207,006 research outputs found

    The Impact of Network Flows on Community Formation in Models of Opinion Dynamics

    Full text link
    We study dynamics of opinion formation in a network of coupled agents. As the network evolves to a steady state, opinions of agents within the same community converge faster than those of other agents. This framework allows us to study how network topology and network flow, which mediates the transfer of opinions between agents, both affect the formation of communities. In traditional models of opinion dynamics, agents are coupled via conservative flows, which result in one-to-one opinion transfer. However, social interactions are often non-conservative, resulting in one-to-many transfer of opinions. We study opinion formation in networks using one-to-one and one-to-many interactions and show that they lead to different community structure within the same network.Comment: accepted for publication in The Journal of Mathematical Sociology. arXiv admin note: text overlap with arXiv:1201.238

    Interacting social processes on interconnected networks

    Get PDF
    We propose and study a model for the interplay between two different dynamical processes --one for opinion formation and the other for decision making-- on two interconnected networks AA and BB. The opinion dynamics on network AA corresponds to that of the M-model, where the state of each agent can take one of four possible values (S=−2,−1,1,2S=-2,-1,1,2), describing its level of agreement on a given issue. The likelihood to become an extremist (S=±2S=\pm 2) or a moderate (S=±1S=\pm 1) is controlled by a reinforcement parameter r≥0r \ge 0. The decision making dynamics on network BB is akin to that of the Abrams-Strogatz model, where agents can be either in favor (S=+1S=+1) or against (S=−1S=-1) the issue. The probability that an agent changes its state is proportional to the fraction of neighbors that hold the opposite state raised to a power β\beta. Starting from a polarized case scenario in which all agents of network AA hold positive orientations while all agents of network BB have a negative orientation, we explore the conditions under which one of the dynamics prevails over the other, imposing its initial orientation. We find that, for a given value of β\beta, the two-network system reaches a consensus in the positive state (initial state of network AA) when the reinforcement overcomes a crossover value r∗(β)r^*(\beta), while a negative consensus happens for r<r∗(β)r<r^*(\beta). In the r−βr-\beta phase space, the system displays a transition at a critical threshold βc\beta_c, from a coexistence of both orientations for β<βc\beta<\beta_c to a dominance of one orientation for β>βc\beta>\beta_c. We develop an analytical mean-field approach that gives an insight into these regimes and shows that both dynamics are equivalent along the crossover line (r∗,β∗)(r^*,\beta^*).Comment: 25 pages, 6 figure

    Generalized voter-like models on heterogeneous networks

    Get PDF
    We describe a generalization of the voter model on complex networks that encompasses different sources of degree-related heterogeneity and that is amenable to direct analytical solution by applying the standard methods of heterogeneous mean-field theory. Our formalism allows for a compact description of previously proposed heterogeneous voter-like models, and represents a basic framework within which we can rationalize the effects of heterogeneity in voter-like models, as well as implement novel sources of heterogeneity, not previously considered in the literature
    • …
    corecore