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We present a method to measure the growth of structure and the background geometry of the Universe—
with no a priori assumption about the underlying cosmological model. Using Canada-France-Hawaii
Lensing Survey (CFHTLenS) shear data, we simultaneously reconstruct the lensing amplitude, the linear
intrinsic alignment amplitude, the redshift evolving matter power spectrum, Pðk; zÞ, and the comoving
distance, rðzÞ. We find that lensing predominately constrains a single global power spectrum amplitude and
several comoving distance bins. Our approach can localize the precise scales (k-modes in the matter power
spectrum) and redshifts where lambda-cold dark matter (LCDM) fails—if any. We find that below z ¼ 0.4,
the measured comoving distance rðzÞ is higher than that expected from the Planck LCDM cosmology by
∼1.5σ, while at higher redshifts, our reconstruction is fully consistent. To validate our reconstruction, we
compare LCDM parameter constraints from the standard cosmic shear likelihood analysis to those found
by fitting to the nonparametric information and we find good agreement.
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I. INTRODUCTION

The leading cosmological model, Lambda-Cold Dark
Matter (LCDM), is purely phenomenological. There is no
widely accepted physical mechanism that explains the
existence of dark matter, nor the accelerated expansion
of the Universe. For this reason, in addition to measuring
the LCDM parameters to ever great precision, we must
test—rather than assume—the LCDM paradigm.
To achieve this aim, we take advantage of an effect called

gravitational lensing. As light from distant galaxies travels to
Earth its path is distorted by the gravitational pull of
intervening mass. This causes small changes in the observed
ellipticities and sizes of the galaxies. The coherent signal this
induces, which is only detectable by measuring the shape of
many galaxies, is called cosmic shear.
From the first detections of cosmic shear in 2000-2001

[1–3], studies have entered the realm of precision cosmol-
ogy [4–8]. With the advent of stage IV lensing experiments
including Euclid1 [9], WFIRST2 [10] and LSST3 [11], con-
straints on cosmological parameters will shrink by a further
order of magnitude [12].
Every cosmic shear study to date has assumed a

cosmological model, before inferring the values of the
model’s parameters. We follow an alternative approach and
reconstruct the expansion history of the Universe and the
evolution of large scale structure formation independently

from any cosmological model. This is in a similar spirit
to [13].
There are many ways to extract cosmological information

from the shear catalog. By far the most popular technique is
the Gaussian likelihood analysis of the shear two-
point statistic [4–8]. Other statistics include: peak counts
[14,15], higher order statistics [16,17] and Minkowski
functionals [18].
We choose to use the shear two-point statistic. Even

though this only accesses the Gaussian information of
the shear field, a large body of work exists to provide
rigorous requirements on systematics to ensure unbiased
results [19–21].
Using data from the Canada-France-Hawaii Lensing

Survey (CFHTLenS) we reconstruct the lensing amplitude
AG, the linear intrinsic alignments amplitude, AIA, the
comoving distance, rðzÞ4 and the matter power spectrum,
Pðk; zÞ. We refer to this as nonparametric cosmology
because this information can always be measured without
ever needing to assume a cosmological model parametrized
in terms of a small number of physical parameters.
Meanwhile we refer to the information contained in these
amplitudes and functions as the nonparametric information.
This study directly builds off [20] where we found the
precise scales and redshifts where cosmic shear is sensitive
to the power spectrum and comoving distance.

*peterllewelyntaylor@gmail.com
1http://euclid-ec.org
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4Formally we measure the comoving angular distances but for
a spatially-flat universe this is equivalent to the comoving
distance.
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Furthermore once we have extracted the nonparametric
information it is possible to use this to test any cosmological
model, without having to repeat the lensing analysis itself.
To verify the fidelity of our nonparametric reconstruction we
infer the LCDM parameters directly from the nonparametric
information and compare to the standard cosmic shear
likelihood analysis.
While cosmic shear extracts both distance and structure

growth information, measurements of Baryonic Acoustic
Oscillations (BAO) [22] and Type Ia supernovae (SNe Ia)
[23] already constrain the cosmic distance to within a few

percent at low redshifts. A disagreement in the inferred
expansion history between our nonparametric cosmic shear
reconstruction these two other two measurements would
indicate the presence of systematics in one or more of the
experiments.
In Sec. II we review the cosmic shear formalism, discuss

the CFHTLenS data and present our technique for extracting
the nonparametric information. A flowchart outlining the
main steps of the nonparametric reconstruction is shown in
Fig. 1. The results are presented in Sec. III and the future
prospects of our technique are discussed in Sec. IV.

FIG. 1. The main steps of the nonparametric reconstruction and the standard parametric inference. These techniques are discussed in
detail in Secs. II A–II H. The nonparametric reconstruction has a number of desirable features. 1. We recover the expansion and structure
growth history, with no need to assume a cosmological model. 2. Once the nonparametric information is recovered, we can test any
cosmological model without needing to re-compute lensing observables. 3. Comparing the nonparametric and parametric
reconstructions pinpoints the precise redshifts and scales where the cosmological model fails—if any. Knowing this could help
narrow the search for previously unidentified systematics (see the second paragraph of Sec. IV). After a thorough search—if the
discrepancies are believed to be physical—this would indicate precisely how the Universe deviates from LCDM in a fully
nonparametric way.
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II. FORMALISM AND DATA

A. Cosmic shear formalism

Cosmic shear extracts cosmological information from
the correlation in the ellipticity between pairs of galaxies.
The ellipticity is written as a complex number so that
ϵ ¼ ϵ1 þ iϵ2. Then for pairs of galaxies the tangential and
cross-ellipticity ϵþ;× are the tangential and cross ellipticities
in the frame joining a pair of galaxies fa; bg. To extract
more information, we also bin galaxies radially in tomo-
graphic redshift bins. Then the correlation function for
angular separation θ is given by:

ξ̂ij�ðθÞ ¼
P

wawb½ϵiþðxaÞϵjþðxbÞ � ϵi×ðxaÞϵj×ðxbÞ�P
wawb

; ð1Þ

where wa and wb are weights and i and j denote the
tomographic bin number, and the sums are over all galaxy
pairs.
The correlation function is related to the convergence

power spectrum, Cij
GGðlÞ, by:

ξij�;GGðθÞ ¼
1

2π

Z
dllCij

GGðlÞJ�ðlθÞ; ð2Þ

where JþðlθÞ is the zeroth order Bessel function of the first
kind and J−ðlθÞ is the fourth order Bessel function of the
first kind.
Taking the Limber, flat-sky and flat-Universe assump-

tions, the convergence power spectrum can be written as:

Cij
GGðlÞ ¼

Z
∞

0

dk
l3

k4
wiðl=kÞwjðl=kÞ

aðl=kÞ2 P

�
k;
l
k

�
; ð3Þ

where a is the expansion factor, P is the matter power
spectrum and the lensing efficiency in harmonic space,
wi, is

wiðl=kÞ ¼
3H2

0Ωm

2c2

Z
∞

0

dr ½z0�niðr½z0�ÞFðr½z0�;l=kÞ; ð4Þ

where

Fðr; r0Þ ¼ r − r0

rr0
ð5Þ

is the lensing kernel and H0, Ωm, c, a and ni respectively
denote the present day Hubble parameter, the fraction
energy density of matter compared to the critical density,
the speed of light in vacuum, the expansion factor and the
radially distribution of observed galaxies in tomographic
bin i.
Equations (3)–(5) are not the usual expression for the

power spectrum, lensing efficiency and lensing kernel
given in [4,24], but it is easy to derive by making the
change of variable r ¼ l=k (see the Appendix of [25] for

more details). We make this transformation because during
the nonparametric reconstruction we do not enforce monot-
onicity of rðzÞ, so it is no longer an appropriate way to label
the cosmic time at which the matter power spectrum is
evaluated.
We have developed our own code to compute the

convergence spectrum in this notation and verified against
GLaSS [26] and the shear code integrated into the modular
cosmology package Cosmosis [27]. Throughout this
work we use CAMB [28] to generate the linear power
spectrum and expansion history and Halofit [29] to
generate the nonlinear power spectrum. All correlation
functions are computed using Nicea [30]. All modules
are integrated with Cosmosis and called through this
interface.

B. Intrinsic alignments

In addition to instrumental systematics, astrophysical
systematics must also be accounted for. The dominant
contribution comes from intrinsic alignments caused by the
tidal alignment of galaxies around large dark matter halos.
This dampens the lensing spectrum and leads to two
additional terms in the theoretical expression for the
correlation function. An ‘II term’ accounts for the intrinsic
tidal alignment of galaxies around massive dark matter
halos. Meanwhile the ‘GI term’ accounts for the anti-
correlation between tidally aligned galaxies at low redshifts
and weakly lensed galaxies at high redshift. Then the
theoretical correlation function is a sum of the lensing and
intrinsic alignment auto and cross-correlation functions,
given by

ξij�ðθÞ ¼ ξij�;IIðθÞ þ ξij�;GIðθÞ þ ξij�;GGðθÞ: ð6Þ

We follow the linear intrinsic alignment model originally
given in [31] and used in [4]. In this model, the theoretical
expression for II and GI correlation functions are

ξij�;II=GIðθÞ ¼
1

2π

Z
dllCij

II=GIðlÞJ�ðlθÞ; ð7Þ

where the II spectrum, Cij
II ðlÞ, is given by

Cij
IIðlÞ ¼

Z
rH

0

dr
niðrÞnjðrÞ

r2
PII

�
l
r
; r

�
; ð8Þ

where the II matter power spectrum is

PIIðk; zÞ ¼ F2ðzÞPðk; zÞ ð9Þ

and

FðzÞ ¼ −AIC1ρcrit
Ωm

DðzÞ : ð10Þ
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Here, ρcrit is the critical density of the Universe, DðzÞ is the
growth factor and C1 ¼ 5 × 10−14 h−2M−1

⊙ Mpc3 is chosen
so that the fiducial value of the intrinsic alignment
amplitude, AI, is unity [32]. Meanwhile, the GI matter
power spectrum is:

Cij
GIðlÞ¼

Z
rH

0

dr
qiðrÞnjðrÞþniðrÞqjðrÞ

r2
PGI

�
l
r
;r

�
; ð11Þ

where the lensing efficiency kernel, qi is defined as

qiðrÞ ¼
3H2

0Ωm

2c2
r

aðrÞ
Z

rH

r
dr0 niðr0Þ

r0 − r
r0

; ð12Þ

and the GI spectrum is

PGIðk; zÞ ¼ FðzÞPðk; zÞ: ð13Þ

Formally, we should have made the transformation
r ¼ l=k to label the matter power spectra in Eqs. (9)
and (13) in terms of k as we did for the shear spectra defined
in Eq. (3). However, because the contamination from
intrinsic alignments is so small relative to the statistical
error for CFHTLenS, we ignore this complication for the
time being and just use the comoving distance of the
fiducial cosmology in these expressions for the remainder
of this work. We have also chosen not to include an “IG”
term to account for the correlation between foreground
shear with background intrinsic alignments. This is nonzero
due to photometric redshift error. Nevertheless, the magni-
tude of the IG term is usually an order of magnitude smaller
than the II term [33], so it can be safely ignored at this stage.

C. CFHTLenS data

We use public shear data from the Canada-France-
Hawaii Lensing Survey, CFHTLenS. This is a lensing
survey covering 154 deg2 in five optical bands. Galaxies
were observed at a median redshift zm ¼ 0.70 with an
effective weighted number density of neff ¼ 11 galaxies per
square arcmin. Catalogs were produced by combining
weak lensing data processing from THELI [34], shear
measurements from Lensfit [35] and photometric red-
shift estimates from PSF-matched photometry [36].
We use the same 6 tomographic bins as [4] for galaxies in

the redshift range 0.2 < z < 1.30. Bins were defined by
dividing galaxies into the redshift ranges: z1 ∈ ½0.2; 0.39�,
z2 ∈ ½0.39; 0.58�, z3 ∈ ½0.58; 0.72�, z4 ∈ ½0.72; 0.86�, z5 ∈
½0.86; 1.02�, and z6 ∈ ½1.02; 1.30�. Bins were smoothed
by Gaussian kernel with dispersion σz ¼ 0.04ð1þ zÞ to
account for the photometric redshift uncertainty. We use the
same angular bins as [4].

D. Likelihood and covariance matrix

To extract the cosmological information from the shear
catalog, we assume a Gaussian likelihood:

lnL1ðpÞ ¼ −
1

2

X

a;b

½Da − TaðpÞ�C−1
ab ½Db − TbðpÞ�; ð14Þ

where Da is the data vector composed of the observed ξ̂ij�
and TaðpÞ is formed from the theoretical prediction of ξij�
given parameters p and C−1

ab is the inverse of the covariance
matrix.
The data and theory vectors are taken to be the

correlation functions defined in Eqs. (1) and (7), respec-
tively. In the standard cosmic shear likelihood analysis, the
parameters fpg are taken to be the cosmological model
parameters and a set of nuisance parameters (e.g., the
amplitude of the intrinsic alignments AI). In our non-
parametric analysis we will take the parameters fpg to be a
set of amplitudes that encode information about the lensing
amplitude, the intrinsic alignment amplitude, the comoving
distance and the power spectrum (see Secs. II F and II G for
more details).
Meanwhile we use the publicly available covariance

matrix from the CFHTLenS survey5 integrated into
Cosmosis 2pt module (see [4] for more details). The
matrix is generated from the N-body lensing simulations of
[37]. Since the covariance is generated from noisy real-
izations we apply the Anderson-Hartlap correction when
inverting the covariance [38,39].
We use the Markov Chain Monte Carlo (MCMC)

sampler emcee [40] to sample the likelihood and perform
the inference.

E. Nonparametric information extraction

The cosmic shear spectrum defined in Eq. (3) is only
sensitive to the cosmology of the Universe through the
power spectrum, Pðk; zÞ, the comoving distance, rðzÞ and a
set of lensing amplitudes. If we assume the linear intrinsic
alignment model, then the lensing amplitudes are:
an overall shear amplitude, AG, and an intrinsic align-
ment amplitude, AIA. From Eqs. (3) and (10), we see AG ∝
ΩmH2

0 and AIA ∝ AIΩm.
The main idea of this paper is to divide the power

spectrum and comoving distance into cells/bins and simul-
taneously measure the amplitudes of these cells and the
lensing amplitudes. In detail, we generate a fiducial6 power
spectrum, comoving distance and lensing amplitudes using
the CFHTLenS best fit cosmology from [4]. We divide the

5This covariance matrix is available for download from http://
www.cfhtlens.org/astronomers/cosmological-data-products.

6We have found that all the results presented in this paper are
insensitive to changing the fiducial cosmology parameters by up
to 15%.
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power spectrum into a set of logarithmically spaced cells in
the (k, z) plane fPig and the comoving distance into a set of
cells frig. Perturbing the lensing amplitudes, the power
spectrum cells and comoving distance cells, we form a vector
of amplitudes p ¼ ðAðAGÞ;AðAIAÞ; fAðPiÞg; fAðrjÞgÞ
where the amplitudes are defined relative to the fiducial
cosmology, so that

AðAGÞ ¼ AG=Afid
G

AðAIAÞ ¼ AIA=Afid
IA

AðPiÞ ¼ Pi=Pfid
i

AðrjÞ ¼ rj=rfidj ; ð15Þ

where Pi is the power spectrum in cell i, Pfid
i is the fiducial

power spectrum inside cell i, rj is the fiducial comoving
distance in cell j, and rfidj is the fiducial comoving inside cell
j. New GG, GI, and II spectra are defined as functions of the
amplitude vector, p, andwritten asCij

GGðl; pÞ,Cij
GIðl; pÞ and

Cij
IIðl; pÞ. Substituting the perturbed spectra intoEqs. (2) and

(6) forms the theory vector in theGaussian likelihooddefined
in Eq. (14) and wewill infer the posterior distribution on the
amplitude vector, p, using CFHTLenS shear data.
To start, we divide the power spectrum into 100 cells on a

10 × 10 grid in k and z. The comoving distance is divided
into 10 cells in z. With the lensing and intrinsic alignment
amplitude, this leaves us with 112 amplitudes to measure.
To perform the inference we first compress the amplitude
vector, p, down to a more manageable size using two
different data compression regimes, which are discussed in
the next two sections.

F. Adaptive grid compression

We employ the Fisher matrix formalism to assess cosmic
shear’s sensitivity to each amplitude. The Fisher matrix is
given by

Fij ¼
X

a;d

∂Da

∂pi
C−1
ab

∂Db

∂pj
; ð16Þ

where Da is the data vector formed from the correlation
functions ξ̂�ðθÞ, C−1

ab is the covariance matrix given in
Eq. (14), while pi and pj are amplitudes in the vector p. It
is now convenient to define the information content
contained in a set of amplitudes fpig as

I ¼
X

i∈fpig
1=Fii: ð17Þ

In our adaptive grid regime, we combine adjacent power
spectrum and comoving distance cells so that we are left
with a much smaller set of cells that each contain roughly
the same amount of information, I.

Specifically, the power spectrum is divided into four
cells that each contain roughly 25% of the remaining
information. The cell boundaries are plotted in Fig. 2.
Meanwhile, the comoving distance is divided into three
cells in z, shown in Fig. 3, so that each contain roughly a
third of the comoving distance information. Altogether our
compressed amplitude vector, p, is formed of two lensing
amplitudes, four power spectrum cells and three comoving
cells,

p ¼ ðAðAGÞ;AðAIAÞ; fAðPiÞg; fAðrjÞgÞ; ð18Þ

where i ∈ ½1; 4� and j ∈ ½1; 3�.

FIG. 2. Top: Best fit nonparametric reconstructed power
spectrum. This is the first nonparametric reconstruction of the
time evolving matter power spectrum from shear data. Currently
the errors on this reconstruction are very large (see Fig. 4), but
these will shrink by a factor of ∼20–25 with a stage IV
experiment. Bottom: Power spectrum generated by CAMB [28]
and HALOFIT [29] using CFHTLenS [4] best fit LCDM
parameters. The nonparametric and parametric reconstruction
are in agreement.
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Since this paper is a proof of concept, this compression is
in no way optimal and several arbitrary choices (e.g., the
number of power spectrum cells) have been made. Since
optimizing this compression is survey specific, we leave
optimizing this procedure to a future work with new data.

G. Principle component compression

We also use the popular principle component analysis
(PCA) compression technique, as an alternative to the
adaptive grid. Given a high-dimensional data set, PCA
compression works by finding an orthogonal set of vectors
which contain the majority of the variance in the data and
only saving this information. In our case we want to solve
the opposite problem and minimize the variance by finding
the linear combinations of amplitudes pi ∈ p which are the
most tightly constrained by the shear data.
The predicted variance is encoded in the Fisher matrix,

F. Specifically the covariance between amplitudes is
Cp ¼ F−1. Rotating into the eigenbasis yields

Cp ¼ PTDP; ð19Þ

where D is a diagonal matrix of eigenvalues, fλig, and P is
a rotation matrix with columns formed from the associated
eigenvectors.

Arranging the eigenvalues in ascending order, the
corresponding eigenvectors are called the principle com-
ponents (PCs). We take the first 10 PCs to form our
compressed amplitude vector,

p ¼ ðfPCigÞ; ð20Þ

where i ∈ ½1; 10�.
If the lensing likelihood was exactly Gaussian (see

[42,43] for a discussion of why it is not) then these
components would contain 77% of the total inverse
variance. Again, we stress that this is an arbitrary choice
which will need fine-tuning in future studies.

H. Cosmological parameter inference
from nonparametric information

Normally cosmological parameters, θ, are found straight
from the shear data by sampling from lnL1ðθÞ, defined in
Eq. (14). We now discuss a technique to extract the
cosmological parameters directly from the measured non-
parametric amplitudes. This is used to validate the non-
parametric reconstruction. In the future this technique can be
used to test a large number of cosmological models quickly
and consistently without repeating the lensing analysis.
Using the MCMC chains from the nonparametric recon-

struction as data, we form the Gaussian likelihood

lnL2ðθÞ ¼ −
1

2

X

a;b

½p̂a − TaðθÞ�Ĉ−1
ab ½p̂b − TbðθÞ�; ð21Þ

where p̂ is the mean of amplitude vector over all samples in
the chain, and the covariance, Ĉ, between amplitudes is
given by

Ĉab ¼ hðpa − p̂aÞðpb − p̂bÞi; ð22Þ
where the average is taken over all samples in the chain.
The theory vector, TaðθÞ, depends on which compres-

sion regime was used. In the adaptive grid case, the
theoretical lensing amplitudes are

AThðAGÞ ¼
ΩmH2

0σ8
Ωfid

m Hfid
0

2σfid8

AThðAIAÞ ¼
ΩmAIσ8

Ωfid
m Afid

I σfid8
: ð23Þ

We have pulled out an overall scaling amplitude of the
power spectrum, σ8, so the theoretical power spectrum
amplitude inside cell i must be appropriately rescaled.7 It is
given by

FIG. 3. The 1σ and 2σ constraints on the reconstructed non-
parametric rðzÞ. The jumps in the constraints are due to binning.
Unlike the power spectrum, this is fairly well constrained with
CFHTLenS data. We also plot the parametric rðzÞ using a LCDM
cosmology with the best fit parameters from CFHTLenS [4] and
the Planck 2018 combined analysis (including BAO) [41]. In the
CFHTLenS (2013) study the Hubble parameter, h0, is given a
tight prior (see Sec. III C). Repeating the CFHTLenS (2013)
analysis with a flat prior on h0, we find it is only constrained in
the range (0.4, 1.2) at the 1σ level. Since rðzÞ is proportional to
h−10 , there is no internal tensions between our nonparametric
distance measurement and the parametric analysis. Nevertheless,
below z ¼ 0.4 the nonparametric reconstruction is in mild ∼1.5σ
tension with the Planck combined cosmology rðzÞ.

7We have found that if we do not do pull out an overall scaling
factor, we do not accurately recover the tails of the posterior on θ.
We are free to make this choice provided we rescale the power
spectrum amplitudes appropriately.
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AThðPiÞ ¼
�
σfid8
σ8

�
2

hPiðθÞ=Pfid
i i; ð24Þ

where the average is taken over all sampled points in the
cell. The theoretical comoving distance amplitude inside
cell j is

AThðrjÞ ¼ hriðθÞ=rfidj i; ð25Þ

and the average is again over all points in the cell. In
summary, the theory and data vectors for the adaptive grid
technique are given by

T ¼ ðAThðAGÞ;AThðAIAÞ; fAThðPiÞg; fAThðrjÞgÞ
p̂ ¼ ðhAðAGiÞ; hAðAIAÞi; fhAðPiÞig; fhAðrjÞigÞ; ð26Þ

where i ∈ ½1; 4� and j ∈ ½1; 3� and the averages are taken
over all samples in the reconstructed amplitude chain which
is found from sampling from lnL1ðpÞ.
In the PCA compression case, we take the theoretical

amplitudes defined in Eqs. (23)–(25) and rotate these into
PCA space using the rotation matrix P, defined in (19).
Explicitly, we compute

APC;Th ¼ I þ RðATh − IÞ ð27Þ

The first 10 rows of the rotation matrix, R, are the same as
P while the remaining rows are set to zero since we are
assuming no contribution from the remaining PCs. The
theoretical amplitude vector, ATh, appearing in Eq. (27) is
defined in terms of the amplitudes written in Eqs. (23)–(25)
and is given by

ATh ¼ðAThðAGÞ;AThðAIAÞ;fAThðPiÞg;fAThðrjÞgÞ ð28Þ

where i ∈ ½1; 100� and j ∈ ½1; 10� run over the original
cells. Finally, I is a dimension 112 vector with all entries
equal to unity. We subtracted this before rotation in Eq. (27)
because the PCA amplitudes are defined relative to unity. In
summary, the theory and data vectors for the PCA tech-
nique are given by

T ¼ ðfAPC;Th
i gÞ

p̂ ¼ ðfhAiigÞ ð29Þ

for i ∈ ½1; 10� and the average, just like in the adaptive grid
case, is over all samples in the chain.
Using both compression techniques, we can now sample

from likelihood defined in 21 to compute the posterior
distribution on the cosmological parameters θ. The process
is schematically shown in Fig. 1.

III. RESULTS

A. Adaptive grid reconstruction

Sampling from the likelihood lnL1ðpÞ, we measure two
lensing amplitudes, four power spectrum amplitudes and
three comoving distance amplitudes. The recovered pos-
terior distribution of the amplitudes is plotted in Fig. 4.
Only the lensing amplitude and the comoving distance
amplitudes are tightly constrained. The amplitude of indi-
vidual matter power spectrum cells are hardly constrained
at all.
Figure 2 shows the best fit nonparametric power spec-

trum. For comparison, a parametric power spectrum gen-
erated from the best fit CFHTLenS LCDM cosmological
parameters [4] is shown. The two are in good agreement,
particularly since the error bars on the nonparametric
reconstruction are so large (see Fig. 4).
In Fig. 3, we plot the nonparametric reconstruction of the

comoving distance rðzÞ. The LCDM prediction generated
with the best fit parameters from both CFHTLenS [4] and
the Planck 2018 combined analysis (including BAO) [41]
are shown for comparison. While it may appears that there
is an internal inconsistency between our nonparametric
reconstruction and the parametric analysis of CFHTLenS
data in [4], this is just due to the choice of prior on h0 in the
analysis presented in [4] (see the discussion in the caption
of Fig. 3).
For z < 0.4, our nonparametric reconstruction of rðzÞ is

in ∼1.5σ tension with the Planck LCDM predictions. In the
range 0.4 < z < 0.6, this drops to a ∼1σ tension, while for
z > 0.6 there is no tension at all.
The discrepancy between the nonparametric rðzÞ and the

Planck LCDM reconstruction is unlikely to be caused by
poor photometric redshift error estimation becausewewould
expect these to get worse at higher redshifts, not lower
redshifts where the tension occurs. We leave a thorough
nonparametric study of systematic effects to future work.
It is also pointed out in [45], that positive values for

the intrinsic alignment parameter, AI , are favored by
CFHTLenS. This is the opposite sign to what is expected
by theory and could point to lingering systematic effects in
the shear catalog. Whatever the cause of the comoving
distance tension, we intend to investigate this further with
data from other surveys.

B. PCA reconstruction

Sampling from the likelihood lnL1ðpÞ, we measure the
first 10 PC amplitudes. The posterior distribution on the
amplitudes is shown in Fig. 5.
Since the lensing likelihood is non-Gaussian [43], the

posteriors do not agree with the Fisher expectation,
particularly past the first two PCs. The constraints on
the first PC amplitude is only 10% wider than expected, but
the constraints on the third PC amplitude are twice as wide
as expected. Degeneracies between a few PC amplitudes
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(e.g., betweenA1 andA2) are also present. By construction
these are absent from the Fisher prediction.
Although it is possible to rotate the PC amplitudes back

into the (k, z) plane to reproduce Figs. 2–3, we do not
advocate this approach. The PCs are not a spanning set, and
we do not capture the variance in the unmeasured

components. This will lead us to underestimate the size
of the error bars.
In summary the adaptive grid method is a complete

set for rðzÞ and Pðk; zÞ but it is potentially sub-optimal
(leading to large error bars). The PCA approach is not a
complete set (leading to potential biases), but is perhaps

FIG. 4. The reconstructed amplitudes using the adaptive grid technique. We measure the amplitude of the lensing signal AG, the
intrinsic alignment amplitudeAIA, the amplitude of four power spectrum bins in k and z and the amplitude of three comoving distances
bins in z. The bin boundaries for the power spectrum and comoving distance are illustrated in Figs. 2 and 3. Only the amplitude of the
lensing signal and the comoving distance are well constrained. There is a degeneracy between the lensing amplitude and the comoving
distance amplitudes because both are strongly dependent on Ωm and h0. We plot the Gaussian distribution that we have fit to the chains
to form the likelihood lnL1ðpÞ, in gray. All corner plots in this work are produced using ChainConsumer [44] using the default
kernel density estimate settings.
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more optimal (smaller error bars). We adopt a conservative
approach not favoring the PCA approach, since in general it
is better to be unbiased but have larger error bars than the
other way around.

C. Cosmological inference from adaptive
grid reconstruction

Sampling from the likelihood lnL2ðθÞ, we place con-
straints on the LCDM parameters, θ, directly from the

nonparametric information derived using the adaptive grid
compression. We compare this to the results of the usual
cosmic shear likelihood analysis by sampling from lnL1ðθÞ.
In both cases, following the analysis of [4], we place a
Gaussian prior on the Hubble constant: h0 ¼ 0.73� 0.024.
The resulting parameter constraints are shown in Fig. 6.
Parameter constraints from the standard likelihood

analysis are shown in blue, while constraints from the
nonparametric information are in red. The two techniques
are in good agreement, but the nonparametric posteriors are

FIG. 5. The posterior distribution on the measured PC amplitudes. The first two PCs are as expected from the Fisher matrix prediction,
but because the likelihood is non-Gaussian, the constraints on the other PCs are up to twice as wide as expected. We plot the Gaussian
distribution that we have fit to the chains to form the likelihood lnL1ðpÞ, in gray.
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wider. This is expected, since information is lost in the
adaptive grid compression step. Optimizing the compres-
sion step is left for a future work.

D. Cosmological inference from PCA reconstruction

By sampling from lnL1ðθÞ, we place constraints on the
LCDM parameters directly from the nonparametric infor-
mation derived using PCA compression. The resulting

constraints are shown in Fig. 7, where we plot the
constraints using the standard technique for comparison.
The constraints from the PCA compression are much

tighter than those found using the adaptive grid compres-
sion, and generally agree with the posteriors from the
standard cosmic shear likelihood analysis. However there is
∼1σ tension in the σ8 −Ωm plane.
Discrepancies are expected in the PCA method as dis-

cussed previously. The PCs do not form a complete set, sowe

FIG. 6. LCDM posteriors derived from the standard cosmic shear likelihood analysis (blue) and those derived from the nonparametric
information (red), using adaptive grid compression. The two techniques are in good agreement, but the posteriors in the later case are
broader. This is unsurprising since information is lost in the adaptive grid compression step.
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do not capture all the variance in the unmeasured PCs. This
leads us to underestimate error bars, and could also cause a
shift in the parameter constraints. For this reason, we do not
advocate the PCA data compression method.

IV. FUTURE PROSPECTS

The method we have presented has a bright future. Since
the shot noise is Poissonian, we expect the size of the error

bars will shrink as the square root of the product of the
number density and survey area. Hence, the constraints on
the comoving distance and power spectrum should shrink
by a factor of ∼2 using Dark Energy Survey Year 1
(DESY1) data [5], and by a factor of ∼20–25 using data
from a stage IV experiment [9].
In the future, comparing the nonparametric and para-

metric reconstructions will help us identify systematic
effects and search for new physics. Discrepant power

FIG. 7. LCDM posteriors derived from the standard cosmic shear likelihood analysis (blue) and those derived from the nonparametric
information (green), using PCA compression. For the most part, the two techniques are in good agreement but there is ∼1σ tension in the
σ8 −Ωm plane. Since the PCs do not form a complete set, we do not capture all the variance. This leads us to underestimate error bars,
and could also cause a shift in the parameter constraints. For this reason we do not advocate the PCA data compression method.
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spectrum measurements might point to un-modeled bar-
yonic physics, while a discrepant comoving distance
measurement could point to redshift dependent systematic
effects such as photometric redshift errors or color depen-
dent shear estimates—or even a nonconstant dark energy
equation of state.
In this reconstruction we have already identified a

tension. Below z ¼ 0.4, our reconstruction of the comoving
distance, rðzÞ, is larger than the Planck cosmology LCDM
prediction.
The next step is to repeat the analysis presented here on

the DESY1 data to see if this discrepancy persists. We will
fold in galaxy clustering [46] and galaxy-galaxy lensing
[47] into our framework. With a different set of systematic
effects, these techniques will serve as a useful cross-check,
as well as tightening constraints. We will also need to
optimize the adaptive griding compression scheme.
In the future, large experiments could repeat our analysis

and release the nonparametric reconstructions as a final
data product; following our technique to extract cosmo-
logical parameters from the nonparametric information
would enable anyone to consistently test new physical
theories without having to repeat the cosmic shear analysis
or model lensing observables.
Constraining cosmological parameters from the non-

parametric information could also be an efficient way to
marginalize out small scales (high-k) in the matter power
spectrum. These scales are difficult to model due to
nonlinear growth and baryonic physics and can lead to
bias. In particular, after performing the nonparametric
reconstruction we can remove matter power spectrum cells
at large-k before using the nonparametric information to
constrain the cosmological parameters. This essentially
marginalizes out the small scales and this is a viable
alternative, and complementary approach to, k-cut cosmic
shear [48,49], which explicitly removes sensitivity to small
scales. We will investigate this further in the future.
The general philosophy in this paper was to completely

separate the inference of the nonparametric information—
which is valid regardless of the underlying cosmological
model—from the inference of the cosmological parameters.
This allowed us to test our nonparametric reconstruction by
recovering the LCDM parameters, and a fully nonpara-
metric reconstruction also enables the inference of param-
eters from any cosmological model, without having to
repeat the lensing analysis. However, in the future, if the
sole purpose is to search for systematics or a failure of the
LCDM model, then it is more efficient to simultaneously
infer the cosmological parameters fθg and a set of
perturbing amplitudes fAðθÞg. After marginalizing out
the cosmological parameters, any amplitude which is not
consistent with a value of one is a red flag for the presence
of unidentified systematics or new physics. This simulta-
neous approach would allow us to get away from assuming
a fiducial cosmology.

V. CONCLUSION

We have reconstructed two lensing amplitudes, the time
evolving matter power spectrum and the comoving distance
using CFHTLenS shear data. We find that the majority of
the information is contained in a single lensing amplitude
and the comoving distances.
To reduce the dimensionality of the reconstruction

problem, two different data compression regimes were
employed. Although the PCA technique is efficient, the
PCs do not form a spanning set, so we conclude that the
adaptive grid is preferred. Optimizing the adaptive grid
compression regime is left to a future work.
The reconstructed comoving distance is larger than

expected from a Planck LCDM cosmology below z ¼ 0.4.
This could be the first sign of new physics, down to
unaccounted for systematic effects or (since the tension is
mild) just statistical variance. Since distance measurements
from BAO and SNe Ia constrain the growth to within a few
percent, unless there are large systematics in these other two
probes, the last two explanations are more likely. We will
investigate this further in a future work.
Since a discrepancy relative to other distance measure-

ments is only seen in the nonparametric analysis and not in
the parametric one (even with a flat prior on h0), comparing
the nonparametric cosmic distance reconstruction meas-
urement to BAO and SNe Ia measurements will become a
powerful test to search for systematics in the shear catalog.
Sampling fromaGaussian likelihood,wehave shownhow

to extract the LCDM parameters from the nonparametric
reconstruction. As well as validating the reconstruction, we
expect this will be a useful method in the future. Large
experiments could emulate our analysis and release non-
parametric reconstructions as a data product. This would
allow theorists to consistently test new physical theories
without having to repeat the lensing analysis or model
lensing observables.
The method presented in this work is complementary to

the standard cosmic shear analysis, and we advocate for its
use in the analysis of upcoming cosmic shear data sets.

ACKNOWLEDGMENTS

We thank the Cosmosis team for making their code
publicly available. We thank Luke Pratley for his comput-
ing wizardry and Joe Zuntz for help with Cosmosis. We
also acknowledge useful conversations with Mark Cropper,
Ignacio Ferreras, and Matthew Price. We thank the anony-
mous referee whose comments have helped improve the
paper. P. T. is supported by the UK Science and Technology
Facilities Council. T. K. is supported by a Royal Society
University Research Fellowship. The authors acknowledge
the support of the Leverhume Trust. This work is based on
observations obtained with MegaPrime/MegaCam, a joint
project of CFHT and CEA/IRFU, at the Canada-France-
Hawaii Telescope (CFHT) which is operated by the

TAYLOR, KITCHING, and MCEWEN PHYS. REV. D 99, 043532 (2019)

043532-12



National Research Council (NRC) of Canada, the Institut
National des Sciences de l’Univers of the Centre National
de la Recherche Scientifique (CNRS) of France, and the
University of Hawaii. This research used the facilities of the
Canadian Astronomy Data Centre operated by the National

Research Council of Canada with the support of the
Canadian Space Agency. CFHTLenS data processing
was made possible thanks to significant computing support
from the NSERC Research Tools and Instruments grant
program.

[1] J. Rhodes, A. Refregier, and E. J. Groth, Astrophys. J. Lett.
552, L85 (2001).

[2] D. J. Bacon, A. R. Refregier, and R. S. Ellis, Mon. Not. R.
Astron. Soc. 318, 625 (2000).

[3] D. M. Wittman, J. A. Tyson, D. Kirkman, I. Dell’Antonio,
and G. Bernstein, Nature (London) 405, 143 (2000).

[4] C. Heymans, E. Grocutt, A. Heavens, M. Kilbinger,
T. D. Kitching, F. Simpson, J. Benjamin, T. Erben, H.
Hildebrandt, H. Hoekstra et al., Mon. Not. R. Astron.
Soc. 432, 2433 (2013).

[5] M. Troxel, N. MacCrann, J. Zuntz, T. Eifler, E. Krause, S.
Dodelson, D. Gruen, J. Blazek, O. Friedrich, S. Samuroff
et al., Phys. Rev. D 98, 043528 (2018).

[6] T. Kitching, A. Heavens, J. Alsing, T. Erben, C. Heymans,
H. Hildebrandt, H. Hoekstra, A. Jaffe, A. Kiessling, Y.
Mellier et al., Mon. Not. R. Astron. Soc. 442, 1326 (2014).

[7] H. Hildebrandt, M. Viola, C. Heymans, S. Joudaki, K.
Kuijken, C. Blake, T. Erben, B. Joachimi, D. Klaes, L.
Miller et al., Mon. Not. R. Astron. Soc. 465, 1454 (2017).

[8] C. Hikage, M. Oguri, T. Hamana, S. More, R. Mandelbaum,
M. Takada, F. Köhlinger, H. Miyatake, A. J. Nishizawa, H.
Aihara et al., arXiv:1809.09148.

[9] R. J. Laureijs et al., arXiv:1110.3193.
[10] D.Spergel,N.Gehrels, C.Baltay,D.Bennett, J. Breckinridge,

M. Donahue, A. Dressler, B. Gaudi, T. Greene, O. Guyon
et al., arXiv:1503.03757.

[11] J. Anthony and L. Collaboration, in Proceedings of SPIE,
Vol. 4836, p. 11, arXiv:1503.03757.

[12] A. Refregier, A. Amara, T. Kitching, A. Rassat, R.
Scaramella, J. Weller et al., arXiv:1001.0061.

[13] M. Tegmark and M. Zaldarriaga, Phys. Rev. D 66, 103508
(2002).

[14] A. Peel, C.-A. Lin, F. Lanusse, A. Leonard, J.-L. Starck, and
M. Kilbinger, Astron. Astrophys. 599, A79 (2017).

[15] B. Jain and L. Van Waerbeke, Astrophys. J. Lett. 530, L1
(2000).

[16] E. Semboloni, T. Schrabback, L. van Waerbeke, S. Vafaei, J.
Hartlap, and S. Hilbert, Mon. Not. R. Astron. Soc. 410, 143
(2011).

[17] L. Fu, M. Kilbinger, T. Erben, C. Heymans, H. Hildebrandt,
H. Hoekstra, T. D. Kitching, Y. Mellier, L. Miller, E.
Semboloni et al., Mon. Not. R. Astron. Soc. 441, 2725
(2014).

[18] A. Petri, Z. Haiman, L. Hui, M. May, and J. M. Kratochvil,
Phys. Rev. D 88, 123002 (2013).

[19] R. Massey, H. Hoekstra, T. Kitching, J. Rhodes, M.
Cropper, J. Amiaux, D. Harvey, Y. Mellier, M. Meneghetti,
L. Miller et al., Mon. Not. R. Astron. Soc. 429, 661 (2013).

[20] P. L. Taylor, T. D. Kitching, and J. D. McEwen, Phys. Rev.
D 98, 043532 (2018).
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