
 

WORKING PAPERS SERIES 

WP08-04 

 

 

 

Non-Additive Anonymous Games 

Roman Kozhan 

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Warwick Research Archives Portal Repository

https://core.ac.uk/display/47864?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
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Roman Kozhan∗

Warwick Business School

Abstract

This paper introduces a class of non-additive anonymous games where agents

are assumed to be uncertain (in the sense of Knight) about opponents’ strategies

and about the initial distribution over players’ characteristics in the game. These

uncertainties are modelled by non-additive measures or capacities. The Cournot-

Nash equilibrium existence theorem is proven for this class of games. It is shown

that the equilibrium distribution can be symmetrized under milder conditions

than in the case of additive games. In particular, it is not required for the

space characteristics to be atomless under capacities. The set-valued map of the

Cournot-Nash equilibria is upper-semicontinuous as a function of initial beliefs

of the players for non-additive anonymous games.

Key words: anonymous game, uncertainty, non-additive measure, capacity.

JEL Classification: C72, D81

1 Introduction

Standard non-cooperative game theory assumes that players involved in a game behave

strategically and rationally. They form beliefs about their opponents’ actions and

choose their best response given those beliefs. In most complex situations it is difficult

(or even impossible) to guess the action of an opponent precisely, therefore beliefs

are usually modelled in a probabilistic manner. That is, a player would construct

∗Address for correspondence: Warwick Business School, University of Warwick, Coventry, CV4
7AL, UK; e-mail: Roman.Kozhan@wbs.ac.uk
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a probability distribution which represents her beliefs about future actions of other

players.

This assumption however is not realistic and too restrictive in many circumstances.

There is a growing body of literature which demonstrates that individuals do not form

probabilistic beliefs in a wide range of real-world situations. A classical example is the

Ellsberg’s Paradox (Ellsberg 1961) which shows that individual’s preferences cannot

be supported by a probability measure as suggested by the subjective expected utility

model (Savage 1954).

The main reason for this is the lack of information about future outcomes. The

psychological nature of perceiving uncertainty generated by the incompleteness of in-

formation turns out to be much more richer than it could be explained by a probability

distribution. The notion of uncertainty was introduced back in 1921 by Frank Knight

(Knight 1921) who proposed the distinction between those situations where individual’s

preferences can be described by a probabilistic model (risk) and where such models do

not exist (uncertainty).

Uncertainty naturally would seem to increase as information becomes more com-

plex. Generally in a game with one opponent a player will face less uncertainty than in

the game with ten participants. As the number of players grows, it becomes crucial to

be able to model uncertainty correctly. In this paper we focus on games with a large

number of players who play under informational uncertainty. In such games players

do not consider their opponents individually but rather look at their future actions in

aggregate. Mas-Colell (1986) proposed an approach where players’ beliefs about the

aggregate structure of participants is modelled by a probability distribution and this

distribution is a common knowledge. This assumption is very often unrealistic as in

such big games players do not have precise information about the other participants.

It is unlikely that all players in such a situation would be able to correctly estimate the

probability and agree on this distribution. Can we precisely identify the distribution

of the beliefs of all traders in London Stock Exchange? If individuals do not behave

in accordance with the standard theory in simple situations, as in Elsberg’s paradox,

we cannot expect them to do so in more complex situations. This is the place where

many different psychological biases enter the decision process which lead to paradoxical

outcomes observed in real life games and experiments.

What is the alternative model for players’ beliefs if we are not going to use a

probability measure? A number of authors have introduced models which describe

individuals’ beliefs about future outcomes in the face of uncertainty by a non-additive

2



measure (also called capacity or fuzzy measure).1 Within these frameworks a represen-

tative agent maximizes his preference functional, defined as a Choquet integral over a

utility function of future payoffs.

Many empirical investigations provide strong evidence that individuals are not un-

certainty neutral in real life and react to uncertainty differently than they do to risk.

In the majority of cases people are uncertainty-averse (Ellsberg (1961), Camerer and

Ho (1994), Tversky and Fox (1995)); however in some situations they tend to be

uncertainty-loving as well (Curley and Yates (1989), Hogarth and Einhorn (1990)).

The strength of the Choquet expected utility approach is that it makes it possible to

model these different psychological attitudes to uncertainty. In fact, players can be op-

timistic, pessimistic or they can have other forms of mixed preferences. The notion of

non-additive beliefs allows us to model simultaneously the imprecision of information

and the attitude of participants to this imprecision. This brings substantial flexibility

into modelling the structure of players’ beliefs.

The notion of Knightian Uncertainty is not new in Game Theory. Dow and Wer-

lang (1994), Klibanoff (1996), Lo (1996), Groes, Jacobsen, Sloth and Tranaes (1998),

Eichberger and Kelsey (2000), Mukerji (1997), Marinacci (2000) and Ghirardato and

LeBreton (2000) apply this approach to non-corporative games with a finite number of

players and generalize the notion of Nash equilibria to games with uncertainty averse

players. Again, players do not form beliefs about their opponents’ strategies as a prob-

ability measure but their beliefs appear instead to be non-additive functions of subsets

of pure strategies. In some special cases they can be interpreted as a set of possi-

ble mixed strategies that the opponent might play (see Klibanoff (1996), Lo (1996)).

Recently Kozhan and Zarichnyi (2008) generalized the notion of Nash equilibria in ca-

pacities. They extended the results of Glycopantis and Muir (1999), Glycopantis and

Muir (2000) and Aliprantis, Glycopantis and Puzzello (2006) regarding the continuity

of expected payoffs and approximations of mixed strategies to the case of games un-

der Knightian Uncertainty. Glycopantis and Muir (2008) provided an example of such

games for the case of 2 players.

In this paper we develop a concept of Cournot-Nash (CN) equilibrium of anonymous

games with players facing uncertainty. In its classical form an anonymous game is a

generalization of a game with continuum players, introduced initially by Schmeidler

(1973). Hart, Hildenbrand and Kohlberg (1974) and Mas-Colell (1986) developed the

1The reader is referred to Schmeidler (1989) and Gilboa and Schmeidler (1989) for a more detailed
description of these models.
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concept of equilibrium based on the probability distribution of players’ characteristics

rather than on the set of players itself. The contribution of the present paper is to

provide an extension of Mas-Colell’s equilibrium to cases when the players’ are not

able to use a probabilistic distribution due to presence of uncertainty. Instead, they

form their beliefs about the the characteristics of opponents in the form of non-additive

measures or capacities. As a consequence, a whole range of new equilibria arises in this

setup.

The extension of Nash’s existence theorem for non-additive anonymous games is

not as straightforward as in the case of games with finite number of players. The

reason for this is that a Nash equilibrium of an anonymous game is a function of initial

beliefs about agents’ characteristics. In Mas-Colell (1986), this function is defined only

on the space of all additive probability measures while its extension onto the space of

capacities is required for non-additive anonymous games. This extension is provided

below.

Introducing uncertainty into anonymous games allows to relax an assumption under

which a CN equilibrium can be symmetrized. It is also shown that a non-additive

equilibrium distribution can be symmetrized in case of atomic spaces and compact

action spaces.

Another issue investigated in the paper is how the set of equilibria changes as the

beliefs about the distribution over agents’ characteristics change. Since the set of CN

equilibria in anonymous games is a function of the initially defined distribution, some

small distortions in beliefs may cause big deviations in equilibria. Thus, the question

of the sensitivity of the set of CN equilibria to modeling assumptions is also addressed.

Similar problems of the sensitivity of Nash equilibria in the case of additive games have

been considered by Green (1984), Milgrom and Weber (1985), Kajii and Morris (1998)

and others. In line with these papers we investigate the continuity of the equilibrum

set in the topology of weak-* convergence on the space of non-additive measures.

The paper is organized as follows. In the next section definitions and preliminaries

are provided. Section 2 provides some preliminary notions and definitions needed for

the analysis and Section 3 gives the definition of a non-additive anonymous game and a

motivating application. The existence theorem is stated and proven in Section 4. The

symmetrization theorem is given in Section 5 and Section 6 provides the result about

upper-semicontinuity of the equilibrium correspondence. Some concluding remarks are

given in Section 7.
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2 Preliminaries

Functor of capacities.2

Let X be a compact Hausdorff space and B a σ-algebra of its Borel subsets. De-

note by C(X) the space of all continuous functions on X endowed with the sup-norm

topology.

Definition 2.1. A real-valued set function µ on (X,B) is called a capacity if µ(∅) = 0,

µ(X) = 1 and µ(A) ≤ µ(B) for all A ⊆ B, A, B ∈ B.

Definition 2.2. A capacity µ is upper-continuous if lim
n→∞

µ(An) = µ(
∞
∩

n=1
An) for any

non-increasing sequence of sets {An} ⊂ B.

Capacities are often called non-additive measures as they differ from measures only

in the additivity axiom.

For any capacity τ defined on a product of spaces (X × Y,BX × BY ) we can define

its marginals τX and τY by τX(F ) = τ(F ×Y ) and τY (G) = τ(X ×G) for F ∈ BX and

G ∈ BY .

We denote the set of all upper-continuous capacities on X by M(X), and according

to Zhou’s representation theorem (see Zhou (1998)) we can identify it with the set of

all comonotonically additive, monotonic and continuous functionals on C(X) by the

formula

µ(f) =

∞∫

0

µ(f ≥ t)dt +

0∫

−∞

(µ(f ≥ t)− 1)dt.

The above integral is called the Choquet integral.3

The set M(X) endowed with the weak-* topology is a compact Hausdorff space.

The base of this topology consists of the set of form

O(µ0, f1, ..., fn, ε) = {µ ∈ M(X) : |µ0(fi)− µ(fi)| < ε, i = 1, ..., n},

where µ0 ∈ M(X), f1, ..., fn ∈ C(X) and ε > 0.4

2It is assumed that readers have some basic background in the theory of normal functors and
categorical topology. For more information about topological functors see Eilenberg and Moore (1965),
Zarichnyi (1990), Teleiko and Zarichnyi (1999)

3In the name of Gustave Choquet who introduced the notion of integral with respect to non-
additive measures. See Choquet (1953) for more detailed description of its properties. The theory of
the Choquet integral is also described in Denneberg (1994).

4For spaces of probability measures weak and weak-* topologies coincide because of the reflexivity
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The map M : Comp → Comp forms a covariant functor in the category Comp of

compact Hausdorff spaces and their continuous maps. It maps a compact Hausdorff

space X to the spaces of all upper-continuous capacities M(X). Its morphism (action

on continuous functions between compact Hausdorff spaces) Mf : M(X) → M(Y ) is

defined as follows: for given f : X → Y , M(f(ν))(B) = ν (f−1(B)) for ν ∈ M(X), B a

Borel set of Y . It is shown in Nykyforchyn and Zarichnyi (2006), this functor is weakly

normal.

Continuous correspondences. Let X and Y be compact Hausdorff spaces. Here-

after we denote by F : X ! Y a set-valued map or correspondence. If all values of

F are closed subsets of Y we will use an alternative notation F : X → exp(Y ), where

exp(Y ) denotes the space of all closed subsets of Y endowed with the Vietoris topology.

A base of this topology consists of the sets of the form

〈U1, ..., Un〉 = {A ∈ exp(Y ) : A ⊂ U1 ∪ ... ∪ Un and A ∩ Ui /= ∅ for every i},

where U1,..., Un run through the topology of Y (see Michael (1951) for more detailed

information).

Definition 2.3. A correspondence F : X ! Y is upper-semicontinuous at x0 if for

each sequence {xn}n∈N ⊂ X convergent to x0 ∈ X and a sequence {yn}n∈N ⊂ Y such

that yn ∈ F (xn) the condition lim
n→∞

yn = y0 implies y0 ∈ F (x0).

F is upper-semicontinuous if it is upper-semicontinuous at all points x ∈ X.

Definition 2.4. A correspondence F : X ! Y is lower-semicontinuous at x0 if for

each convergent to x0 ∈ X sequence {xn}n∈N ⊂ X and a point y0 ∈ F (x0) there exists

a sequence {yn}n∈N such that yn ∈ F (xn) for each n ∈ N and lim
n→∞

yn = y0.

F is lower-semicontinuous if it is lower-semicontinuous at all points x ∈ X.

Definition 2.5. A correspondence F : X ! Y is continuous if it is upper- and lower-

semicontinuous.

The following two lemmata state continuity properties of the intersection and the

union correspondences.

Lemma 2.6. Let X be a compact Hausdorff space. Then the map ∩ : exp(X) ×
exp(X) → exp(X) is upper-semicontinuous.

of the space of continuous functions on a compact Hausdorff space. In the case of capacities it is not
the case any more. We specify the topology on M(X) in the way that its restriction on the space of
probability measures P (X) ⊂ M(X) coincides with the weak-* topology on P (X).
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Proof. Let {An}n∈N and {Bn}n∈N be a sequences of closed subsets of X such that

An ∩ Bn /= ∅. Let A = lim
n→∞

An and B = lim
n→∞

Bn. Consider the sequence {cn}n∈N of

points from An∩Bn converges to the point c0 and assume that c /∈ A∩B. Without loss

of generality we can suppose that c /∈ A. Since the space X is compact and Hausdorff

it is regular and therefore there exist two open sets U and V such that c0 ∈ U , A ⊂ V

and U∩V = ∅. Starting from some number n0 all points cn belong to the neighborhood

U of c0 and, thus, do not belong to V . On the other hand, there exists n1 such that

for all n > max{n0, n1} all sets An should be in the neighborhood 〈V 〉 of the set A. It

is, however, not true because at least one point cn from An does not belong to V and

therefore An ! 〈V 〉. An alternative proof of this lemma can be also found in Teleiko

and Zarichnyi (1999).

Lemma 2.7. Let X be a compact Hausdorff space. Then the map ∪ : exp(X) ×
exp(X) → exp(X) is continuous.

See Teleiko and Zarichnyi (1999) for the proof.

Let us recall the notion of support of capacities which is defined from the categorical

topology point of view. Let F be a covariant functor and a ∈ F (X) for some compact

Hausdorff space X.

Definition 2.8. The support of an element a ∈ FX is the set

suppF (a) = ∩{A ⊂ X : A is closed and a ∈ F (A)}.

Intuitively, Definition 2.8 refers to the smallest closed subset of X which carry all

the capacity for subsets of X.

The reader is referred to Teleiko and Zarichnyi (1999) for the proof of the following

lemma.

Lemma 2.9. Let F be a monomorphic functor in the category Comp that preserves

the intersections. Then the map suppF,X : F (X) → exp(X) is lower-semicontinuous.

3 Non-Additive Anonymous Games

We extend the definition of anonymous games given in Mas-Colell (1986) and present

the concept of a non-additive anonymous game.

Let A be a non-empty compact Hausdorff space of actions. Every player is charac-

terized by its continuous utility function u : A ×M(A) → R. Given an action a ∈ A
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taken by a player with a utility function u and the action distribution of all players

ν ∈ M(A), the value u(a, ν) reflects the utility of the player for choosing the action

a. Let us denote by U a compact set of characteristics of the players, i.e. a set of

continuous utility functions on A×M(A) endowed with the supremum norm. A game

with uncertain players is represented by a capacity µ on U which represents common

beliefs about a true distribution over players’ characteristic. The capacity reflects

players’ attitudes to uncertainty which is assumed to be present in the game. As it

was mentioned above, a capacity in general is a non-additive measure and therefore

we naturally call such games non-additive anonymous games. Let us also note that

a probability measure is a special case of capacities which implies that the notion of

Mas-Colell’s anonymous game is a special case of the concept of non-additive games

introduced here. The non-additive equilibrium introduced below generalizes the con-

cept of equilibrium proposed by Hart et al. (1974) and Mas-Colell (1986) for additive

anonymous games.

Definition 3.1. A capacity τ ∈ M(U ×A) is called a Cournot-Nash (CN) equilibrium

capacity if:

i) τU = µ;

ii) τ({(u, a) : u(a, τA) ≥ u(a′, τA) for any a′ ∈ A}) = 1,

The notion of Mas-Colell’s anonymous game is a generalized version of a Schmei-

dler’s games with a continuum of players. Anonymity in the game arises since only the

distribution of players’ characteristics µ matters.

According to Mas-Colell’s interpretation the distribution µ is an objective distri-

bution of players’ characteristics, known to all participants of the game. It can be

understood as a mass assigned to every utility of the players involved in the game.

In this paper we assume, however, that the measure µ is non-additive and represents

all players common beliefs about this distribution. As an example of such a situation

let us consider a foreign exchange market consisting of customers who create demand

and supply for domestic and foreign currencies and dealers who set prices and are

essentially market-makers. The strategy for the dealers is to set bid and ask quotes for

currencies to maximize their profits. On the one hand, the bid-ask spread should be

big enough to be able to make a profit, but on the other hand the bigger it is the less

customers will be willing to trade with the dealer. At the same time some customers

may be informed about future changes in fundamentals or other macro variables. As

stated in Lyons (2001):
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”Dealers know that when they trade with someone who is better in-

formed, they can expect to lose money on the trade. If one could

identify better-informed traders before trading, then this would not be

a problem – dealers could choose not to trade, or could adjust price ap-

propriately – but dealers typically cannot identify those who are better

informed.”

Thus, it is critical for dealers to predict the ratio of informed (inf) versus un-

informed (unf) traders in the market. Let us assume that a dealer estimates the

proportion of better-informed traders by 0 < π < 1 but he is uncertain about this

value. If he underestimates the true value and sets prices with a small bid-ask spread,

he may lose money. In order to insure himself against underestimation of this pro-

portion the dealer can make his decision by assuming that the fraction of informed

traders is π1 > π. This will lead to an increase in the bid-ask spread which could

decrease the number of customers willing to trade with him substantially. Thus, both

cases are undesirable. If we assume that the dealer is uncertainty averse and his pref-

erences satisfy the axioms given by Gilboa and Schmeidler (1989) then the dealer will

behave in this situation according to the worst-case scenario. The capacity which de-

scribes the dealer’s beliefs about the distribution of market participants is given by

min{pδinf + (1− p)δunf : p ∈ (π − ε, π + ε)} for some positive (perhaps small) ε which

is subjectively determined. Hence, the dealer’s belief about the agents’ distributions is

formed by a non-additive measure.

Another source of uncertainty which appears in this game is that concerning the

opponents’ actions. Again, in Mas-Colell’s anonymous games beliefs about opponents’

actions are modelled by a probability distributions which are reflected in equilibrium by

the marginal τA. In the game under uncertainty this marginal becomes a non-additive

measure in general.

3.1 Example

Let us a consider simpler but more formal example.5 There is a continuum of players

who will be randomly paired and will play a game where two opponents simultaneously

choose one of two actions L and R. Suppose there are two possible types of people in

the population, the first like to match what their partner does and the second like to

mismatch. Specifically, suppose the payoff matrix for this game is given as follows:

5I was advised with the example what I am very grateful for.
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Player 2

L R

Player 1 L 1,0 0,1

R 0,1 1,0

Each player cannot identify the type of his opponent. His ’expected’ payoff from

choosing to play either L or R depends on his beliefs about how other players in the

population will play. In particular, if his beliefs about the distribution of action choices

in the population is represented by the capacity τA over {L, R} then we have the payoff

for a player of type 1, from playing L is given by the Choquet integral

u1(L, τA) = τA({L})u1(L, L) + (1− τA({L}))u1(L, R) = τA({L}).

The expected payoff of a player of type 1 from playing R is given by the Choquet

integral

u1(R, τA) = τA({R})u1(R,R) + (1− τA({R}))u1(R,L) = τA({R}).

Similarly, the expected payoff of a player of type 2 from playing L or R are given by

the respective Choquet integrals

u2(L, τA) = τA({R})u2(L, R) + (1− τA({R}))u2(L, L) = τA({R})
u2(R, τA) = τA({L})u2(R,L) + (1− τA({L}))u1(R,R) = τA({L}).

A game is characterized by a capacity µ on U = {1, 2}. Let us assume that µ({1}) > 0

and µ({2}) > 0, that is, there are positive common beliefs (possibly non-additive)

about the presence in the population of players of both types.

Let us consider some special cases of CN equilibria. Let

τ ∗(∅) = 0 and τ ∗(U × A) = 1

τ ∗({i, a}) = 0 for all (i, a) ∈ U × A

τ ∗({(1, L), (2, R)}) = 1

τ ∗({(1, R), (2, L)}) = 0

τ ∗({(1, L), (1, R)}) = µ({1})
τ ∗({(2, L), (2, R)}) = µ({2})
τ ∗({(1, L), (2, L)}) = 1

τ ∗({(1, R), (2, R)}) = 1

τ ∗((U × A) \ {(i, a)}) = 1 for all (i, a) ∈ U × A
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It is easy to see that τ ∗ is a capacity. Let us show that τ ∗ is also a CN equilibrium. First

note that τ ∗U({1}) = τ ∗({(1, L), (1, R)}) = µ({1}) and τ ∗U({2}) = τ ∗({(2, L), (2, R)}) =

µ({2}). Finally, we have

u1(L, τ ∗A) = τ ∗A({L}) = τ ∗A({R}) = u1(R, τ ∗A) = 1

u2(R, τ ∗A) = τ ∗A({L}) = τ ∗A({R}) = u2(L, τ ∗A) = 1.

Hence

τ ∗({(u, a) : u(a, τ ∗A) ≥ u(A, τ ∗A)}) = 1

as required.

Let us note that by construction τA({L}) = τA({R}) = 1. This means that there ex-

ists an equilibrium where players are extremely optimistic and believe with probability

(non-additive) one that the nature will always be on their side. Therefore, according to

their beliefs, whatever they choose to play their payoff will be positive. This fact may

seem counter-intuitive. However, human behavior in real life is also inconsistent with

the classical notion of rationality. People buy lotteries knowing that on average (under

additive probability) they will loose. This fact however does not prevent them from

expecting to get a valuable prize. They are optimistic and this optimism makes their

decisions not fully rational in the classical sense. This example illustrates how game

theory can explain why people often do not behave in accordance with a (”additive”)

CN equilibrium.

In the same way we can derive a pessimistic equilibrium where players will always

expect a zero payoff.

4 CN Equilibria and the Existence Theorem

In this section the first result we give is the existence theorem for CN equilibria in non-

additive anonymous games. To establish this we need the following auxiliary lemmata.

Let

K(τA) = {(u, a) : u(a, τA) ≥ u(A, τA)},

B′
1(µ) = {τ ′ : τ ′U = µ},

B′′
1 (τA) = {τ ′ : τ ′A = τA},

B(τA) = {τ ′ : τ ′(K(τA)) = 1}.

Lemma 4.1. The correspondence K : M(A) ! U × A is upper-semicontinuous.
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Proof. Let us consider an arbitrary sequence {νn}n∈N ⊂ M(A) which converges to a

capacity ν0 ∈ M(A) as n →∞ and assume that there exists a sequence {(un, an)}n∈N ⊂
U×A such that (un, an) → (u0, a0) with (un, an) ∈ K(νn) for every n ∈ N and (u0, a0) /∈
K(ν0). This last condition implies that there is an a′ ∈ A such that u0(a0, ν0) <

u0(a′, ν0). Denote ε = u0(a′, ν0)− u0(a0, ν0).

Since un → u0 uniformly with n →∞ there exists a number N1 ∈ N such that for

all n > N1 and all (a, ν) ∈ A×M(A)

|u0(a, ν)− un(a, ν)| <
ε

4
.

On the other hand the continuity of u0 implies that there exists N2 ∈ N such that for

each n > N2 it hold

|u0(a0, ν0)− u0(an, νn)| <
ε

4
and |u0(a

′, ν0)− u0(a
′, νn)| <

ε

4
.

Thus, if n > max{N1, N2} we obtain

un(an, νn) < u0(an, νn) +
ε

4
< u0(a0, ν0) +

ε

2

= u0(a
′, ν0)−

ε

2
< u0(a

′, νn)− ε

4
< un(a′, νn).

This condition however contradicts the assumption that (un, an) ∈ K(νn). Hence,

(u0, a0) ∈ K(ν0) and this implies the upper-semicontinuity of the correspondence K.

Lemma 4.2. The correspondence B : M(A) ! M(U × A) is upper-semicontinuous.

Proof. Let νn ∈ M(A) for all n ∈ N, ν ∈ M(A) and νn → ν. Consider arbitrary

sequence τ ′n ∈ M(U × A) which converges to τ ′ ∈ M(U × A) with n → ∞ and covers

{νn}n∈N, i.e. τ ′n ∈ B(νn) for every n ∈ N. Let us assume that τ ′ /∈ B(ν), that is

τ ′(K(ν)) < 1. This means that there exists (u0, a0) ∈ supp(τ ′) ⊂ U × A such that

(u0, a0) /∈ K(ν). (4.1)

On the other hand, since τ ′n ∈ B(νn) we have that

supp(τ ′n) ⊂ K(νn) (4.2)

for every n ∈ N. Lower semicontinuity of the map supp (see Lemma 2.9) implies that

there exists a sequence (un, an)n∈N converging to (u0, a0) such that (un, an) ∈ supp(τ ′n)

for every n ∈ N and, according to (4.2) (un, an) ∈ K(νn). Upper-semicontinuity of the
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correspondence K (see Lemma 4.1) implies however that lim
n→∞

(un, an) = (u0, a0) ∈ K(ν)

which contradicts with (4.1). Thus, τ ′ ∈ B(ν) and therefore the correspondence B is

upper-semicontinuous.

Mas-Colell (1986) proved that the set CNE of all CN equilibria of an additive

anonymous game is not empty. We now consider the analogous result for CN equilibria

in non-additive anonymous games. The proof is similar in spirit to that given by Mas-

Colell (1986) and is based on the topological results stated above.

Theorem 4.3. Let µ be a non-additive anonymous game. Then CNE /= ∅.

Proof. Since U and A are compact Hausdorff spaces, so are M(U) and M(U ×A). The

set B′
1(µ) is compact and convex subset of M(U × A) and the set K(τA) is closed in

U ×A. Define a correspondence Φ : B′
1(µ) → B′

1(µ) by Φ(τ) = B′
1(µ) ∩B(τA) for each

τ ∈ B′
1(µ). It is clear that Φ(τ) is convex and compact for all τ . This correspondence

is upper-semicontinuous due to Lemmata 2.6 and 4.2. Therefore, the conditions of the

Fan fixed point theorem are satisfied (see Fan (1952)). Hence, there exists τ ∈ Φ(τ),

that is, τ(K(τA)) = 1.

Remark 4.4. Note that in spite of the fact that in the case of additive measure µ,

additive equilibria is a subset of non-additive equilibria, the above existence theorem for

non-additive games is not a consequence of Mas-Colell’s Theorem 1 in general. Mas-

Colell’s case can only cover situations where beliefs about the player’s distribution

is additive and does not tell us anything about the existence of equilibrium under

uncertainty. Let us look at this in more detail.

First of all let us note that the characteristics spaces U are not identical for additive

and non-additive games. Since P (A) ⊂ M(A), the set of players characteristics under

uncertainty is broader. Each player has to determine the expected payoff in the case

if beliefs about opponents actions are non-additive and this brings more variety to the

set of possible payoff functions. Let us denote by U ′ the set of payoff functions on

A × P (A) defined as restrictions of those from U . In this way we define a continuous

restriction map r : U → U ′.
In order to make a connection between the two types of anonymous games (additive

and non-additive) we define a restriction µ′ of the capacity µ ∈ M(U) on M(U ′) by

µ′ = Mr(µ). If µ happens to be additive (there is no uncertainty in the game), so is its

restriction µ′. Thus, if τ ′ ∈ P (U ′×A) is an equilibrium for the game µ′, one can easily

construct an equilibrium τ ∈ P (U × A) for µ by τ(E) = τ ′(E ∩ (U ′ × A)). Thus, in
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the case of an additive capacity we do not need to prove a separate existence theorem.

However, if µ is not additive, its restriction µ′ might not be additive in general and

hence Mas-Colell’s theorem would not be applicable. This motivates the use of non-

additive equilibria in the presence of uncertainty and shows that Mas-Colell’s concept

of equilibrium does not always work.

5 Symmetric equilibria

An important property of CN equilibria, considered by Mas-Colell (1986), is their

symmetry.

Definition 5.1. A CN equilibrium τ for a game µ is symmetric if there is a measurable

function f : U → A such that τ(graph(f)) = 1.

Under a symmetric equilibrium distribution players with the same characteristic

take the same action from A. In fact, a symmetric equilibrium in an anonymous game

is analogous to a pure strategy equilibrium in a finite player game. The function f

assigns to each characteristic u from U a unique action a from A that all players with

characteristic u choose under this equilibrium. Thus, existence of a symmetric equilib-

rium in the anonymous additive game implies existence of a pure strategy equilibrium.

There is a difference between symmetric equilibrium in additive and non-additive

anonymous games. In additive games payers will play strategies that are not specified

by function f with probability 0 while a symmetric equilibrium does not rule out

possibilities of other strategies in non-additive games due to presence of uncertainty.

Coming back to the example in Section 3.1, equilibrium distribution τ ∗ is symmetric.

There exists function f : {1, 2} → {R, L}, defined by f (1) = R, f (2) = L, which

satisfies the condition of Definition 5.1. Indeed, graph(f) = {(1, R), (2, L)} and it is

shown that τ ∗(graph(f)) = 1. In this equilibrium each player has optimistic beliefs

according to which he will be matched with an opponent of type 1. In this case a

player of type 1 is better off if he plays R and a player of type two receives higher

payoff under strategy L.

Although, a CN equilibrium distribution always exists for additive anonymous

games, there may be no symmetric equilibrium in general. Mas-Colell (1986) showed

that if the game µ is atomless and the action set is finite, then there is a symmetric

Cournot-Nash equilibrium.
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The concept of non-additive anonymous games allow us to establish a much more

general result. The sufficient condition when a CN equilibrium distribution can be

symmetrized is given as follows.

Definition 5.2. A CN equilibrium τ for a game µ can be symmetrized if there exists

a symmetric CN equilibrium distribution τ ′ such that K(τA) = K(τ ′A).

Let τ ∈ M(U × A) be a CN equilibrium distribution for a non-additive game

µ. Consider the correspondence Bτ : U ! A acting by the formula Bτ (u) = {a ∈
A : (u, a) ∈ K(τA)}.

In the case of additive anonymous games, Khan and Sun (1987) prove that every CN

equilibrium distribution can be symmetrized if µ is atomless and finite. Later, Khan

and Sun (1995) relaxed the finiteness assumption and extended the result up to count-

able compact action spaces. Rath, Sun and Yamashige (1995) go further and establish a

more general result which states that each CN equilibrium distribution τ of an atomless

game can be symmetrized if the set D = {µ◦f−1 : f is a measurable selection from Bτ}
is closed. However, in all these cases, the game is required to be atomless. In the non-

additive case, this condition is not necessary any more.

Proposition 5.3. If there is a Borel selection f : U → A of Bτ such that

τA(im(f)) = 1

then τ can be symmetrized.

Proof. Let us construct a symmetric CN equlibrium capacity τ ′ satisfying the condition

of Definition 5.2. For any Borel set G ∈ U × A we set τ ′(G) = τ(G) if graph(f) ! G

and τ ′(G) = 1 if graph(f) ⊆ G.

Let us note first that τ ′ is a capacity. Indeed, for any F, G ∈ U×A such that F ⊂ G

we have τ ′(F ) = τ(F ) ≤ τ(G) = τ ′(G) if graph(f) ! G, τ ′(F ) = τ(F ) ≤ 1 = τ ′(G) if

f(U) ! F and graph(f) ⊆ F , τ ′(F ) = 1 = τ ′(G) if graph(f) ⊆ F .

Let us show that K(τ ′A) = K(τA). As the set K(τA) depends on the marginal τA,

we have to show that this marginal does not change while switching from capacity τ

to τ ′. Let F ⊂ A such that im(f) ⊂ F . According to the condition of the proposition,

τ(F ) = 1 = τ ′(F ). If im(f) ! F then graph(f) ! U×F which implies that τ(U×F ) =

τ ′(U × F ) by the construction of τ ′. Thus, τ ′A(F ) = τA(F ).

Finally, τ ′ is a CN equilibrium capacity, since im(f) ⊆ K(τA) = K(τ ′A) and hence

τ ′(K(τ ′A)) = 1.
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Remark 5.4. By definition, the capacity of the set of actions im(f), which players use

in the new symmetrized equilibrium, has to be equal to 1. The condition τA(im(f)) = 1

makes sure that it is possible to modify the equilibrium τ without changing its marginal

distribution τA.

By definition of the equilibrium, τ(K(τA)) = 1. As a result, according to the

construction of the correspondence Bτ one finds that τA(im(Bτ )) = 1. This means

that all actions which are in the set of pay-off maximizing actions have a total (non-

additive) measure of 1.

When the equilibrium distribution (capacity) τ is being symmetrized, the same

condition should hold for the symmetrized equilibrium τ ′. By the concept of sym-

metrization, we do not want to change the marginal τA and therefore the condition

τ ′A = τA should be satisfied. Thus, one should be able to find a selection from the

correspondence Bτ such that all actions from the set of pay-off maximizing actions

should have in total measure 1.

For example, let A = {a1, a2} and U = {u1, u2} and let τ being the equilibrium

such that K(τA) = {(a1, u1), (a2, u1), (a2, u2)} and τA(a2) < 1. There exist two possible

selections: either f(u1) = a1 and f(u2) = a2 or f(u1) = a2 and f(u2) = a2. If one

decides to use the second option to construct the symmetrized equilibrium τ ′, this will

destroy the condition τ ′A = τA since τ ′(a2) = 1.

Remark 5.5. An additive game with atoms may not have a symmetric CNED. The

following example is due to Rath et al. (1995). Consider a game with the action set

A = {a1, a2} and let u ∈ U be given by u(a1, ν) = 1
2 , u(a2, ν) = 1 − ν(a2) with

ν ∈ P (A). Let µ = δu denote the game (a Dirac measure concentrated on u).

Let τ be a CNED of µ. Suppose τA(a2) < 1
2 . Then u(a1, τA) < u(a2, τA) ⇒

τ(K(τA)) = τ(u, a2) = 1 ⇒ τA(a2) = 1 and we get a contradiction. Hence, τA(a2) ≮ 1
2 .

In the same way we can conclude that τA(a2) ≯ 1
2 and thus, the only possible case is

τA(a1) = 1
2 and τA(a2) = 1

2 . The only equilibrium distribution τ is that defined by

τ({u, a1}) = 1
2 and τ({u, a2}) = 1

2 . Since every player has the same utility function,

the space of characteristics is a singleton {u} and Bτ (u) = {a1, a2}. There may be only

two possible selections: f(u) = a1 or f(u) = a2 each of them has graph of measure 1
2 .

This implies τ is not symmetric and cannot be symmetrized.

If one allows distributions to be non-additive, then a symmetric equilibrium can be

easily constructed. For example, capacity τ(u, a1) = 1, τ(u, a2) = 3
4 is a CN equilibrium

capacity for µ, as the selection f which maps u to a1 has a graph {(u, a1)} of capacity
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1. However, it is worth noting that not every CN equilibrium can be symmetrized. For

instance, a capacity defined by τ(u, a1) = τ(u, a2) = 1
2 (which is additive) cannot be

symmetrized even under non-additive beliefs (the same argument as above applies).

Therefore, the previous result holds under weaker conditions than in the additive

case. This can be seen from the proof of the Theorem from Khan and Sun (1987). They

in fact show how to construct the selection which satisfies the condition of Proposition

5.3 for games with atomless space of players’ characteristics and finite number of ac-

tions. Under uncertainty, a CN equilibrium can be symmetrized for games with any

compact space of actions (not necessarily finite) and it also does not require the space

of characteristics to be atomless.

6 Upper-semicontinuity of CN Equilibria

Having proved the existence theorem, we now consider a sequence of non-additive

games to study how variations in players’ beliefs affects the set of equilibria. The

second result of the paper is given in the following theorem, where we investigate the

sensitivity of the CN equilibrium to the initial parameter. It asserts then when the

beliefs vary ”continuously”, the set of CN equilibria varies upper-semicontinuously.

Theorem 6.1. The CN equilibria correspondence CNE: M(U) ! M(U ×A) is upper-

semicontinuous.

Proof. Let us define a correspondence B1 : M(U)×M(A) ! M(U×A) by B1(µ, τA) =

B′
1(µ) ∩ B′′

1 (τA). The fact that the correspondence B1 is continuous implies from the

open-multicommutativity of the functor M , which is proved in Kozhan (2006).

The set of all CN equilibria of the game µ can be represented as CNE = ∪
τA∈M(A)

(B1(µ, τA)∩

B(τA)). Lemmata 2.6, 2.7 and 4.2 imply that the correspondence CNE is upper-

semicontinuous.

The statement of Theorem 6.1 says that if we consider a sequence of games {µk}k∈N

with µk ∈ M(U) which converges to µ∗ and a sequence if their CN equilibria {τk}k∈N

such that τk ∈ CNE(µk) ⊂ M(U ×A) which converges to τ ∗ then τ ∗ is a CN equilibria

for the game µ∗ (that is, τ ∗ ∈ CNE(µ∗)). This means that small deviations from the

initial beliefs will not decrease the set of CN equilibria.
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7 Conclusion

Much of economic theory studies situations which can be modelled by anonymous

games. Many models of market games involve the notion of perfect competition, where

no participant has the market power to influence prices. The framework of anony-

mous games developed by Schmeidler (1973) provides the required tools to model this

situation.

This paper considers an extension of anonymous games to the case where players

are faced with Knightian Uncertainty. In particular, it is assumed that there are two

types of uncertainty: about possible strategies of opponents and about the distribution

over agents’ characteristics involved in the game. Both types of uncertainty have been

modelled using capacities, which are generalizations of probability distributions. This

paper has generalized Mas-Colell’s (Mas-Colell 1986) equilibrium concept for anony-

mous games to the case of games under uncertainty. We have established the existence

theorem of CN equilibria for such games. A sufficient condition is given under which

a CN equilibrium can be symmetrized. This condition is weaker than for additive

anonymous games.

Moreover, we have shown that the CN equilibrium correspondence which maps

initial beliefs about the distribution over agents’ characteristics into the set of CN

equilibria is upper-semicontinuous. This fact could be useful when considering approx-

imations and investigating stability and sensitivity of the set of CN equilibria.

The notion of uncertainty brings more flexibility into the structure of CN equilibria

of the games. A clear advantage is that we can incorporate more psychological aspects

into the model which will reflect the real world more realistically. Players are allowed

to construct their beliefs in optimistic or pessimistic manners, to be uncertainty averse

or uncertainty loving. The cost is the increase in the number of equilibria in the game,

although some equilibria can be easily filtered out as unrealistic.

Another issue which concerns capacities is how to use them in real games. The

problem is that up to our knowledge there is no randomization device which could

generate realizations from a non-additive distribution. Since there is uncertainty in

the model, there is also uncertainty in the equilibrium and in what a realization of

the equilibrium will be. A non-additive equilibrium distribution gives us a general

picture of how equilibrium strategies would look on average. A non-additive equilibrium

enables us to see how the players will tend to play. This has a strong relation to

the notion of fuzzy sets – one could see where approximately the set is, but cannot
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precisely determine its boundaries. How to play a capacity strategy remains an open

and challenging question.
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