13,277 research outputs found

    Non-additive anonymous games

    Get PDF
    This paper introduces a class of non-additive anonymous games where agents are assumed to be uncertain (in the sense of Knight) about opponents’ strategies and about the initial distribution over players’ characteristics in the game. These uncertainties are modelled by non-additive measures or capacities. The Cournot-Nash equilibrium existence theorem is proven for this class of games. It is shown that the equilibrium distribution can be symmetrized under milder conditions than in the case of additive games. In particular, it is not required for the space characteristics to be atomless under capacities. The set-valued map of the Cournot-Nash equilibria is upper-semicontinuous as a function of initial beliefs of the players for non-additive anonymous games

    Taxation and stability in cooperative games

    No full text
    Cooperative games are a useful framework for modeling multi-agent behavior in environments where agents must collaborate in order to complete tasks. Having jointly completed a task and generated revenue, agents need to agree on some reasonable method of sharing their profits. One particularly appealing family of payoff divisions is the core, which consists of all coalitionally rational (or, stable) payoff divisions. Unfortunately, it is often the case that the core of a game is empty, i.e. there is no payoff scheme guaranteeing each group of agents a total payoff higher than what they can get on their own. As stability is a highly attractive property, there have been various methods of achieving it proposed in the literature. One natural way of stabilizing a game is via taxation, i.e. reducing the value of some coalitions in order to decrease their bargaining power. Existing taxation methods include the ε-core, the least-core and several others. However, taxing coalitions is in general undesirable: one would not wish to overly tamper with a given coalitional game, or overly tax the agents. Thus, in this work we study minimal taxation policies, i.e. those minimizing the amount of tax required in order to stabilize a given game. We show that games that minimize the total tax are to some extent a linear approximation of the original games, and explore their properties. We demonstrate connections between the minimal tax and the cost of stability, and characterize the types of games for which it is possible to obtain a tax-minimizing policy using variants of notion of the ε-core, as well as those for which it is possible to do so using reliability extensions. Copyright © 2013, International Foundation for Autonomous Agents and Multiagent Systems (www.ifaamas.org). All rights reserved

    Computing Stable Coalitions: Approximation Algorithms for Reward Sharing

    Full text link
    Consider a setting where selfish agents are to be assigned to coalitions or projects from a fixed set P. Each project k is characterized by a valuation function; v_k(S) is the value generated by a set S of agents working on project k. We study the following classic problem in this setting: "how should the agents divide the value that they collectively create?". One traditional approach in cooperative game theory is to study core stability with the implicit assumption that there are infinite copies of one project, and agents can partition themselves into any number of coalitions. In contrast, we consider a model with a finite number of non-identical projects; this makes computing both high-welfare solutions and core payments highly non-trivial. The main contribution of this paper is a black-box mechanism that reduces the problem of computing a near-optimal core stable solution to the purely algorithmic problem of welfare maximization; we apply this to compute an approximately core stable solution that extracts one-fourth of the optimal social welfare for the class of subadditive valuations. We also show much stronger results for several popular sub-classes: anonymous, fractionally subadditive, and submodular valuations, as well as provide new approximation algorithms for welfare maximization with anonymous functions. Finally, we establish a connection between our setting and the well-studied simultaneous auctions with item bidding; we adapt our results to compute approximate pure Nash equilibria for these auctions.Comment: Under Revie

    Query Complexity of Approximate Equilibria in Anonymous Games

    Full text link
    We study the computation of equilibria of anonymous games, via algorithms that may proceed via a sequence of adaptive queries to the game's payoff function, assumed to be unknown initially. The general topic we consider is \emph{query complexity}, that is, how many queries are necessary or sufficient to compute an exact or approximate Nash equilibrium. We show that exact equilibria cannot be found via query-efficient algorithms. We also give an example of a 2-strategy, 3-player anonymous game that does not have any exact Nash equilibrium in rational numbers. However, more positive query-complexity bounds are attainable if either further symmetries of the utility functions are assumed or we focus on approximate equilibria. We investigate four sub-classes of anonymous games previously considered by \cite{bfh09, dp14}. Our main result is a new randomized query-efficient algorithm that finds a O(n1/4)O(n^{-1/4})-approximate Nash equilibrium querying O~(n3/2)\tilde{O}(n^{3/2}) payoffs and runs in time O~(n3/2)\tilde{O}(n^{3/2}). This improves on the running time of pre-existing algorithms for approximate equilibria of anonymous games, and is the first one to obtain an inverse polynomial approximation in poly-time. We also show how this can be utilized as an efficient polynomial-time approximation scheme (PTAS). Furthermore, we prove that Ω(nlogn)\Omega(n \log{n}) payoffs must be queried in order to find any ϵ\epsilon-well-supported Nash equilibrium, even by randomized algorithms

    A Survey of Models of Network Formation: Stability and Efficiency

    Get PDF
    I survey the recent literature on the formation of networks. I provide definitions of network games, a number of examples of models from the literature, and discuss some of what is known about the (in)compatibility of overall societal welfare with individual incentives to form and sever links

    On the Complexity of Nash Equilibria in Anonymous Games

    Full text link
    We show that the problem of finding an {\epsilon}-approximate Nash equilibrium in an anonymous game with seven pure strategies is complete in PPAD, when the approximation parameter {\epsilon} is exponentially small in the number of players.Comment: full versio

    Strongly Stable Networks

    Get PDF
    We analyze the formation of networks among individuals. In particular, we examine the existence of networks that are stable against changes in links by any coalition of individuals. We show that to investigate the existence of such strongly stable networks one can restrict focus on a component-wise egalitarian allocation of value. We show that when such strongly stable networks exist they coincide with the set of efficient networks (those maximizing the total productive value). We show that the existence of strongly stable networks is equivalent to core existence in a derived cooperative game and use that result to characterize the class of value functions for which there exist strongly stable networks via a ``top convexity'' condition on the value function on networks. We also consider a variation on strong stability where players can make side payments, and examine situations where value functions may be non- anonymous -- depending on player labels.Networks, Network formation, strong stability, core, strong equilibrium, efficiency

    Allocation Rules for Network Games

    Get PDF
    Previous allocation rules for network games, such as the Myerson Value, implicitly or explicitly take the network structure as fixed. In many situations, however, the network structure can be altered by players. This means that the value of alternative network structures (not just sub-networks) can and should influence the allocation of value among players on any given network structure. I present a family of allocation rules that incorporate information about alternative network structures when allocating value.networks, network games, allocation rules

    Finding Any Nontrivial Coarse Correlated Equilibrium Is Hard

    Get PDF
    One of the most appealing aspects of the (coarse) correlated equilibrium concept is that natural dynamics quickly arrive at approximations of such equilibria, even in games with many players. In addition, there exist polynomial-time algorithms that compute exact (coarse) correlated equilibria. In light of these results, a natural question is how good are the (coarse) correlated equilibria that can arise from any efficient algorithm or dynamics. In this paper we address this question, and establish strong negative results. In particular, we show that in multiplayer games that have a succinct representation, it is NP-hard to compute any coarse correlated equilibrium (or approximate coarse correlated equilibrium) with welfare strictly better than the worst possible. The focus on succinct games ensures that the underlying complexity question is interesting; many multiplayer games of interest are in fact succinct. Our results imply that, while one can efficiently compute a coarse correlated equilibrium, one cannot provide any nontrivial welfare guarantee for the resulting equilibrium, unless P=NP. We show that analogous hardness results hold for correlated equilibria, and persist under the egalitarian objective or Pareto optimality. To complement the hardness results, we develop an algorithmic framework that identifies settings in which we can efficiently compute an approximate correlated equilibrium with near-optimal welfare. We use this framework to develop an efficient algorithm for computing an approximate correlated equilibrium with near-optimal welfare in aggregative games.Comment: 21 page
    corecore