2,477 research outputs found

    Non-idempotent intersection types in logical form

    Get PDF
    Intersection types are an essential tool in the analysis of operational and denotational properties of lambda-terms and functional programs. Among them, non-idempotent intersection types provide precise quantitative information about the evaluation of terms and programs. However, unlike simple or second-order types, intersection types cannot be considered as a logical system because the application rule (or the intersection rule, depending on the presentation of the system) involves a condition expressing that the proofs of premises satisfy a very strong uniformity condition: the underlying lambda-terms must be the same. Using earlier work introducing an indexed version of Linear Logic, we show that non-idempotent typing can be given a logical form in a system where formulas represent hereditarily indexed families of intersection types

    Inhabitation for Non-idempotent Intersection Types

    Full text link
    The inhabitation problem for intersection types in the lambda-calculus is known to be undecidable. We study the problem in the case of non-idempotent intersection, considering several type assignment systems, which characterize the solvable or the strongly normalizing lambda-terms. We prove the decidability of the inhabitation problem for all the systems considered, by providing sound and complete inhabitation algorithms for them

    Bounding normalization time through intersection types

    Get PDF
    Non-idempotent intersection types are used in order to give a bound of the length of the normalization beta-reduction sequence of a lambda term: namely, the bound is expressed as a function of the size of the term.Comment: In Proceedings ITRS 2012, arXiv:1307.784

    Call-by-value non-determinism in a linear logic type discipline

    Get PDF
    We consider the call-by-value lambda-calculus extended with a may-convergent non-deterministic choice and a must-convergent parallel composition. Inspired by recent works on the relational semantics of linear logic and non-idempotent intersection types, we endow this calculus with a type system based on the so-called Girard's second translation of intuitionistic logic into linear logic. We prove that a term is typable if and only if it is converging, and that its typing tree carries enough information to give a bound on the length of its lazy call-by-value reduction. Moreover, when the typing tree is minimal, such a bound becomes the exact length of the reduction

    A semantic account of strong normalization in Linear Logic

    Full text link
    We prove that given two cut free nets of linear logic, by means of their relational interpretations one can: 1) first determine whether or not the net obtained by cutting the two nets is strongly normalizable 2) then (in case it is strongly normalizable) compute the maximal length of the reduction sequences starting from that net.Comment: 41 page

    Relational type-checking for MELL proof-structures. Part 1: Multiplicatives

    Get PDF
    Relational semantics for linear logic is a form of non-idempotent intersection type system, from which several informations on the execution of a proof-structure can be recovered. An element of the relational interpretation of a proof-structure R with conclusion Γ\Gamma acts thus as a type (refining Γ\Gamma) having R as an inhabitant. We are interested in the following type-checking question: given a proof-structure R, a list of formulae Γ\Gamma, and a point x in the relational interpretation of Γ\Gamma, is x in the interpretation of R? This question is decidable. We present here an algorithm that decides it in time linear in the size of R, if R is a proof-structure in the multiplicative fragment of linear logic. This algorithm can be extended to larger fragments of multiplicative-exponential linear logic containing λ\lambda-calculus
    • …
    corecore