1,454 research outputs found

    Realizability Toposes from Specifications

    Get PDF
    We investigate a framework of Krivine realizability with I/O effects, and present a method of associating realizability models to specifications on the I/O behavior of processes, by using adequate interpretations of the central concepts of `pole' and `proof-like term'. This method does in particular allow to associate realizability models to computable functions. Following recent work of Streicher and others we show how these models give rise to triposes and toposes

    Fully Observable Non-deterministic Planning as Assumption-Based Reactive Synthesis

    Get PDF
    We contribute to recent efforts in relating two approaches to automatic synthesis, namely, automated planning and discrete reactive synthesis. First, we develop a declarative characterization of the standard “fairness” assumption on environments in non-deterministic planning, and show that strong-cyclic plans are correct solution concepts for fair environments. This complements, and arguably completes, the existing foundational work on non-deterministic planning, which focuses on characterizing (and computing) plans enjoying special “structural” properties, namely loopy but closed policy structures. Second, we provide an encoding suitable for reactive synthesis that avoids the naive exponential state space blowup. To do so, special care has to be taken to specify the fairness assumption on the environment in a succinct manner.Fil: D'ippolito, Nicolás Roque. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigación en Ciencias de la Computación. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigación en Ciencias de la Computación; ArgentinaFil: Rodriguez, Natalia. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Computación; ArgentinaFil: Sardina, Sebastian. RMIT University; Australi

    Low-Effort Specification Debugging and Analysis

    Get PDF
    Reactive synthesis deals with the automated construction of implementations of reactive systems from their specifications. To make the approach feasible in practice, systems engineers need effective and efficient means of debugging these specifications. In this paper, we provide techniques for report-based specification debugging, wherein salient properties of a specification are analyzed, and the result presented to the user in the form of a report. This provides a low-effort way to debug specifications, complementing high-effort techniques including the simulation of synthesized implementations. We demonstrate the usefulness of our report-based specification debugging toolkit by providing examples in the context of generalized reactivity(1) synthesis.Comment: In Proceedings SYNT 2014, arXiv:1407.493

    Revisiting the Duality of Computation: An Algebraic Analysis of Classical Realizability Models

    Get PDF

    Second-order mixed-moment model with differentiable ansatz function in slab geometry

    Full text link
    We study differentiable mixed-moment models (full zeroth and first moment, half higher moments) for a Fokker-Planck equation in one space dimension. Mixed-moment minimum-entropy models are known to overcome the zero net-flux problem of full-moment minimum entropy MNM_N models. Realizability theory for these modification of mixed moments is derived for second order. Numerical tests are performed with a kinetic first-order finite volume scheme and compared with MNM_N, classical MMNMM_N and a PNP_N reference scheme.Comment: arXiv admin note: text overlap with arXiv:1611.01314, arXiv:1511.0271

    Is There High-Level Causation?

    Get PDF
    The discovery of high-level causal relations seems a central activity of the special sciences. Those same sciences are less successful in formulating strict laws. If causation must be underwritten by strict laws, we are faced with a puzzle (first noticed by Donald Davidson), which might be dubbed the 'no strict laws' problem for high-level causation. Attempts have been made to dissolve this problem by showing that leading theories of causation do not in fact require that causation be underwritten by strict laws. But this conclusion has been too hastily drawn. Philosophers have tended to equate non-strict laws with ceteris paribus laws. I argue that there is another category of non-strict law that has often not been properly distinguished: namely, (what I will call) minutiae rectus laws. If, as it appears, many special science laws are minutiae rectus laws, then this poses a problem for their ability to underwrite causal relations in a way that their typically ceteris paribus nature does not. I argue that the best prospect for resolving the resurgent 'no strict laws' problem is to argue that special science laws are in fact typically probabilistic (and thus able to support probabilistic causation), rather than being minutiae rectus laws

    Direct and Indirect Couplings in Coherent Feedback Control of Linear Quantum Systems

    Full text link
    The purpose of this paper is to study and design direct and indirect couplings for use in coherent feedback control of a class of linear quantum stochastic systems. A general physical model for a nominal linear quantum system coupled directly and indirectly to external systems is presented. Fundamental properties of stability, dissipation, passivity, and gain for this class of linear quantum models are presented and characterized using complex Lyapunov equations and linear matrix inequalities (LMIs). Coherent HH^\infty and LQG synthesis methods are extended to accommodate direct couplings using multistep optimization. Examples are given to illustrate the results.Comment: 33 pages, 7 figures; accepted for publication in IEEE Transactions on Automatic Control, October 201
    corecore