4,420 research outputs found

    Employing Environmental Data and Machine Learning to Improve Mobile Health Receptivity

    Get PDF
    Behavioral intervention strategies can be enhanced by recognizing human activities using eHealth technologies. As we find after a thorough literature review, activity spotting and added insights may be used to detect daily routines inferring receptivity for mobile notifications similar to just-in-time support. Towards this end, this work develops a model, using machine learning, to analyze the motivation of digital mental health users that answer self-assessment questions in their everyday lives through an intelligent mobile application. A uniform and extensible sequence prediction model combining environmental data with everyday activities has been created and validated for proof of concept through an experiment. We find that the reported receptivity is not sequentially predictable on its own, the mean error and standard deviation are only slightly below by-chance comparison. Nevertheless, predicting the upcoming activity shows to cover about 39% of the day (up to 58% in the best case) and can be linked to user individual intervention preferences to indirectly find an opportune moment of receptivity. Therefore, we introduce an application comprising the influences of sensor data on activities and intervention thresholds, as well as allowing for preferred events on a weekly basis. As a result of combining those multiple approaches, promising avenues for innovative behavioral assessments are possible. Identifying and segmenting the appropriate set of activities is key. Consequently, deliberate and thoughtful design lays the foundation for further development within research projects by extending the activity weighting process or introducing a model reinforcement.BMBF, 13GW0157A, Verbundprojekt: Self-administered Psycho-TherApy-SystemS (SELFPASS) - Teilvorhaben: Data Analytics and Prescription for SELFPASSTU Berlin, Open-Access-Mittel - 201

    Wearable Biosensor: How to improve the efficacy in data transmission in respiratory monitoring system?

    Get PDF
    Respiratory rate measurement is important under different types of health issues. The need for technological developments for measuring respiratory rate has become imperative for healthcare professionals. The paper presents an approach to respiratory monitoring, with the aim to improve the accuracy and efficacy of the data monitored. We use multiple types of sensors on various locations on the body to continuously transmit real-time data, which is  rocessed to calculate the respiration rate. Variations in the respiration rate will help us identify the current health condition of the patient also for diagnosis and further medical treatment. The software tools such as Keil μVision IDE, Mbed Studio IDE, Energia IDE are used to compile and build the system architecture and display information. EasyEDA is used to provide pin map details and complete architecture information

    Multimodal Signal Processing for Diagnosis of Cardiorespiratory Disorders

    Get PDF
    This thesis addresses the use of multimodal signal processing to develop algorithms for the automated processing of two cardiorespiratory disorders. The aim of the first application of this thesis was to reduce false alarm rate in an intensive care unit. The goal was to detect five critical arrhythmias using processing of multimodal signals including photoplethysmography, arterial blood pressure, Lead II and augmented right arm electrocardiogram (ECG). A hierarchical approach was used to process the signals as well as a custom signal processing technique for each arrhythmia type. Sleep disorders are a prevalent health issue, currently costly and inconvenient to diagnose, as they normally require an overnight hospital stay by the patient. In the second application of this project, we designed automated signal processing algorithms for the diagnosis of sleep apnoea with a main focus on the ECG signal processing. We estimated the ECG-derived respiratory (EDR) signal using different methods: QRS-complex area, principal component analysis (PCA) and kernel PCA. We proposed two algorithms (segmented PCA and approximated PCA) for EDR estimation to enable applying the PCA method to overnight recordings and rectify the computational issues and memory requirement. We compared the EDR information against the chest respiratory effort signals. The performance was evaluated using three automated machine learning algorithms of linear discriminant analysis (LDA), extreme learning machine (ELM) and support vector machine (SVM) on two databases: the MIT PhysioNet database and the St. Vincent’s database. The results showed that the QRS area method for EDR estimation combined with the LDA classifier was the highest performing method and the EDR signals contain respiratory information useful for discriminating sleep apnoea. As a final step, heart rate variability (HRV) and cardiopulmonary coupling (CPC) features were extracted and combined with the EDR features and temporal optimisation techniques were applied. The cross-validation results of the minute-by-minute apnoea classification achieved an accuracy of 89%, a sensitivity of 90%, a specificity of 88%, and an AUC of 0.95 which is comparable to the best results reported in the literature
    corecore