16,692 research outputs found

    Non-parametric Cosmology with Cosmic Shear

    Get PDF
    We present a method to measure the growth of structure and the background geometry of the Universe -- with no a priori assumption about the underlying cosmological model. Using Canada-France-Hawaii Lensing Survey (CFHTLenS) shear data we simultaneously reconstruct the lensing amplitude, the linear intrinsic alignment amplitude, the redshift evolving matter power spectrum, P(k,z), and the co-moving distance, r(z). We find that lensing predominately constrains a single global power spectrum amplitude and several co-moving distance bins. Our approach can localise precise scales and redshifts where Lambda-Cold Dark Matter (LCDM) fails -- if any. We find that below z = 0.4, the measured co-moving distance r (z) is higher than that expected from the Planck LCDM cosmology by ~1.5 sigma, while at higher redshifts, our reconstruction is fully consistent. To validate our reconstruction, we compare LCDM parameter constraints from the standard cosmic shear likelihood analysis to those found by fitting to the non-parametric information and we find good agreement.Comment: 13 pages. Matches PRD accepted versio

    Recent advances in directional statistics

    Get PDF
    Mainstream statistical methodology is generally applicable to data observed in Euclidean space. There are, however, numerous contexts of considerable scientific interest in which the natural supports for the data under consideration are Riemannian manifolds like the unit circle, torus, sphere and their extensions. Typically, such data can be represented using one or more directions, and directional statistics is the branch of statistics that deals with their analysis. In this paper we provide a review of the many recent developments in the field since the publication of Mardia and Jupp (1999), still the most comprehensive text on directional statistics. Many of those developments have been stimulated by interesting applications in fields as diverse as astronomy, medicine, genetics, neurology, aeronautics, acoustics, image analysis, text mining, environmetrics, and machine learning. We begin by considering developments for the exploratory analysis of directional data before progressing to distributional models, general approaches to inference, hypothesis testing, regression, nonparametric curve estimation, methods for dimension reduction, classification and clustering, and the modelling of time series, spatial and spatio-temporal data. An overview of currently available software for analysing directional data is also provided, and potential future developments discussed.Comment: 61 page

    Semiparametric Inference and Lower Bounds for Real Elliptically Symmetric Distributions

    Full text link
    This paper has a twofold goal. The first aim is to provide a deeper understanding of the family of the Real Elliptically Symmetric (RES) distributions by investigating their intrinsic semiparametric nature. The second aim is to derive a semiparametric lower bound for the estimation of the parametric component of the model. The RES distributions represent a semiparametric model where the parametric part is given by the mean vector and by the scatter matrix while the non-parametric, infinite-dimensional, part is represented by the density generator. Since, in practical applications, we are often interested only in the estimation of the parametric component, the density generator can be considered as nuisance. The first part of the paper is dedicated to conveniently place the RES distributions in the framework of the semiparametric group models. The second part of the paper, building on the mathematical tools previously introduced, the Constrained Semiparametric Cram\'{e}r-Rao Bound (CSCRB) for the estimation of the mean vector and of the constrained scatter matrix of a RES distributed random vector is introduced. The CSCRB provides a lower bound on the Mean Squared Error (MSE) of any robust MM-estimator of mean vector and scatter matrix when no a-priori information on the density generator is available. A closed form expression for the CSCRB is derived. Finally, in simulations, we assess the statistical efficiency of the Tyler's and Huber's scatter matrix MM-estimators with respect to the CSCRB.Comment: This paper has been accepted for publication in IEEE Transactions on Signal Processin
    • …
    corecore