspace projection 
technique widely used for face recognition. It finds a set of representative projection vectors 
such that the projected samples retain most information about original samples. The most 
representative vectors are the eigenvectors corresponding to the largest eigenvalues of the 
covariance matrix. Unlike PCA, LDA (Belhumeur P.N., et al., 1997) finds a set of vectors that 
maximizes Fisher Discriminant Criterion. It simultaneously maximizes the between-class 
scatter while minimizing the within-class scatter in the projective feature vector space. 
While PCA can be called unsupervised learning techniques, LDA is supervised learning 
technique because it needs class information for each image in the training process. In above 
approaches, the image data first needs to be transformed into vectors before any further 
processing. Recently, two-dimensional PCA (2DPCA) and two-dimensional LDA (2DLDA) 
have been proposed in which image covariance matrices can be constructed directly using 
original image matrices. In contrast to the covariance matrices of traditional approaches 
(PCA and LDA), the size of the image covariance matrices using 2D approaches (2DPCA 
and 2DLDA) are much smaller. As a result, it is easier to evaluate the covariance matrices 
accurately, computation cost is reduced and the performance is also improved (Jian Yang et 
al., 2004). We categorize the existing techniques in image-based subspace analysis into two 
main categories. One category can be considered as a one-sided low-rank approximation 
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which includes 2DPCA (Jian Yang et al., 2004), MatPCA (Songcan Chen, et al. 2005), 2DLDA 
(Ming Li & Baozong Yuan 2004), and MatLDA (Songcan Chen, et al. 2005). The other is 
classified as two-sided low-rank approximation such as GLRAM (Jieping Ye, 2004), Non-
iterative GLRAM (Jun Liu & Songcan Chen 2006; Zhizheng Liang et al., 2007), 2DSVD (Chris 
Ding & Jieping Ye 2005), Concurrent subspace analysis (D.Xu, et al. 2005), Iterative 2DLDA 
(Jieping Ye, et al. 2004), and Non-iterative 2DLDA (Inoue, K. & Urahama, K. 2006). Tabel 1. 
gives an summary of those algorithms presented. Basis notations used in this chapter are 
summarized in Table 2. 

Notations Descriptions 

n

ix ∈ℜ the thi image point in vector form 

r c

iX
×∈ℜ the thi image point in matrix form 

iΠ the thi class of data points (both in vector and matrix form) 

n dimension of ix

m dimension of reduced feature vector iy

r number of rows in iX

c number of columns in iX

N number of data samples 

C number of classes 

iN  number of data samples in class iΠ

L transformation on the left side 

R transformation on the right side 

1l  number of rows in iY

2l  number of columns in iY

Table 2. Notations and Descriptions 

2. Linear Subspace Analysis Introduction 

In this section we briefly review about LSA which includes PCA and LDA. One approach to 
cope with the problem of excessive dimensionality of the image space is to reduce the 
dimensionality by combining features. Linear combinations are particularly attractive 
because they are simple to compute and analytically tractable. In effect, linear methods 
project the high-dimensional data onto a lower dimensional subspace. Suppose that we have 

N sample images 1 2{ , ,..., }Nx x x  taking values in an n -dimensional image space. Let us 

also consider a linear transformation mapping the original n -dimensional image space into 

an m -dimensional feature space, where m n< . The new feature vectors m

ky ∈ℜ  are 

defined by the following linear transformation: 
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( )T

k ky W x µ= −  (1) 

where 1,2,...,k N= , nµ ∈  is the mean of all samples, and n mW ×∈ ℜ is a matrix with 

orthonormal columns. Atfer the linear transformation, each data point kx  can be 

represented by a feature vector m

ky ∈ℜ which is used for classification. 

2.1 Principal Component Analysis - PCA 

Different objective functions will yield different algorithms with different properties. PCA 
aims to extract a subspace in which the variance is maximized. Its objective function is as 
follows: 

1 2[ ... ] argmax T

opt m t
W

W w w w W SW= =  (2) 

with the total scatter matrix is defined as 

1

1
( )( )

N
T

t k k

k

S x x
N

µ µ
=

= − −  (3) 

and
1

1 N

i

i

x
N

µ
=

= is the mean of all samples. The optimal projection 1 2[ ... ]opt mW w w w= is the 

set of n-dimensional eigenvectors of tS corresponding to the m largest eigenvalues.  

2.2 Linear Discriminant Analysis - LDA 

While PCA seeks directions that are efficient for representation, LDA seeks directions that 

are efficient for discrimination. Assume that each image belongs to one of C  classes 

1 2{ , ,..., }CΠ Π Π . Let iN  be the number of the samples in class ( 1, 2,..., )i i CΠ = ,

1

i

i

xi

x
N

µ
∈Π

= be the mean of the samples in class iΠ . Then the between-class scatter matrix 

bS  is defined as 

1

1
( )( )

C
T

b i i i

i

S N
N

µ µ µ µ
=

= − −  (4) 

and the within-class scatter matrix wS is defined as 

1

1
( )( )

k i

C
T

w k i k i

i x

S x x
N

µ µ
= ∈Π

= − −  (5) 

In LDA, the projection optW is chosen to maximize the ratio of the determinant of the 

between-class scatter matrix of the projected samples to the determinant of the within-class 
scatter matrix of the projected samples, i.e., 
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1 2argmax [ ... ]

T

b

opt W mT

w

W S W
W w w w

W S W
= =  (6) 

where{ 1,2,..., }iw i m= is the set of generalized eigenvectors of bS and wS  corresponding to 

them largest generalized eigenvalues{ 1,2,..., }i i mλ = , i.e., 

1,2,...,b i i w iS w S w i mλ= =  (7) 

3. One-sided Image-based Subspace Analysis 

In previous section, we review the linear subspace analysis techniques which are based on 
1D vectors. However, recently, (Yang et al., 2004) proposed a novel image representation 
and recognition technique, two-dimensional PCA (2DPCA). 2DPCA has many advantages 
over classical PCA. In classical PCA, an image matrix should be mapped into a 1D vector in 
advance. 2DPCA, however, can directly extract feature matrix from the original image 
matrix. This leads to that much less time is required for training and feature extraction. 
Further, the recognition performance of 2DPCA is better than that of classical PCA. Inspired 
by (Yang et al., 2004), a lot of algorithms have been developed based directly on matrix 
images. As mentioned, we cagetorize those image-based approaches into two main 
cagetories which are one-side low-rank approximation and two-sided low-rank 
approximation.  In this section, we present two one-sided low-rank approximations which 
are 2DPCA and 2DLDA approaches. 

3.1 Two-dimensional PCA (2DPCA) 

As mentioned above, in 2D approach, the image matrix does not need to be previously 

transformed into a vector, so a set of N sample images is represented as 1 2{ , ,..., }NX X X

with r c

iX
×∈ℜ , which is a matrix space of size r c× . The total scatter matrix is defined as 

1

1
( ) ( )

N
T

t i i

i

G X M X M
N =

= − −  (8) 

with
1

1 N
r c

i

i

M X
N

×

=

= ∈ℜ is the mean image of all samples. r r

tG
×∈ℜ  is also called image 

covariance (scatter) matrix. A linear transformation mapping the original r c× image space 

into an r m× feature space, where m c< . The new feature matrices r m

iY
×∈ℜ are defined by 

the following linear transformation: 

( ) r m

i iY X M W ×= − ∈ℜ  (9) 

where 1,2,...,i N=  and r mW ×∈ℜ  is a matrix with orthogonal columns. In 2DPCA, the 

projection optW is chosen to maximize ( )T

ttr W GW . The optimal projection
1 2[ ... ]opt mW w w w=



Face Recognition 326

with { 1,2,..., }iw i m=  is the set of c -dimensional eigenvectors of tG corresponding to the 

m largest eigenvalues.  

3.2 Two-dimensional LDA (2DLDA) 

In 2DLDA, the between-class scatter matrix bS  is re-defined as 

1

1
( ) ( )

C
T

b i i i

i

G N M M M M
N =

= − −  (10) 

and the within-class scatter matrix wS is re-defined as 

1

1
( ) ( )

k i

C
T

w k i k i

i X C

G X M X M
N = ∈

= − −  (11) 

with
1

1 N
r c

i

i

M X
N

×

=

= ∈ℜ is the mean image of all samples and 
1

k i

r c

i k

Xi

M X
N

×

∈Π

= ∈ℜ  be 

the mean of the samples in class ( 1.. )i i CΠ = .  Similarly, a linear transformation mapping 

the original r c× image space into an r m× feature space, wherem c< . The new feature 

matrices 
r m

iY
×∈ℜ  are defined by the following linear transformation : 

( ) r m

i iY X M W ×= − ∈ℜ  (12) 

where 1,2,...,i N=  and c mW ×∈ℜ  is a matrix with orthogonal columns. And the 

projection optW is chosen with the criterion same as that in (6). While the classical LDA must 

face to the singularity problem, we can see that 2DLDA overcomes this problem. We need to 

prove that
1

wG
−

exists, i.e. ( )wrank G c= . We have, 

1

1
( ) ( ) ( )

( ) *min( , )

k i

C
T

w k i k i

i X C

rank G rank X M X M
N

N C r c

= ∈

= − −

≤ −

 (13) 

The inequality in (13) holds because ( ) min( , )irank X r c= . So, in 2DLDA, wG is 

nonsingular when 

( )*min( , )

min( , )

c N C r c

c
N C

r c

≤ −

⇔ ≥ +
 (14) 

In real situation, (14) is always true, so wG is always nonsingular.  
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3.3 Classifier for 2DPCA and 2DLDA 

After a transformation by 2DPCA or 2DLDA, a feature matrix is obtained for each image. 
Then, a nearest neighbor classifier is used for classification. Here, the distance between two 

arbitrary feature matrices iY and jY is defined by using Euclidean distance as follows: 

2

1 1

( , ) ( ( , ) ( , ))
k s

i j i j

u v

d Y Y Y u v Y u v
= =

= −  (15) 

Given a test sample tY , if ( , ) min ( , )t c t j
j

d Y Y d Y Y= , then the resulting decision is tY belongs to 

the same class as cY .

4. Two-sided Image-based Subspace Analysis 

4.1 Generalized Low Rank Approximations of Matrices (GLRAM) 

In paper (Jieping Ye, 2004), Jieping considered the problem of computing low rank 
approximations of matrices which are based on a collection of matrices. By solving an 
optimization problem, which aims to minimize the reconstruction (approximation) error, 
they derive an iterative algorithm, namely GLRAM, which stands for the Generalized Low 
Rank Approximations of Matrices. GLRAM reduces the reconstruction error sequentially, 
and the resulting approximation is thus improved during successive iterations. Formally, 
they consider the following optimization problem 

2

, , 1

1 2
. . ,

min
i

N
T

i i F
L R Y i

T T

X LY R

s t L L I R R I

=

−

= =

 (16) 

where 1r lL ×∈ℜ , 2c lR ×∈ℜ , 1 2l l

iY
×∈ℜ for 1..i N= , 1 1

1

l lI ×∈ℜ and 2 2

2

l lI ×∈ℜ are identity matrices, 

where 1l r≤ and 2l c≤ . Before showing how to solve above optimization problem, we briefly 

review some theorems that support the final iterative algorithm. 

Theorem 1. Let ,L R and 1{ }Ni iY = be the optimal solution to the minimization problem in Eq. 

(16). Then T

i iY L X R= for every i .

Proof : By the property of the trace of matrices, 

( )

( ) ( ) ( )

2

1 1

1 1 1

( )( )

2

N N
T T T T

i i i i i iF
i i

N N N
T T T T

i i i i i i

i i i

X LY R tr X LY R X LY R

tr X X tr YY tr LY R X

= =

= = =

− = − −

= + −

 (17) 

Because ( )
1

N
T

i i

i

tr X X
=

is a constant, the minimization in Eq. (16) is equivalent to minimizing 

( ) ( )
1 1

2
N N

T T T

i i i i

i i

E tr YY tr LY R X
= =

= −  (18) 
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By taking derivatives of (18) , and force it equal to zero 

2 2 0T T T

i i

i

E
Y R X L

Y

∂
= − =

∂
 (19) 

we obtain T

i iY L X R= . This completes the proof of the theorem. 

Theorem 2. Let ,L R and 1{ }Ni iY = be the optimal solution to the minimization problem in Eq. 

(16). Then ,L R solve the following optimization problem: 

2

, , 1

1 2
. . ,

max
i

N
T

i F
L R Y i

T T

L X R

s t L L I R R I

=

= =

 (20) 

Proof : From Theorem 1., T

i iY L X R= for every i , we obtain 

( ) ( )

( ) ( )

( )

1 1

1 1

2

1 1

2

2

N N
T T T

i i i i

i i

N N
T T T T T T

i i i i

i i

N N
T T T T

i i i F
i i

tr YY tr LY R X

tr L X RR X L tr LL X RR X

tr L X RR X L L X R

= =

= =

= =

−

= −

= − = −

 (21) 

Hence the minimization problem in Eq. (16) is equivalent to the maximization of 

2

, , 1

1 2
. . ,

max
i

N
T

i F
L R Y i

T T

L X R

s t L L I R R I

=

= =

 (22) 

To the best of our knowledge, there is no closed form solution for the maximization in Eq. 

(22). A key observation, which leads to an iterative algorith for the computation of ,L R , is 

stated in the following theorem: 

Theorem 3. Let ,L R and 1{ }Ni iY = be the optimal solution to the minimization problem in Eq. (). 

Then,

(1) For a given R , L consists of the 1l eigenvectors of the matrix   

1

N
T T

L i i

i

S X RR X
=

=  (23) 

corresponding to the largest 1l eigenvalues.

(2) For a given L , R consists of the 2l eigenvectors of the matrix   

1

N
T T

R i i

i

S X LL X
=

=  (24) 

corresponding to the largest 2l eigenvalues.
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Proof : From the Theorem 2., the objective function in (22) can be re-written as 

( )

( )

2

1 1

1

N N
T T T T

i i iF
i i

N
T T T T

i i L

i

L X R tr L X RR X L

tr L X RR X L tr L S L

= =

=

=

= =

 (25) 

where
1

N
T T

L i i

i

S X RR X
=

= . Hence for a given R , 1r lL ×∈ℜ consists of the 1l eigenvectors of the 

matrix LS  corresponding to the largest 1l  eigenvalues. Similarly, For a given L , 2c lR ×∈ℜ

consists of the 2l eigenvectors of the matrix 
1

N
T T

R i i

i

S X LL X
=

=  corresponding to the largest 2l

eigenvalues. This completes the proof of the thereom. An iterative procedure for 

computing L and R can be  presented as follow 

Algorithm – GLRAM 

Step 0 

Initialize (0)

1[ ,0]
TL L I= = , and set 0k = .

Step 1

Compute 2l eigenvectors 2( 1)

1{ }lR k

i i

+
=Φ of the matrix ( ) ( )

1

N
T k k T

R i i

i

S X L L X
=

=

corresponding to the largest 2l  eigenvalues and form
2

( 1) ( 1) ( 1)

1[ .. ]k R k R k

lR + + += Φ Φ .

Step 2

Compute 1l eigenvectors 1( 1)

1{ }lL k

i i

+
=Φ of the matrix ( 1) ( 1)

1

N
k k T T

L i i

i

S X R R X+ +

=

=

corresponding to the largest 1l  eigenvalues and form
1

( 1) ( 1) ( 1)

1[ .. ]k L k L k

lL + + += Φ Φ .

Step 3

If ( 1)kL + , ( 1)kR + are not convergent then set increase k by 1 and go to Step 1, 

othervise proceed to Step 4. 
Step 4

Let * ( 1)kL L += , * ( 1)kR R += and compute * * *T

i iY L X R= for 1..i N= .

4.2 Non-iterative GLRAM 

By further analyzing GLRAM, it is of interest to note that the objective function in Eq. (16) 
(Zhizheng Liang et al., 2007) has the lower and upper bound in terms of the covariance 
matrix. They also derive an effective solution for GLRAM which is a non-iterative solution.  
In the following, we first provide a lemma which is very useful for developing non-iterative 
GLRAM algorithm.  

Lemma 1. Let B  be an m m×  symmetric matrix and H  be an m h×  which satisties 
T h hH H I ×= ∈ℜ . Then, for 1..i h= , we have 

( ) ( ) ( )T

m h i i iB H BH Bλ λ λ− + ≤ ≤  (26) 
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where ( )i Bλ  denotes the thi  largest eigenvalue of the matrix B .

Proof of this lemma can be referenced in (Zhizheng Liang et al., 2007). From Lemma 1., the 
following corollary can be obtained 

Corollary 1. Let iw  be the eigenvectors corresponding to the thi  largest eigenvalue iλ  of B

and H be an m h×  which satisties T h hH H I ×= ∈ℜ . Then,  

1.. ( ) ..T

m h i m htr H BHλ λ λ λ− + + + ≤ ≤ + +  (27) 

and the second equality holds if H WQ=  where 1[ .. ]hW w w=  and Q  is any h h×  orthogonal 

matrix. 
Some following matrices are defined (Zhizheng Liang et al., 2007) 

1

1

N
T

i i

i

G X X
=

=  (28) 

2

1

N
T

i i

i

G X X
=

=  (29) 

Let 1F  consists of the eigenvectors  of 2G  corresponding to the first 2l  largest eigenvalues  

and 2F  consists of the eigenvectors  of 1G  corresponding to the first 1l  largest eigenvalues. 

Next, we define 

1 1 1

1

N
T T

L i i

i

H X F F X
=

=  (30) 

1 2 2

1

N
T T

R i i

i

H X F F X
=

=  (31) 

Let 1K  consists of the eigenvectors  of 1LH  corresponding to the first 1l  largest eigenvalues  

and 2K  consists of the eigenvectors  of 1RH  corresponding to the first 2l  largest 

eigenvalues. Applying Corollary 1., we can obtain the following theorem 

Theorem 4. Let 1d  be the sum of the first 1l  largest eigenvalues of 1LH and 2d  be the sum of 

the first 2l  largest eigenvalues of 1RH . In such a case, the value of Eq. (22) is equal to 

1 2max{ , }d d

Proof : (a) Eq. (22) can be represented as 

( )

( )

2

1 1

1

N N
T T T T

i i iF
i i

N
T T T T

i i L

i

L X R tr L X RR X L

tr L X RR X L tr L S L

= =

=

=

= =

 (32) 

Applying Corollary 1. we have 

( ) ( )
1

T

L L l
tr L S L tr S≤  (33) 
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Since

( )
21 1

1

( ) ( )
N

T T T

L i i l

i

tr S tr X RR X tr R G R tr G
=

= = ≤  (34) 

From Eq. (33) and Eq. (34), we can obtain 

( ) ( )
2

1

T

L l
tr L S L tr G≤  (35) 

Then it is not difficult to obtain 
2 2

2

1 l lR FQ ×= where
2 2

2

l lQ × is any orthogonal matrix. Substitute 

2 2

2

1 l lR FQ ×= into LS  and obtrain 1LH , we can have 
1 1

1

1 l lL K Q ×= . Futhermore, it is 

straightforward to verify that the value of Eq. (22) is equal to 1d .

(b) In the same way we can have 

( ) ( )

( )

2

1 1 1

1

N N N
T T T T T T T

i i i i iF
i i i

N
T T T T

i i i R

i

L X R tr L X RR X L tr R X LL X R

tr R X LL X R tr R S R

= = =

=

= =

= =

 (36) 

Applying Corollary 1. we have 

( ) ( )
2

T

R R l
tr R S R tr S≤  (37) 

Since

( )
12 2

1

( ) ( )
N

T T T

R i i l

i

tr S tr X LL X tr L G L tr G
=

= = ≤  (38) 

From Eq. (37) and Eq. (38), we can obtain 

( ) ( )
1

2

T

R l
tr R S R tr G≤  (39) 

Then it is not difficult to obtain 
1 1

1

2 l lL F Q ×= where
1 1

1

l lQ × is any orthogonal matrix. Substitute 

1 1

1

2 l lL F Q ×= into RS  and obtrain 1RH , we can have 
2 2

2

2 l lR K Q ×= . Futhermore, it is 

straightforward to verify that the value of Eq. (22) is equal to 2d . From (a) and (b), the 

theorem is proven. From this proof, it is not difficult to derive the non-iterative GLRAM as  

Algorithm – Non-iterative GLRAM 

Step 1 

Compute the matrices 1G  and 2G

Step 2

Compute eigenvectors of the matrices 1G  and 2G , let 
2 2

2

1 l lR FQ ×= and
1 1

1

2 l lL F Q ×=

Step 3

Compute eigenvectors of the matrices 1LH  and 1RH , and obtain 
1 1

1

1 l lL K Q ×=
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corresponding to R in step 2 and 
2 2

2

2 l lR K Q ×= corresponding to L in step 2 and 

compute 1d , 2d

Step 4

Choose ,R L  corresponding to 1 2max{ , }d d , and compute T

i iY L X R=

4.3 Iterative 2DLDA 

In (Jieping Ye, et al. 2004), he proposed a novel LDA algorithm, namely 2DLDA, which 
stands for 2-Dimensional Linear Discriminant Analysis. However, to distinguish with 
previous 2DLDA approach, we call this approach Iterative 2DLDA. Iterative 2DLDA aims to 

find the two-sided optimal transformations (projections L and R ) such that the class 
structure of the original high-dimensional space is preserved in the low-dimensional space. 
A natural similarity metric between matrices is the Frobenius norm. Under this metric, the 

(squared) within-class and between-class distances wD and bD  can be computed as follows: 

2

1

1

( )( )

i j

i j

C

w i j F
j X

C
T

i j i j

j X

D X M

tr X M X M

= ∈Π

= ∈Π

= −

= − −

 (40) 

2

1

1

( )( )

C

b j j F
j

C
T

j j j

j

D N M M

tr N M M M M

=

=

= −

= − −

 (41) 

In the low-dimensional space resulting from the linear transformations L and R , the with-in 

and between-class distances wD and bD  can be computed as follows: 

1

( ) ( )
i j

C
T T T

w i j i j

j X

D tr L X M RR X M L
= ∈Π

= − −  (42) 

1

( ) ( )
C

T T T

b j j j

j

D tr N L M M RR M M L
=

= − −  (43) 

The optimal transformations L and R would maximize ( , ) /b wF L R D D= . Let us define 

( ) ( )
i j

R T T

w i j i j

X

S X M RR X M
∈Π

= − −  (44) 

1

( ) ( )
C

R T T

b j j j

j

S N M M RR M M
=

= − −  (45) 
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( ) ( )
i j

L T T

w i j i j

X

S X M LL X M
∈Π

= − −  (46) 

1

( ) ( )
C

L T T

b j j j

j

S N M M LL M M
=

= − −  (47) 

After defining those matrices we can derive the iterative 2DLDA algorithm as follow 

Algorithm – Iterative 2DLDA 

Step 0 

Initialize (0)

2[ ,0]
TR R I= = , and set 0k = .

Step 1
Compute

( ) ( ) ( )( ) ( )
i j

R k k k T T

w i j i j

X

S X M R R X M
∈Π

= − −

( ) ( ) ( )

1

( ) ( )
C

R k k k T T

b j j j

j

S N M M R R M M
=

= − −

Step 2

Compute 1l eigenvectors 1( )

1{ }lL k

i i=Φ of the matrix ( ) 1( )R k

wS
− )(kR

bS   and 

form
1

( ) ( ) ( )

1[ .. ]k L k L k

lL = Φ Φ .

Step 3
Compute

( ) ( ) ( )( ) ( )
i j

L k T k k T

w i j i j

X

S X M L L X M
∈Π

= − −

( ) ( ) ( )

1

( ) ( )
C

L k T k k T

b j j j

j

S N M M L L M M
=

= − −

Step 4

Compute 2l eigenvectors 2( )

1{ }lR k

i i=Φ of the matrix ( ) 1( )L k

wS
− )(kL

bS  and

form
1

( 1) ( ) ( )

1[ .. ]k R k R k

lR + = Φ Φ .

Step 5

If ( )kL , ( 1)kR + are not convergent then set increase k by 1 and go to Step 1, 

othervise proceed to Step 6. 
Step 6

Let * ( )kL L= , * ( 1)kR R += and compute * * *T

i iY L X R= for 1..i N= .

4.4 Non-iterative 2DLDA 

Iterative 2DLDA computes L  and R  in turn with the initialization (0)

2[ ,0]
TR R I= = .

Alternatively, we can consider another algorithm that computes and L  and R  in turn with 

the initialization (0)

1[ ,0]
TL L I= = . By unifying them, in this subsection, we can select L  and 
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R  which give larger ( , )F L R  and form the selective algorithm as follow (Inoue, K. & 

Urahama, K. 2006) 

Algorithm – Selective 2DLDA 

Step 1 

Initialize 2[ ,0]
TR I= , and compute L and R in turn. Let (1)L and (1)R be

computed L and R .
Step 2

Initialize 1[ ,0]
TL I= , and compute L and R in turn. Let (2)L and (2)R be

computed L and R .
Step 3

If (1) (1) (2) (2)( , ) ( , )f L R f L R≥ then output (1)L L= and (1)R R= , otherwise output  
(2)L L= and (2)R R=

Also in (Inoue, K. & Urahama, K. 2006), they proposed another non-iterative 2DLDA called 

Parallel 2DLDA which computes L and R  independently. Firstly, let us define the row-row 
within-class and between-class scatter matrix as follows: 

1

( )( )
i j

C
r T

w i j i j

j X

S X M X M
= ∈Π

= − −  (48) 

1

( )( )
C

r T

b j j j

j

S N M M M M
=

= − −  (49) 

The optimal left side transformation matrix L  would maximize ( ) / ( )T r T r

b wtr L S L tr L S L . This 

optimization problem is equivalent to the following constrained optimization problem: 

1

max ( )

. .

T r

b
L

T r

w

tr L S L

s t L S L I=
 (50) 

Let r T

wS U U= Λ be the eigen-decomposition of r

wS  , where Λ is a diagonal matrix whose 

diagonal elements are eigenvalues of r

wS and U is an orthonormal matrix whose columns are 

the corresponding eigenvectors. Substitution of 1/ 2 TL U L= Λ  into (50) gives 

1/ 2 1/ 2

1

max ( )

. .

T T r

b
L

T

tr L U S U L

s t L L I

− −Λ Λ

=
 (51) 

Compute 1l eigenvectors 1

1{ }li i=Φ of the matrix 1/ 2 1/ 2T r

bU S U− −Λ Λ  and form the optimal solution 

of (50) as  1/ 2L U L−= Λ where
11[ .. ]lL = Φ Φ . Alternatively, we define the column-column 

within-class and between-class scatter matrix as follows: 

1

( ) ( )
i j

C
c T

w i j i j

j X

S X M X M
= ∈Π

= − −  (52) 
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1

( ) ( )
C

c T

b j j j

j

S N M M M M
=

= − −  (53) 

The optimal left side transformation matrix R would maximize ( ) / ( )T c T c

b wtr R S R tr R S R .

This optimization problem is equivalent to the following constrained optimization problem: 

2

max ( )

. .

T c

b
R

T c

w

tr R S R

s t R S R I=
 (54) 

Let c T

wS V V= Λ be the eigen-decomposition of c

wS  , where Λ is a diagonal matrix whose 

diagonal elements are eigenvalues of c

wS and V is an orthonormal matrix whose columns are 

the corresponding eigenvectors. Substitution of 1/ 2 TR V R= Λ  into (54) gives 

1/ 2 1/ 2

2

max ( )

. .

T T c

b
R

T

tr R V S V R

s t R R I

− −Λ Λ

=
 (55) 

Compute 2l eigenvectors 2

1{ }li i=Ψ of the matrix 1/ 2 1/ 2T c

bV S V− −Λ Λ  and form the optimal solution 

of (54) as  1/ 2R V R−= Λ where
21[ .. ]lR = Ψ Ψ . The parallel 2DLDA can be described as follow 

Algorithm – Parallel 2DLDA 

Step A1

Compute r

wS  and r

bS

Step A2  

Compute eigen-decomposition r T

wS U U= Λ

Step A3  

Compute the first 1l eigenvectors 1

1{ }li i=Φ of the matrix 1/ 2 1/ 2T r

bU S U− −Λ Λ  and 

compute 1/ 2L U L−= Λ  where
11[ .. ]lL = Φ Φ

Step B1

Compute c

wS  and c

bS

Step B2  

Compute eigen-decomposition c T

wS V V= Λ

Step B3  

Compute the first 2l eigenvectors 2

1{ }li i=Ψ of the matrix 1/ 2 1/ 2T c

bV S V− −Λ Λ  and 

compute 1/ 2R V R−= Λ where
21[ .. ]lR = Ψ Ψ

Since the algorithm computes L and R independently, we can interchange Step A1,A2,A3,A4 
and Step B1,B2,B3,B4. 

5. Conclusions 

In this chapter, we have shown the class of low-rank approximation algorithms based 
directly on image data. In general, those algorithms are reduced to a couple of eigenvalue 
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problems of row-row and column-column covariance matrices. In contrast to those 1D 
approaches, the size of the image covariance matrix using image-based approaches is much 
smaller. As a result, it is easier to evaluate the covariance matrix accurately and less time is 
required to determine the corresponding eigenvectors. Some future work should be 
considered such as the relationship between 1D approaches and 2D approaches and an 
extension of those 2D approaches to higher tensors. 
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