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Abstract
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1 Introduction

The importance of networks in a variety of social and economic settings is well-

documented. Given that network relationships matter, it is important to understand

which networks are likely to form and how this depends on the structure of the setting.

This a growing area of research to which this paper contributes.1

In this paper we examine the formation of networks through a careful study of the

existence and properties of strongly stable networks: those networks which are stable

against changes in links by any coalition of individuals. Strong stability of networks

is a demanding property, as it means that no set of players could benefit through any

rearranging of the links that they are involved with (including those linking them to

players outside the coalition). As such, we expect there to be contexts where such

networks will not exist. However, we show that strongly stable networks do exist in

many natural settings, including a number that pop up in the literature as examples

of network situations. In situations where strongly stable networks exist they are quite

compelling, in the sense that once formed such networks are essentially impossible to

destabilize, as there is no possible reorganization that would be improving for all of

the players whose consent is needed.

Strongly stable networks are those which are supported by strong Nash equilibria

of an appropriate game of network formation. In network formation, individual or

pairwise based solution concepts such as Nash equilibrium and pairwise stability (see

Jackson and Wolinsky (1996)) often lead to many stable networks, so that they provide

broad predictions. We study strongly stable networks as a natural way for making

narrower predictions using coalitional considerations. One can think of a notion such as

pairwise stability as a weak stability concept which is essentially a necessary condition

for stability, while strong stability is essentially a sufficient condition for stability in

almost any context.

Another reason for examining the existence of strongly stable networks, beyond

their compelling stability properties, is that such networks exhibit additional proper-

ties. For instance, if a network is strongly stable and has more than one component it

turns out that value must be allocated equally among members of each component, and

in fact the per capita value must be equal across components. This is a strong equity

property. More importantly, strongly stable networks have strong efficiency properties.

1For bibliographies on network study generally and network formation in particular, we refer the
reader to Slikker and van den Nouweland (2001) and Dutta and Jackson (2001).
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One obvious property is Pareto efficiency. But if the value of each component of a

network is allocated equally among the members of that component of a network, then

when strongly stable networks exist they exhibit even stronger efficiency properties.

In this case, strongly stable networks maximize the overall value of the network. This

statement actually takes a bit of proof, as although it is obvious if a network con-

sists of just one component, it is more subtle when efficient networks consist of several

components.

Part of the motivation for the study of the existence of networks that are efficient

and satisfy some stability requirement comes out of the previous literature. From pre-

vious research, we know that there are a variety of contexts where the stability of

networks can be at odds with efficiency. Jackson and Wolinsky (1996) show that for

some settings the sets of pairwise stable networks and efficient networks do not inter-

sect. Moreover, for some value functions they showed that this is true regardless of how

value is allocated or transferred among players, provided the allocation respects compo-

nent balance and anonymity (which are formally defined below). Jackson (2001) goes

on to show that even a weaker form of efficiency is at odds with pairwise stability, and

that in some very natural contexts even Pareto efficiency can be widely incompatible

with pairwise stability.

The tension between stability and efficiency suggests several directions for further

study. One is to examine whether the tension disappears if we are free to construct the

allocation rule in careful and non-anonymous ways. This angle is pursued by Dutta

and Mutuswami (1997) who show that careful construction of allocation rules that

may be non-anonymous (on unstable networks) can restore the compatibility between

efficiency and stability.2 Another direction is to identify those settings for which there is

no tension between stability and efficiency (or at least that there is an overlap between

the two) when keeping with anonymity. That direction is pursued both in Jackson and

Wolinsky (1996) and Jackson (2001), when the concept in question is pairwise stability.

The current paper is in that same spirit, but moves beyond pairwise stability to strong

stability. As we shall see, efficient networks and strongly stable networks will coincide

when the latter exist. Of course, the existence of strongly stable networks is of interest

beyond efficiency, given that such networks are robust to all kinds of deviations, as we

2Another interesting direction, not as closely related to what we examine here, is to study situations
where the allocation rule and networks are formed simultaneously and endogenously. This is explored
in Currarini and Morelli (2000), Mutuswami and Winter (2000) and Slikker and van den Nouweland
(2001b). As shown by Currarini and Morelli (2000), at least for some bargaining protocols, efficiency
can be regained in some settings.
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have already discussed above.

The paper proceeds as follows. In the next section we provide definitions. In Section

3 we first show that the existence of strongly stable networks requires an egalitarian

allocation. Next, we characterize the existence of strongly stable networks under the

component-wise egalitarian allocation rule in terms of nonemptiness of the core of a

closely related cooperative game. We use this in Section 4 to obtain a characterization

of the value functions for which there exist strongly stable networks, showing that a

“top convexity” condition is both necessary and sufficient. We provide applications

of these results to a variety of settings. In Section 5 we move on to consider side

payments, showing that the characterizations in the previous sections relating to the

component-wise egalitarian allocation rule are in fact necessary for any allocation rule

when strong stability allows for side payments. Finally, we close the paper with some

results on non-anonymous value functions in Section 6 and some concluding remarks

in Section 7.

2 Definitions

Networks

There is a set N = {1, . . . , n} of players who may be involved in network relation-

ships.

Non-directed graphs are used to model the network relations between players.3

In such a graph the nodes (vertices) correspond to the players and the links (edges)

correspond to bilateral relationships between players. Let gN be the set of all subsets

of N of size 2, and similarly for any S ⊆ N let gS be the set of all subsets of S of size

2. G = {g | g ⊆ gN} is the set of all possible networks or graphs on N .

The link between players i and j is denoted by ij.

A network g induces a partition Π(g) of the player set N , where two players i and

j are in the same partition element if and only if there exists a path4 in the graph

connecting i and j (using the convention that there is a path from each player to

3For some analysis of network formation in directed networks see Bala and Goyal (2000) and Dutta
and Jackson (2000). The general problem of strong stability in directed networks has not been studied.

4Formally, a path in g from i to j is a sequence of players i1, . . . , iK such that ikik+1 ∈ g for each
k ∈ {1, . . . , K − 1}, with i1 = i and iK = j.
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him or herself). For any S ∈ Π(g), g(S) denotes the subgraph of g on the set S, i.e.

g(S) = g ∩ gS.

The components of a network g, denoted C(g), are defined by C(g) = {g(S)|S ∈
Π(g), |S| ≥ 2}. The restriction that |S| ≥ 2 rules out empty networks as components.

The Value of a Network

The value of a network is given by a value function v : G → IR. We normalize v so

that v(∅) = 0. The set of all such value functions is denoted V .

A value function is anonymous if for any permutation of the set of players π (a

bijection from N to N), v(gπ) = v(g), where gπ = {π(i)π(j)|ij ∈ g}.
Anonymity says that the value of a network is derived from the structure of the

network and not the labels of the players who occupy certain positions. For many of

the results we will restrict our attention to anonymous value functions, and we discuss

extensions to non-anonymous value functions in a later section of the paper.

A value function is component additive if v(g) =
∑

h∈C(g) v(h) for all g ∈ G.

Component additivity precludes that the value of a given component of a network

depends on how other components are organized. This precludes externalities across

components of a network. However, it still allows for externalities within components.

That is, the value of a given component, and ultimately each player’s payoff, can depend

on the way that the network is structured. For example, the value of {12, 23} can differ

from {12, 23, 13}, and so, for instance, player 2’s payoff may depend on whether 1 and

3 are linked.

Allocation Rules

An allocation rule is a function Y : G × V → IRn describes how the value of a

network is distributed among the players. The payoff of player i ∈ N in network g

with a value function v under allocation rule Y is denoted Yi(g, v).

The allocation function may arise naturally, or might also represent additional

transfers of value among players. We can be agnostic on whether the allocation rule

arises naturally, is derived from some bargaining among players, or is forced by some

government or other intervening party.

An allocation rule Y is component balanced if
∑

i∈S Yi(g, v) = v(g(S)) for each

component additive v, g ∈ G and S ∈ Π(g).

Component balance requires that the value of a given component of a network is

allocated to the members of that component in cases where the value of the component

is independent of how other components are organized. This would tend to arise
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naturally. It also is a condition that an intervening planner or government would like

to respect if they wish to avoid secession by components of the network.

An allocation rule Y is component decomposable if Yi(g, v) = Yi(g(S), v) for each

component additive v, g ∈ G, S ∈ Π(g), and i ∈ S.

Component decomposability requires that in situations where v is component ad-

ditive, the way in which value is allocated within a component does not depend on

the structure of other components. So, in situations where there are no externalities

across components, the allocation within a component is independent of the rest of the

network.

An allocation rule Y is anonymous if for any v ∈ V , g ∈ G, and permutation of

the set of players π, Yπ(i)(g
π, vπ) = Yi(g, v), where the value function vπ is defined by

vπ(g) = v(gπ−1
) for each g ∈ G.

Anonymity of an allocation rule requires that if all that has changed is the labels of

the agents and the value generated by networks has changed in an exactly corresponding

fashion, then the allocation only change according to the relabeling.

Given any v ∈ V , the component-wise egalitarian allocation rule Y ce is defined by

Y ce
i (g, v) =

v(g(Si))

|Si| ,

where Si ∈ Π(g) is the unique partition element containing player i.

The component-wise egalitarian rule is one where the value of each component is

split equally among the members of the component. This allocation rule is anonymous,

component balanced, and component decomposable, and satisfies nice egalitarian prop-

erties in terms of equalizing payoffs (at least within the limit of component balance).

As we shall see, this allocation rule will actually emerge naturally if one wishes to

have strongly stable networks, and will play a key role in the characterization of value

functions that allow such networks.

Efficiency and Stability Notions

A network g is efficient with respect to v if v(g) ≥ v(g′) for all g′ ∈ G.

We denote the set of networks that are efficient with respect to value function v by

E(v).

Note that an efficient network always exists since there are only finitely many

networks in G. This is a strong notion of efficiency as it requires the maximization

of total value. It only corresponds to Pareto efficiency if the value is freely and fully

transferable across all components of a network.5

5For discussion of this and some weaker notions of efficiency see Jackson (2001).
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The following definition of coalitional deviation is used in defining the strong sta-

bility notion.

A network g′ ∈ G is obtainable from g ∈ G via deviations by S if

(i) ij ∈ g′ and ij /∈ g implies ij ⊆ S, and

(ii) ij ∈ g and ij /∈ g′ implies ij ∩ S 6= ∅.

The above definition identifies changes in a network that can be made by a coalition

S, without the need of consent of any players outside of S. (i) requires that any new

links that are added can only be between players in S. This reflects the fact that

consent of both players is needed to add a link. (ii) requires that at least one player

of any deleted link be in S. This reflects that fact that either player in a link can

unilaterally sever the relationship.

A network g is strongly stable with respect to allocation rule Y and value function

v if for any S ⊆ N , g′ that is obtainable from g via deviations by S, and i ∈ S such

that Yi(g
′, v) > Yi(g, v), there exists j ∈ S such that Yj(g

′, v) < Yj(g, v).

We denote the set of networks that are strongly stable with respect to Y and v by

SS(Y, v).

The definition of strong stability we use here is slightly stronger (i.e., harder to

satisfy) than that originally introduced by Dutta and Mutuswami (1997). The defi-

nition of strong stability here allows for a deviation to be valid if some members are

strictly better off and others are weakly better off, while the definition in Dutta and

Mutuswami (1997) considers a deviation valid only if all members of a coalition are

strictly better off. For many value functions these definitions coincide.

There are several reasons for working with this stronger definition of strong stability.

First, it implies pairwise stability whereas the Dutta and Mutuswami (1997) version of

strong stability does not quite imply pairwise stability.6 Second, this stronger definition

allows for a stronger implication in Theorem 2, where we conclude that under certain

conditions on the value function all efficient networks are strongly stable. Third, the

converse of this statement in Theorem 2 is only true with the stronger definition of

6Pairwise stability (from Jackson and Wolinsky (1996)) is defined as follows. A network g ∈ G is
pairwise stable with respect to allocation rule Y given a value function v ∈ V if no player benefits
from severing one of their links and no two players benefit from adding a link between them, with one
benefiting strictly and the other at least weakly. This last part of the definition is what makes our
version of strong stability compatible with pairwise stability but the Dutta and Mutuswami version
incompatible.
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strong stability. Finally, if all members of a coalition are weakly better off and some

strictly better off, then any ability of members to make even tiny transfers will result

in a deviation. As we compare the definition of strong stability with what happens

when transfers are possible, this slightly stronger notion of stability is natural.

Such differences between weak and strong inequalities are common to definitions of

Pareto efficiency, the core, strong Nash equilibrium, and coalitional stability properties;

and the difference sometimes has consequences. In working with the stronger definition

here, one ends up with a more attractive solution when it is non-empty, but in cases

where it is empty one might also wish to examine the weaker solution.

We remark that the strongly stable networks correspond exactly to the strong Nash

equilibria of the network formation game suggested by Myerson (1991). In that game

players simultaneously announce the set of players with whom they wish to be linked

and a link between two players forms if and only if both players have named each

other.7

Cooperative Games and the Core

A TU cooperative game is a pair (N,w), where N is the set of players and w : 2N →
IR defines the productive value of each subset of N . In line with this interpretation

w(∅) = 0.

As we fix N throughout our analysis, we often refer to a characteristic function

w : 2N → IR as a cooperative game.

An allocation x ∈ IRN is in the core of w if
∑

i∈N xi = w(N) and
∑

i∈T xi ≥ w(T )

for all T ⊆ N .

3 The Existence of Strongly Stable Networks, Effi-

ciency and the Core

Let us begin by showing that strong stability has some particular implications about

the structure of the allocation rule that must be in place.

7The equivalence holds for the corresponding definition of strong Nash equilibrium which requires
that there are no deviations by a coalition that make all members weakly better off and some strictly
better off. There are some details to verify, as there are some strong Nash equilibria where one player
names another but is not reciprocated. It is easy to check that the networks formed in such equilibria
must be strongly stable networks.
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Theorem 1 Consider any anonymous and component additive value function v ∈ V .

If Y is an anonymous, component decomposable, and component balanced allocation

rule and g ∈ G with Π(g) 6= {N} is a network that is strongly stable with respect to Y

and v, then Y (g, v) = Y ce(g, v) and Yi(g, v) = v(g)
n

for each i ∈ N .

The proof of this theorem and all other results are collected in the appendix.

Theorem 1 says that if we find strong stability of a network that has more than one

component to it, then the allocation must be as it would be under the component-wise

egalitarian rule and in fact must involve an equal split of the total value of the network.

The idea is that otherwise, some player in some component (perhaps completely dis-

connected) is getting a payoff below some other player in some other component and

could deviate together with the other members of the second component to provide an

improving deviation.

Theorem 1 shows that a component-wise egalitarian allocation of value will neces-

sarily play a prominent role in the analysis of strongly stable networks.

The condition in the theorem that Π(g) 6= {N} is critical to the result. This is

demonstrated in the following example.

Example 1 A Strongly Stable Network with One Component.

The are three individuals. Networks with two links have value 2.5, the complete

network has value 3, and other networks have 0 value. Consider the allocation rule

where the middle player in a two link network (e.g., player 2 in {12, 23}) gets a payoff

of .1 and the other two players get a payoff of 1.2, in the complete network each player

gets 1 and in networks with at most one link each player gets 0. In this example, any

network with two links is strongly stable. This relies on all players being part of a

single component in g.

As we will see below, the strong stability of the two link network under the non-

egalitarian allocation rule in the previous example depends critically on the inability

of players to make transfers to each other. Otherwise, they would deviate to form the

complete network. We return to make this point formally in Section 5 below.

To get insight into the role of component decomposability in the theorem, consider

the following example.

Example 2 The Role of Component Decomposability.
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There are n = 6 players. Let v be defined by v({12, 23}) = 10, v({12}) = 4, and

v is anonymous and component additive, so permutations of the above networks have

the same value, and v({12, 23, 45}) = 14, v({12, 23, 45, 56}) = 20, v({12, 34, 56}) = 12,

and so on. For any other structure of a component (that has three or more links) we

let v have a value of 0.

On efficient networks such as {12, 23, 45, 56}, set Y1({12, 23, 45, 56}) = Y3({12, 23, 45, 56}) =

Y4({12, 23, 45, 56}) = Y6({12, 23, 45, 56}) = 3, and Y2({12, 23, 45, 56}) = Y5({12, 23, 45, 56}) =

4. Also, set Y1({12, 23, 45}) = Y1({12, 23}) = Y3({12, 23}) = Y3({12, 23, 45}) = 5,

Y2({12, 23, 45}) = Y2({12, 23}) = 0, and, in accordance with anonymity and compo-

nent balance, Y4({12, 23, 45}) = Y4({45}) = Y5({45}) = Y5({12, 23, 45}) = 2. Set Y

elsewhere to respect anonymity and component balance.

Note that {12, 23, 45, 56} is strongly stable, and yet Y differs from the component-

wise egalitarian rule. In particular, Y adjusts on {12, 23} depending on how 4, 5, and

6 are linked, if at all. We have done this in such a way to preclude blocking by a

coalition involving some players from {1, 2, 3} and players from {4, 5, 6}. However, the

allocation rule Y violates component decomposability.

Given the implications of Theorem 1 we focus on the component-wise egalitarian

rule in what follows. This is with some loss of generality, as Theorem 1 does not imply

that Y must equal Y ce on all networks, or in cases where all players are in a single

component, as indicated above. We will return to consider more general allocation

rules later.

Given a value function v, let the cooperative game (N,wv) be defined by

wv(S) = max
g∈gS

v(g).

Thus, every value function v ∈ V defines a cooperative game where the value of a

coalition is the maximum value it can obtain by arranging its members in a network.

Note that if v is anonymous, then wv is symmetric (so wv(S) = wv(T ) whenever

|S| = |T |). Also, if v is component additive, then wv is superadditive. That is,

wv(S ∪ T ) ≥ wv(S) + wv(T ) whenever S ∩ T = ∅.

Theorem 2 Consider any anonymous and component additive value function v ∈ V .

Some efficient g ∈ G with respect to v is strongly stable with respect to Y ce(·, v) if

and only if the core of wv is nonempty. Moreover, SS(Y ce, v) 6= ∅ if and only if

E(v) = SS(Y ce, v).
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Theorem 2 shows that our interest in guaranteeing that a society forms efficient

networks is closely tied to the non-emptiness of the core of a related cooperative game.

This allows us to make use of the substantial knowledge on core existence in cooperative

game theory to analyze the efficiency of network formation.

On a superficial level Theorem 2 seems obvious, since both strong stability and

the core notion allow for deviations by arbitrary subsets of players.8 However, there

are several levels on which Theorem 2 is not obvious (which can also be seen from

the proof). Moreover, these less obvious points are those which result in some of the

theorem’s power and usefulness, as we will discuss in what follows.

In particular, some of the differences are as follows. Strong stability allows for a

deviating coalition to maintain links with non-deviating players (and keeps the rest of

the network intact), while the core notion requires complete separation by a deviating

coalition. This gives better opportunities for a coalition to improve under the strong

stability notion. Working in the other direction is that the core allows for transfers

to be made among players in a deviating coalition regardless of how that coalition

derives its value, while under component balance a deviating coalition under the strong

stability notion cannot make transfers across components of a new network that is

formed. With these two critical differences, there is no obvious reason to expect the

relationship outlined in the theorem to hold in general. Moreover, the last part of the

theorem shows that it is not simply that there exists a network that is strongly stable

with respect to Y ce(·, v), but that the efficient networks and strongly stable networks

with respect to Y ce(·, v) coincide.

Application to Communication Networks and Convex Games

A special type of value function are those derived from some anonymous production

function that depends on the agents who can communicate. The production function

is represented by a characteristic function z(S) which indicates the productive value

of any coalition S, provided they can communicate through the network. Each link in

8With the strong stability notion in Dutta and Mutuswami (1997), where a deviation is valid only if
all members of a coalition are strictly better off, the equivalence does not hold. An example shows this.
There are 5 players. We describe an anonymous and component additive value function v. A network
encompassing 3 players has value 7 and a network encompassing 2 players has value 3. A network that
consists of one 2-player component and one 3-player component has value 10. All other networks have
value 0. In this setting, an efficient network consists of two components, one encompassing 2 players
and the other 3. Under the component-wise egalitarian rule, such a network is strongly stable as
defined by Dutta and Mutuswami (1997). However, it follows by standard game-theoretic arguments
that the core of wv is empty.
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a network incurs a cost c.

To be specific: a given cooperative game z and cost per link c lead to the value

function vz,c ∈ V defined by

vz,c(g) =
∑

S∈Π(g)

z(S)− ∑
ij∈g

c.

A characteristic function z is zero-normalized if z({i}) = 0 for each i ∈ N .

Given a symmetric cooperative game z, let zk = z(S) where |S| = k. So we write

z as a function of coalition size given the anonymity inherent from symmetry. Let Z

denote the class of zero normalized symmetric cooperative games.

A cooperative game z ∈ Z is convex if

∀k ≥ 2 : zk − zk−1 ≥ zk−1 − zk−2

Corollary 3 Consider any convex cooperative game z ∈ Z and any cost per link c ≥ 0.

Then E(vz,c) = SS(Y ce, vz,c).

Corollary 3 shows that Theorem 2 has powerful implications, as the class of com-

munication games with convex production and costly links is a wide class.

The proof of Corollary 3 is achieved by showing that the cooperative game wvz,c

is convex and thus has a non-empty core. This is not immediate since although z is

convex, one needs to show that the induced game is still convex when link costs are

accounted for.

The scope of Corollary 3 does not extend arbitrarily to a class of games that is

larger than the class of convex games. We demonstrate this in the following example.

Example 3 A Non-Convex Game.

Consider the cooperative 5-player game (N, z) defined by z(S) = |S| if |S| ≥ 2 and

z(S) = 0 otherwise. This game is obtained from an additive game in which each player

contributes 1 to every coalition by setting the worth of one-player coalitions equal to

0. Suppose that 0 < c < 1. Then an efficient network g consists of two components,

one with two players connected by a link and the other with three players connected

by two links. A network that is strongly stable with respect to Y ce(·, vz,c) partitions

the player set into three components, two of which have two players connected by one

link and one of which consists of an isolated player. Hence, no network that is efficient

with respect to vz,c is strongly stable with respect to Y ce(·, vz,c). In fact, it can be

shown that for any anonymous and component balanced allocation rule Y it holds that

E(vz,c) ∩ SS(Y, vz,c) = ∅.
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4 Primitive Conditions on Value Functions

While the non-emptiness of the core of the associated cooperative game wv is an in-

teresting and useful condition, as illustrated at the end of the last section, we are also

interested in direct conditions on v which characterize the strong stability of efficient

networks. Theorem 2 is still useful in this regard, as the characterization of v’s that

allow for strongly stable networks to exist (and then coincide with efficient networks)

can be obtained through the conditions on wv.

A value function v is top convex if some efficient network also maximizes the per-

capita value among individuals.9 Formally, let p(v, S) = maxg∈gS
v(g)
|S| .

The value function v is top convex if p(v,N) ≥ p(v, S) for all S.

One implication of top convexity is that all components of an efficient network must

lead to the same per-capita value. If some component led to a lower per capita value

than the overall average, then some other component would have to lead to a higher

per capita value. As we now see, top convexity plays a key role in the existence of

strongly stable networks.

Theorem 4 Consider any anonymous and component additive value function v. The

core of wv is nonempty if and only if v is top convex. Thus, E(v) = SS(Y ce, v) (or

SS(Y ce, v) 6= ∅) if and only if v is top convex.

Theorem 4 shows that one needs strong conditions on v in order to get have nice

properties in terms of the set of strongly stable networks. Nevertheless, the top con-

vexity condition is satisfied by many v’s, and we now point out several such value

functions.

Example 4 The Symmetric Connections Model

9A related condition is called “domination by the grand coalition,” as defined in the context of a
cooperative game by Chatterjee, Dutta, Ray, and Sengupta (1993). That condition requires that the
per capita value of the grand coalition be at least that of any sub-coalition. Shubik (1982, page 149)
shows that for symmetric cooperative games this condition is a necessary and sufficient condition for
nonemptiness of the core. The top convexity condition we identify here is defined for the network
setting, but is equivalent to requiring that wv be dominated by the grand coalition. In a bargaining
context, Chatterjee, Dutta, Ray and Sengupta show that this condition is equivalent to existence of
a sequence of limiting efficient stationary equilibria for each bargaining protocol in a wide class.
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The symmetric connections model of Jackson and Wolinsky (1996) is one where links

represent social relationships between individuals; for instance friendships.10 These

relationships offer benefits in terms of favors, information, etc., and also involve some

costs. Moreover, individuals also benefit from indirect relationships. A “friend of a

friend” also results in some benefits, although of a lesser value than a “friend,” as

do “friends of a friend of a friend” and so forth. The benefit deteriorates with the

“distance” of the relationship. For instance, in the network g = {12, 23, 34} individual

1 gets a benefit δ < 1 from the direct connection with individual 2, an indirect benefit

δ2 from the indirect connection with individual 3, and an indirect benefit δ3 from the

indirect connection with individual 4. As δ < 1, this leads to a lower benefit from

an indirect connection than a direct one. Individuals only pay costs, however, for

maintaining their direct relationships.

Formally, the payoff player i receives from network g is

ui(g) =
∑
j 6=i

δt(ij) − ∑
j:ij∈g

c,

where t(ij) is the number of links in the shortest path between i and j (setting t(ij) =

∞ if there is no path between i and j). The value in the connections model of a network

g is simply v(g) =
∑

i ui(g).

It is easily seen that v is top convex for all values of δ ∈ [0, 1) and c ≥ 0, so that all

networks that are strongly stable with respect to Y ce and v are efficient with respect

to v.11

We remark that Y ce
i (g, v) 6= ui(g) for some networks g. Thus, our result is not in

contradiction with the finding of Jackson and Wolinsky (1996) that sometimes none of

the pairwise stable networks (under ui) are efficient in the connections model. Here the

reallocation of value under the component-wise egalitarian rule helps in guaranteeing

stability of the efficient network.12

10For further study of variations on the connections model, see Johnson and Gilles (2000), Watts
(2001), and Jackson (2001).

11The proof of Proposition 1 in Jackson and Wolinsky (1996) provides some hints to the interested
reader in filling in omitted details. Most importantly, for intermediate cost ranges the per capita value
of the (efficient) star network is growing in the number of players in the star.

12More generally (beyond the connections model) Jackson and Wolinsky (1996) study when using
the component-wise egalitarian rule provides for the pairwise stability of some efficient network. The
characterizing condition that they identify, critical link monotonicity, is necessarily a weaker condition
than top convexity, as pairwise stability is correspondingly weaker than strong stability.
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Example 5 The Co-Author Model

The co-author model (from Jackson and Wolinsky (1996)) is described as follows.

Each individual is a researcher who spends time working on research projects. If two

researchers are connected, then they are working on a project together. The amount

of time researcher i spends on a given project is inversely related to the number of

projects, ni, that he is involved in. Formally, i’s payoff is represented by

ui(g) =
∑

j:ij∈g

(
1

ni

+
1

nj

+
1

ninj

)

for ni > 0, and ui(g) = 0 if ni = 0.13 The total value is v(g) =
∑

i ui(g).

Provided that n is even, it is easily seen that v is top-convex as the efficient network

always involves pairs of players who are only linked to each other. Thus strongly stable

networks exist in this situation, and correspond to the networks with evenly matched

pairs. If n is odd, top convexity is violated (dropping some individual increases the

per capita value obtainable), and no strongly stable networks exist.14

Example 6 Bilateral Bargaining Model

Corominas-Bosch (1999) considers a bargaining model where buyers and sellers

bargain over prices for trade. A link is necessary between a buyer and seller for a

transaction to occur, but if an individual has several links then there are several possi-

bilities as to whom they might transact with. Thus, the network structure essentially

determines bargaining power of various buyers and sellers.

More specifically, each seller has a single unit of an indivisible good to sell which

has no value to the seller. Buyers have a valuation of 1 for a single unit of the good. If

a buyer and seller exchange at a price p, then the buyer receives a payoff of 1− p and

13It might also make sense to set ui(g) = 1 when an individual has no links, as the person can still
produce research. This is not in keeping with the normalization of v(∅) = 0, but it is easy to simply
subtract 1 from all payoffs and then view Y as the extra benefits above working alone.

14Our results tell us that efficient networks are the only candidates. If players are matched in pairs,
there is always a player left out. A coalition of some matched player and the unmatched player can
deviate, making the unmatched player better off with the matched player being indifferent. This
provides an interesting example to discuss the precise definition of strong stability. If we instead
require both players to be better off in a deviation, then there does exist a stable network here.
However, with any sort of side payments (as we discuss below) there would not exist a stable network.
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the seller a payoff of p. A link in the network represents the opportunity for a buyer

and seller to bargain and potentially exchange a good.15

Regardless of any costs to links, it is clear that per-capita value is maximized with

buyers and sellers paired up. So, if there is a matched number of buyers and sellers,

then v is top convex and so strongly stable networks exist and coincide with the efficient

ones. As with the co-author model, if there is not a matched number, then v is not

top convex as a subcoalition excluding the extra unmatched players could increase

per-capita value. So, in this case no strongly stable network exists.

5 Strong Stability with Side Payments

Once we allow for coalitional deviations, so presumably coalitions can coordinate their

actions, in many contexts it is reasonable to assume that they will also be able to

reallocate value. This leads to the formulation of an even stronger stability concept.

Say that g is SSS (strongly stable with side payments) relative to an allocation rule

Y and value function v if
∑

i∈S Yi(g, v) ≥ ∑
i∈S Yi(g

′, v) for any S ⊆ N and g′ obtainable

from g by S. We denote this set SSS(Y, v).

Theorem 5 Let v ∈ V be component additive and anonymous. The following state-

ments are equivalent:

(i) there exists a component balanced allocation rule Y such that SSS(Y, v) 6= ∅,

(ii) there exists a component balanced allocation rule Y such that SSS(Y, v) = E(v),

(iii) E(v) = SS(Y ce, v),

(iv) E(v) = SSS(Y ce, v).

Theorem 5 reinforces the implications of Theorem 1 that component-wise egalitarian

allocation of value plays a key role in the existence of strongly stable networks, this

time including the possibility of side payments. So beyond Y ce’s natural appeal in

terms of egalitarian properties, we find that it is a key allocation rule to understand

15In the Corominas-Bosch framework links can only form between buyers and sellers. One can fit
this into the more general setting where links can form between any individuals, by having the value
function and allocation rule ignore any links except those between buyers and sellers.
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when it comes to finding existence of strongly stable networks and for strongly stable

networks with side payments.

An example shows that the result is not true if one changes SSS to SS in part (i)

or (ii) of Theorem 5.

Example 7 Strong Stability with Side Payments

There are 6 players. A circle encompassing all six players has value 6 and a star

encompassing four players has value 5. All other networks have value 0. For the

allocation rule Y that we describe momentarily the efficient networks (circles) are

exactly the strongly stable networks. According to Y each player gets 1 if they are in a

circle. If g is a four person star, then the player who is the center of the star gets 0 and

the three outside players in the star each get 5
3
. Players get 0 according to Y otherwise.

For this Y , it holds that E(v) = SS(Y, v) 6= ∅. Under the component-wise egalitarian

rule, however, the circle is not strongly stable. Hence, E(v) ∩ SS(Y ce, v) = ∅ and the

equivalence in Theorem 5 would not hold.

If a network is SSS then it is stable in a very strong sense and so Theorem 5,

together with our other results, shows that any top convex value function v (and only

such value functions!) will have networks that are stable in very strong ways.

6 Non-anonymous Value Functions

So far, we have limited our attention to anonymous value functions. Let us consider

the extent to which similar results hold for non-anonymous value functions.

If we do not require the value function to be anonymous, then the component-wise

egalitarian rule is not as appealing.

Example 8 The Component-Wise Egalitarian Rule for a Non-Anonymous Value Func-

tion.

Consider a situation with 3 players and denote g1 = {13}, the network with only

the link between players 1 and 3, and g2 = {23}. The value function v is defined by

v(g1) = v(g2) = 1 and v(g) = 0 for all other g ⊆ gN . Then x defined by x1 = x2 = 0

and x3 = 1 is in the core of wv. However, E(v) = {g1, g2} and SS(Y ce, v) = ∅, so that

no efficient network is strongly stable (or strongly stable with side payments) with
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respect to the component-wise egalitarian rule. The reason is that Y ce gives too much

to players 1 and 2 and not enough to player 3.

The following theorem provides an analog of the previous results if we do not require

the value function to be anonymous.

Theorem 6 Let v ∈ V be a component additive value function. The following state-

ments are equivalent:

(i) the core of wv is nonempty,

(ii) there exists a component balanced allocation rule Y such that SSS(Y, v) 6= ∅,

(iii) there exists a component balanced allocation rule Y such that E(v) = SSS(Y, v).

Moreover, top convexity of v implies each of the above and also implies that E(v) =

SS(Y ce, v).

In the setting of non-anonymous value functions, top convexity of v, nonemptiness

of the core of wv, and E(v) = SS(Y ce, v) are no longer equivalent. In the example

with which we started the current section, the core of wv is nonempty, while E(v) 6=
SS(Y ce, v) and v is not top convex.

Example 9 Non-Anonymity and Top Convexity

For an example of a value function v such that E(v) = SS(Y ce, v) while the core

of wv is empty (and v is not top convex), consider 4 players and define g1 = {12},
g2 = {34}, g3 = {13, 34}, and g4 = {23, 34}. The non-anonymous value function v is

defined by v(g1) = 4, v(g2) = 8, v(g1 ∪ g2) = 12, v(g3) = v(g4) = 11, and v(g) = 0 for

all other g ⊆ gN . Then, network g1 ∪ g2 = {12, 34} is the unique efficient network and

it is also the unique network that is strongly stable with respect to Y ce and v. However,

the core of wv is empty because any core element x would have to simultaneously satisfy

the requirements x1 + x2 = 4, x3 + x4 = 8, x1 + x3 + x4 ≥ 11, and x2 + x3 + x4 ≥ 11,

which is clearly impossible.
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7 Concluding Remarks

Our main results may be summarized as follows. First, Theorem 1 showed that the

component-wise egalitarian rule plays a prominent role in the study of the existence

strongly stable networks. This was reinforced in some of the other results which are,

for anonymous value functions, all captured in the following theorem.

Theorem 7 Let v be component additive and anonymous. The following statements

are equivalent:16

(i) SS(Y ce, v) 6= ∅,

(ii) SS(Y ce, v) = E(v),

(iii) the core of wv is nonempty,

(iv) v is top convex,

(v) SSS(Y ce, v) 6= ∅,

(vi) SSS(Y ce, v) = E(v),

(vii) there exists a component balanced allocation rule Y such that SSS(Y, v) 6= ∅,

(viii) there exists a component balanced allocation rule Y such that SSS(Y, v) = E(v).

Theorem 6 summarizes the results for non-anonymous value functions.

Throughout our analysis in this paper we have focused our attention on component

additive value functions. These are natural in the context of some social relationships,

exchange relationships, etc., but are not so natural when different components of the

network might be in competition with each other (e.g., political or trade alliances).

On one level, once we move beyond component additive value functions, Y ce exhibits

even stronger properties. That is because under our definitions, Y ce can split value

completely evenly among all players and thus result in exactly the set of efficient

networks always being strongly stable. Thus strongly stable networks always exist and

coincide with the efficient networks.

16Note that (v) was not included in our earlier statements, but is easily seen to be equivalent given
that it is implied by (vi) and implies (i).
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This conclusion, however, depends on how one defines component balance when v is

not component additive. If one has further information about the value accruing to each

component when v is not component additive, then one could require that Y allocate

the value of each component to that component even when there exist externalities.17

With externalities, how players are arranged when some group deviates matters in

determining the value of the deviating coalition. This changes the nature of stable

networks under a variety of different stability concepts, as is nicely demonstrated in a

new paper by Currarini (2002). The general existence of strongly stable networks in

such settings is a difficult and open problem.18

17The argument for doing this in the presence of externalities is not quite as clear cut as in the case
where no externalities are present, unless one assumes that no transfers are made at all.

18The problem has some similarities to the existence of core stable partitions in coalition formation
games when there are externalities. See Bloch (2001) for some discussion of that problem.
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Appendix

Proof of Theorem 1: Consider an anonymous and component additive v and any

anonymous, component decomposable, and component balanced allocation rule Y .

Consider g ∈ G that has more than one component and is strongly stable. It follows

from component balance of Y that
∑

i∈N Yi(g, v) = v(g). Consider any S and S ′ ∈
Π(g) such that S 6= S ′. Without loss of generality, assume that maxi∈S Yi(g, v) ≥
maxi∈S′ Yi(g, v). Find j ∈ argmaxi∈SYi(g, v) and k ∈ argmini∈S′Yi(g, v). To prove

that Yi(g, v) = v(g)
n

for all i, we need only show that Yj(g, v) = Yk(g, v). Suppose,

to the contrary that Yj(g, v) > Yk(g, v). Consider a deviation by S ∪ {k} \ {j} so

that k severs all links under g, S \ {j} severs all links with j, and S ∪ {k} \ {j}
form a component h′ that is a duplicate of g(S) with k replacing j. By component

decomposability and anonymity it follows that Yi(h
′, v) = Yi(g, v) for all i ∈ S\{j} and

Yk(h
′, v) = Yj(g, v) > Yk(g, v). This contradicts the strong stability of g via a deviation

by S ∪ {k} \ {j}. Thus our supposition was incorrect. Given that Y is component

balanced and Yi(g, v) = v(g)
n

for all i, it follows that Y ce
i (g, v) = v(g)

n
for all i.

Proof of Theorem 2: The following lemma is useful.

Lemma 8 Consider an anonymous and component additive value function v ∈ V . If

the core of wv is nonempty, then x defined by xi = wv(N)
n

for each i is in the core of

wv.

Proof of Lemma 8: Given the symmetry of wv (implied by the anonymity of

v), the core of wv is symmetric. The core is also convex by standard arguments. The

statement of the lemma follows from the convexity and symmetry of the core of wv, as

taking any x in the core and averaging all of its permutations leads to identical payoffs

of wv(N)
n

.19

To complete the proof of Theorem 2, we prove that for any anonymous and com-

ponent additive value function v the following statements are equivalent

(1) SS(Y ce, v) 6= ∅,

(2) SS(Y ce, v) = E(v),

(3) the core of wv is nonempty.

19A similar proof in a different context appears in Shubik (1982, page 149).
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It is clear that (2) implies (1). We start by showing that (1) implies (3).

Suppose to the contrary that g is strongly stable with respect to Y ce(·, v), and that

the core of wv is empty. Since by supposition the core is empty, we know that Y ce(g, v)

is not a core element. Because g ∈ SS(Y ce, v), it holds that Y ce
i (g, v) = v(g)

n
for each

i (this follows by Theorem 1 when there is more than one component, and directly

otherwise). Thus, there exists a T ⊆ N such that wv(T ) >
∑

i∈T
v(g)
n

, which implies

that wv(T )
|T | > v(g)

n
. By the definition of wv it then follows that there exists some S ⊆ T

and g′ with S ∈ Π(g′) such that v(g′(S))
|S| > v(g)

n
. This contradicts the strong stability of

g. So, our supposition was incorrect and the conclusion is established.

Next, let us show that (3) implies (1).

We show the stronger statement that if the core of wv is nonempty, then E(v) ⊆
SS(Y ce, v). Suppose that the core of wv is nonempty and let g be efficient with respect

to v. Define x by xi = wv(N)
n

for each i. Then
∑

S∈Π(g) v(g(S)) = v(g) =
∑

i∈N xi =∑
S∈Π(g)

∑
i∈S xi. Also, Lemma 8 tells us that x is in the core of wv, and so

∑
i∈S xi ≥

wv(S) ≥ v(g(S)) for each S ∈ Π(g). Hence, all weak inequalities must hold with

equality, so that
∑

i∈S xi = v(g(S)) for each S ∈ Π(g). Define a component balanced

allocation rule Y by Yi(g
′, v) = xi

v(g′(S))∑
j∈S

xj
for each g′ ∈ gN , S ∈ Π(g′), and i ∈ S. With

this construction, it follows that xi ≥ Yi(g
′, v) for each g′ ∈ gN and i ∈ N ; and also

that Yi(g, v) = xi for any g ∈ E(v) and i ∈ N . This implies that Yi(g, v) = xi ≥
Yi(g

′, v) for each g ∈ E(v), S ⊆ N , g′ ∈ gN reachable from g by S, and i ∈ S; which

proves that g ∈ SS(Y, v). However, note that Y (·, v) coincides with Y ce(·, v), because

Yi(g
′, v) = xi

v(g′(S))∑
j∈S

xj
= v(g′(S))

|S| for each g′ ∈ gN , S ∈ Π(g′), and i ∈ S. We therefore

conclude that g ∈ SS(Y ce, v).

To complete the proof, let us show that (1) implies (2).

We have shown above that E(v) ∩ SS(Y ce, v) 6= ∅ implies (3) and that (3) implies

that E(v) ⊆ SS(Y ce, v). Thus, we know that E(v) ∩ SS(Y ce, v) 6= ∅ implies E(v) ⊆
SS(Y ce, v). Next, we argue that (1) implies ∅ 6= SS(Y ce, v) ⊆ E(v). Consider a

strongly stable g. If it is not efficient, then there exists g′ such that v(g′) > v(g). It

follows that there exists some S ∈ Π(g′) such that v(g′(S))
|S| > v(g)

n
. Since, as argued

above Y ce
i (g, v) = v(g)

n
for all i, this contradicts the strong stability of g and so we

conclude that g must be efficient. Thus, (1) implies both SS(Y ce, v) ⊆ E(v) and

E(v) ⊆ SS(Y ce, v), which is (2).

Proof of Corollary 3: We show that wvz,c
is convex and then the result follows from

Theorem 2 as the core of a convex game is non-empty. In what follows, we fix z and c
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and so we write w to indicate wvz,c
, and v to indicate vz,c.

It follows directly from the definition of w and the symmetry and zero-normalization

of z that w is symmetric and zero-normalized. Thus, we can also write w as a function

wk. For each k ≤ n, let v(k) = v(g) where g = {12, 23, . . . , k − 1k}. Thus v(k) is the

value of a coalition of size k connected in a network that is a line. The function v(k)

can also be viewed a zero-normalized symmetric cooperative game. Let X(k) = {X ⊆
{1, . . . , k}k | k =

∑
k′∈X k′}. We think of breaking k into a set of integers that sum to

k, and X(k) is the set of such decompositions. We can write

wk = maxX∈X(k)

∑
k′∈X

v(k′). (1)

Since v(k) = zk − (k − 1)c for k ≥ 1, it follows from convexity of z that

v(k)− v(k − 1) ≥ v(k − 1)− v(k − 2) (2)

for every k ≥ 3. So, v is “almost” convex, except possibly that it may be that v(2) =

v(2) − v(1) < v(1) − v(0) = 0. However, by standard arguments inequality (2) still

implies that if v(k′) > 0 then v(k′ + k′′) ≥ v(k′) + v(k′′) for any k′′. This combined

with equation (1) implies that

wk = max{0, v(k)}. (3)

It then follows directly from (2) and (3) that w is convex.

Proof of Theorem 4: Suppose that the core of wv is nonempty. Then by Lemma

8, x defined by xi = wv(N)
n

for each i is in the core of wv. Hence, for every S ⊆ N we have∑
i∈S xi = |S|wv(N)

n
≥ w

v
(S) = |S| p(v, S). This results in p(v,N) = wv(N)

n
≥ p(v, S),

so that v is top convex.

Now suppose that v is top convex. It is a straightforward exercise to show that

then x defined by xi = wv(N)
n

for each i is in the core of wv.

Proof of Theorem 5: It is clear that (iv) implies (ii) and (ii) implies (i). So we

need only show that (i) implies (iii) implies (iv). To show that (i) implies (iii), first,

note that for any component balanced Y , SSS(Y, v) ⊆ E(v). So, consider Y and g

such that g ∈ SSS(Y, v) ⊆ E(v). This implies that the vector Y (g, v) is in the core of

wv. From Theorem 2 , it then follows that (iii) holds.

Next, let us show that (iii) implies (iv). Let g ∈ E(v) = SS(Y ce, v). Since we know

by Theorem 4 that v must be top-convex, it follows that Y ce
i (g, v) ≥ Y ce

i (g′, v) for all i

and g′. Thus,
∑

i∈S Y ce
i (g, v) ≥ ∑

i∈S Y ce
i (g′, v) for any S and g′, and so g ∈ SSS(Y ce, v).
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So we have shown that E(v) ⊆ SSS(Y ce, v). Pairing this with SSS(Y ce, v) ⊆ E(v), it

follows that SSS(Y ce, v) = E(v).

Proof of Theorem 6: First, let us show the equivalence that (i) implies (iii)

implies (ii) implies (i).

Let us show that (i) implies (iii). It is clear that for any component balanced Y ,

SSS(Y, v) ⊆ E(v) simply from considering deviations by N . Thus, we need only show

that (i) implies that there exists a Y such that E(v) ⊆ SSS(Y, v). Let g ∈ E(v) and

let x in the core of wv. Define a component balanced allocation rule Y by Yi(g
′, v) =

xi
v(g′(S))∑

j∈S
xj

for each g′ ∈ gN , S ∈ Π(g′), and i ∈ S. With this construction, it follows

analogously to the part of the proof of Theorem 2 where it is proved that (3) implies

(1), that for S ⊆ N and g′ ∈ gN reachable from g by S we have
∑

i∈S Yi(g, v) =∑
i∈S xi ≥ ∑

i∈S Yi(g
′, v). This proves that g ∈ SSS(Y, v).

It is clear that (iii) implies (ii).

We complete the equivalence proof by showing that (ii) implies (i). Let Y be a

component balanced allocation rule such that SSS(Y, v) 6= ∅. Since SSS(Y, v) ⊆ E(v),

we can find g ∈ E(v) ∩ SSS(Y, v). It follows directly that Y (g, v) is in the core of wv.

Next, let us show the remaining statements of the theorem. If v is top convex, then

it is a straightforward exercise to show that then x defined by xi = wv(N)
n

for each i is

in the core of wv.

Finally, let us show that if v is top convex and component additive, then E(v) =

SS(Y ce, v). Let g ∈ E(v). Then v(g)
n

= p(v,N) = maxS⊆N p(v, S) and, hence, v(g(S))
|S| =

v(g)
n

for each S ∈ Π(g). Then, for each i ∈ N we have Y ce
i (g, v) = p(v,N), the maximum

a player can get in any network. Hence, g ∈ SS(Y ce, v). Suppose g /∈ E(v). Then

Y ce
i (g, v) ≤ p(v,N) for all i ∈ N with strict inequality for at least one i ∈ N . A

g′ ∈ E(v) is reachable from g by N , and Y ce
i (g′, v) = p(v,N) for each i ∈ N . This

shows that g /∈ SS(Y ce, v).
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