1,178 research outputs found

    From receptive profiles to a metric model of V1

    Full text link
    In this work we show how to construct connectivity kernels induced by the receptive profiles of simple cells of the primary visual cortex (V1). These kernels are directly defined by the shape of such profiles: this provides a metric model for the functional architecture of V1, whose global geometry is determined by the reciprocal interactions between local elements. Our construction adapts to any bank of filters chosen to represent a set of receptive profiles, since it does not require any structure on the parameterization of the family. The connectivity kernel that we define carries a geometrical structure consistent with the well-known properties of long-range horizontal connections in V1, and it is compatible with the perceptual rules synthesized by the concept of association field. These characteristics are still present when the kernel is constructed from a bank of filters arising from an unsupervised learning algorithm.Comment: 25 pages, 18 figures. Added acknowledgement

    Scale-Adaptive Neural Dense Features: Learning via Hierarchical Context Aggregation

    Get PDF
    How do computers and intelligent agents view the world around them? Feature extraction and representation constitutes one the basic building blocks towards answering this question. Traditionally, this has been done with carefully engineered hand-crafted techniques such as HOG, SIFT or ORB. However, there is no ``one size fits all'' approach that satisfies all requirements. In recent years, the rising popularity of deep learning has resulted in a myriad of end-to-end solutions to many computer vision problems. These approaches, while successful, tend to lack scalability and can't easily exploit information learned by other systems. Instead, we propose SAND features, a dedicated deep learning solution to feature extraction capable of providing hierarchical context information. This is achieved by employing sparse relative labels indicating relationships of similarity/dissimilarity between image locations. The nature of these labels results in an almost infinite set of dissimilar examples to choose from. We demonstrate how the selection of negative examples during training can be used to modify the feature space and vary it's properties. To demonstrate the generality of this approach, we apply the proposed features to a multitude of tasks, each requiring different properties. This includes disparity estimation, semantic segmentation, self-localisation and SLAM. In all cases, we show how incorporating SAND features results in better or comparable results to the baseline, whilst requiring little to no additional training. Code can be found at: https://github.com/jspenmar/SAND_featuresComment: CVPR201

    Stereo Correspondence with Local Descriptors for Object Recognition

    Get PDF

    Contributions to the Completeness and Complementarity of Local Image Features

    Get PDF
    Tese de doutoramento em Engenharia Informática apresentada à Faculdade de Ciências e Tecnologia da Universidade de CoimbraLocal image feature detection (or extraction, if we want to use a more semantically correct term) is a central and extremely active research topic in the field of computer vision. Reliable solutions to prominent problems such as matching, content-based image retrieval, object (class) recognition, and symmetry detection, often make use of local image features. It is widely accepted that a good local feature detector is the one that efficiently retrieves distinctive, accurate, and repeatable features in the presence of a wide variety of photometric and geometric transformations. However, these requirements are not always the most important. In fact, not all the applications require the same properties from a local feature detector. We can distinguish three broad categories of applications according to the required properties. The first category includes applications in which the semantic meaning of a particular type of features is exploited. For instance, edge or even ridge detection can be used to identify blood vessels in medical images or watercourses in aerial images. Another example in this category is the use of blob extraction to identify blob-like organisms in microscopic images. A second category includes tasks such as matching, tracking, and registration, which mainly require distinctive, repeatable, and accurate features. Finally, a third category comprises applications such as object (class) recognition, image retrieval, scene classification, and image compression. For this category, it is crucial that features preserve the most informative image content (robust image representation), while requirements such as repeatability and accuracy are of less importance. Our research work is mainly focused on the problem of providing a robust image representation through the use of local features. The limited number of types of features that a local feature extractor responds to might be insufficient to provide the so-called robust image representation. It is fundamental to analyze the completeness of local features, i.e., the amount of image information preserved by local features, as well as the often neglected complementarity between sets of features. The major contributions of this work come in the form of two substantially different local feature detectors aimed at providing considerably robust image representations. The first algorithm is an information theoretic-based keypoint extraction that responds to complementary local structures that are salient (highly informative) within the image context. This method represents a new paradigm in local feature extraction, as it introduces context-awareness principles. The second algorithm extracts Stable Salient Shapes, a novel type of regions, which are obtained through a feature-driven detection of Maximally Stable Extremal Regions (MSER). This method provides compact and robust image representations and overcomes some of the major shortcomings of MSER detection. We empirically validate the methods by investigating the repeatability, accuracy, completeness, and complementarity of the proposed features on standard benchmarks. Under these results, we discuss the applicability of both methods

    Higer-Order Intergral Equation Methods in Computational Electromagnetics

    Get PDF

    Irish Machine Vision and Image Processing Conference Proceedings 2017

    Get PDF

    Recurrent Scene Parsing with Perspective Understanding in the Loop

    Full text link
    Objects may appear at arbitrary scales in perspective images of a scene, posing a challenge for recognition systems that process images at a fixed resolution. We propose a depth-aware gating module that adaptively selects the pooling field size in a convolutional network architecture according to the object scale (inversely proportional to the depth) so that small details are preserved for distant objects while larger receptive fields are used for those nearby. The depth gating signal is provided by stereo disparity or estimated directly from monocular input. We integrate this depth-aware gating into a recurrent convolutional neural network to perform semantic segmentation. Our recurrent module iteratively refines the segmentation results, leveraging the depth and semantic predictions from the previous iterations. Through extensive experiments on four popular large-scale RGB-D datasets, we demonstrate this approach achieves competitive semantic segmentation performance with a model which is substantially more compact. We carry out extensive analysis of this architecture including variants that operate on monocular RGB but use depth as side-information during training, unsupervised gating as a generic attentional mechanism, and multi-resolution gating. We find that gated pooling for joint semantic segmentation and depth yields state-of-the-art results for quantitative monocular depth estimation

    Image Feature Information Extraction for Interest Point Detection: A Comprehensive Review

    Full text link
    Interest point detection is one of the most fundamental and critical problems in computer vision and image processing. In this paper, we carry out a comprehensive review on image feature information (IFI) extraction techniques for interest point detection. To systematically introduce how the existing interest point detection methods extract IFI from an input image, we propose a taxonomy of the IFI extraction techniques for interest point detection. According to this taxonomy, we discuss different types of IFI extraction techniques for interest point detection. Furthermore, we identify the main unresolved issues related to the existing IFI extraction techniques for interest point detection and any interest point detection methods that have not been discussed before. The existing popular datasets and evaluation standards are provided and the performances for eighteen state-of-the-art approaches are evaluated and discussed. Moreover, future research directions on IFI extraction techniques for interest point detection are elaborated

    Feature-based hybrid inspection planning for complex mechanical parts

    Get PDF
    Globalization and emerging new powers in the manufacturing world are among many challenges, major manufacturing enterprises are facing. This resulted in increased alternatives to satisfy customers\u27 growing needs regarding products\u27 aesthetic and functional requirements. Complexity of part design and engineering specifications to satisfy such needs often require a better use of advanced and more accurate tools to achieve good quality. Inspection is a crucial manufacturing function that should be further improved to cope with such challenges. Intelligent planning for inspection of parts with complex geometric shapes and free form surfaces using contact or non-contact devices is still a major challenge. Research in segmentation and localization techniques should also enable inspection systems to utilize modern measurement technologies capable of collecting huge number of measured points. Advanced digitization tools can be classified as contact or non-contact sensors. The purpose of this thesis is to develop a hybrid inspection planning system that benefits from the advantages of both techniques. Moreover, the minimization of deviation of measured part from the original CAD model is not the only characteristic that should be considered when implementing the localization process in order to accept or reject the part; geometric tolerances must also be considered. A segmentation technique that deals directly with the individual points is a necessary step in the developed inspection system, where the output is the actual measured points, not a tessellated model as commonly implemented by current segmentation tools. The contribution of this work is three folds. First, a knowledge-based system was developed for selecting the most suitable sensor using an inspection-specific features taxonomy in form of a 3D Matrix where each cell includes the corresponding knowledge rules and generate inspection tasks. A Travel Salesperson Problem (TSP) has been applied for sequencing these hybrid inspection tasks. A novel region-based segmentation algorithm was developed which deals directly with the measured point cloud and generates sub-point clouds, each of which represents a feature to be inspected and includes the original measured points. Finally, a new tolerance-based localization algorithm was developed to verify the functional requirements and was applied and tested using form tolerance specifications. This research enhances the existing inspection planning systems for complex mechanical parts with a hybrid inspection planning model. The main benefits of the developed segmentation and tolerance-based localization algorithms are the improvement of inspection decisions in order not to reject good parts that would have otherwise been rejected due to misleading results from currently available localization techniques. The better and more accurate inspection decisions achieved will lead to less scrap, which, in turn, will reduce the product cost and improve the company potential in the market
    corecore