9,599 research outputs found

    Non-parametric document clustering by ensemble methods

    Get PDF
    Los sesgos de los algoritmos individuales para clustering no paramétrico de documentos pueden conducir a soluciones no óptimas. Los métodos de consenso podrían compensar esta limitación, pero no han sido probados sobre colecciones de documentos. Este artículo presenta una comparación de estrategias para clustering no paramétrico de documentos por consenso. / The biases of individual algorithms for non-parametric document clustering can lead to non-optimal solutions. Ensemble clustering methods may overcome this limitation, but have not been applied to document collections. This paper presents a comparison of strategies for non-parametric document ensemble clustering.Peer ReviewedPostprint (published version

    Multiple Instance Learning: A Survey of Problem Characteristics and Applications

    Full text link
    Multiple instance learning (MIL) is a form of weakly supervised learning where training instances are arranged in sets, called bags, and a label is provided for the entire bag. This formulation is gaining interest because it naturally fits various problems and allows to leverage weakly labeled data. Consequently, it has been used in diverse application fields such as computer vision and document classification. However, learning from bags raises important challenges that are unique to MIL. This paper provides a comprehensive survey of the characteristics which define and differentiate the types of MIL problems. Until now, these problem characteristics have not been formally identified and described. As a result, the variations in performance of MIL algorithms from one data set to another are difficult to explain. In this paper, MIL problem characteristics are grouped into four broad categories: the composition of the bags, the types of data distribution, the ambiguity of instance labels, and the task to be performed. Methods specialized to address each category are reviewed. Then, the extent to which these characteristics manifest themselves in key MIL application areas are described. Finally, experiments are conducted to compare the performance of 16 state-of-the-art MIL methods on selected problem characteristics. This paper provides insight on how the problem characteristics affect MIL algorithms, recommendations for future benchmarking and promising avenues for research

    A network approach to topic models

    Full text link
    One of the main computational and scientific challenges in the modern age is to extract useful information from unstructured texts. Topic models are one popular machine-learning approach which infers the latent topical structure of a collection of documents. Despite their success --- in particular of its most widely used variant called Latent Dirichlet Allocation (LDA) --- and numerous applications in sociology, history, and linguistics, topic models are known to suffer from severe conceptual and practical problems, e.g. a lack of justification for the Bayesian priors, discrepancies with statistical properties of real texts, and the inability to properly choose the number of topics. Here we obtain a fresh view on the problem of identifying topical structures by relating it to the problem of finding communities in complex networks. This is achieved by representing text corpora as bipartite networks of documents and words. By adapting existing community-detection methods -- using a stochastic block model (SBM) with non-parametric priors -- we obtain a more versatile and principled framework for topic modeling (e.g., it automatically detects the number of topics and hierarchically clusters both the words and documents). The analysis of artificial and real corpora demonstrates that our SBM approach leads to better topic models than LDA in terms of statistical model selection. More importantly, our work shows how to formally relate methods from community detection and topic modeling, opening the possibility of cross-fertilization between these two fields.Comment: 22 pages, 10 figures, code available at https://topsbm.github.io

    Path Similarity Analysis: a Method for Quantifying Macromolecular Pathways

    Full text link
    Diverse classes of proteins function through large-scale conformational changes; sophisticated enhanced sampling methods have been proposed to generate these macromolecular transition paths. As such paths are curves in a high-dimensional space, they have been difficult to compare quantitatively, a prerequisite to, for instance, assess the quality of different sampling algorithms. The Path Similarity Analysis (PSA) approach alleviates these difficulties by utilizing the full information in 3N-dimensional trajectories in configuration space. PSA employs the Hausdorff or Fr\'echet path metrics---adopted from computational geometry---enabling us to quantify path (dis)similarity, while the new concept of a Hausdorff-pair map permits the extraction of atomic-scale determinants responsible for path differences. Combined with clustering techniques, PSA facilitates the comparison of many paths, including collections of transition ensembles. We use the closed-to-open transition of the enzyme adenylate kinase (AdK)---a commonly used testbed for the assessment enhanced sampling algorithms---to examine multiple microsecond equilibrium molecular dynamics (MD) transitions of AdK in its substrate-free form alongside transition ensembles from the MD-based dynamic importance sampling (DIMS-MD) and targeted MD (TMD) methods, and a geometrical targeting algorithm (FRODA). A Hausdorff pairs analysis of these ensembles revealed, for instance, that differences in DIMS-MD and FRODA paths were mediated by a set of conserved salt bridges whose charge-charge interactions are fully modeled in DIMS-MD but not in FRODA. We also demonstrate how existing trajectory analysis methods relying on pre-defined collective variables, such as native contacts or geometric quantities, can be used synergistically with PSA, as well as the application of PSA to more complex systems such as membrane transporter proteins.Comment: 9 figures, 3 tables in the main manuscript; supplementary information includes 7 texts (S1 Text - S7 Text) and 11 figures (S1 Fig - S11 Fig) (also available from journal site

    OBOE: Collaborative Filtering for AutoML Model Selection

    Full text link
    Algorithm selection and hyperparameter tuning remain two of the most challenging tasks in machine learning. Automated machine learning (AutoML) seeks to automate these tasks to enable widespread use of machine learning by non-experts. This paper introduces OBOE, a collaborative filtering method for time-constrained model selection and hyperparameter tuning. OBOE forms a matrix of the cross-validated errors of a large number of supervised learning models (algorithms together with hyperparameters) on a large number of datasets, and fits a low rank model to learn the low-dimensional feature vectors for the models and datasets that best predict the cross-validated errors. To find promising models for a new dataset, OBOE runs a set of fast but informative algorithms on the new dataset and uses their cross-validated errors to infer the feature vector for the new dataset. OBOE can find good models under constraints on the number of models fit or the total time budget. To this end, this paper develops a new heuristic for active learning in time-constrained matrix completion based on optimal experiment design. Our experiments demonstrate that OBOE delivers state-of-the-art performance faster than competing approaches on a test bed of supervised learning problems. Moreover, the success of the bilinear model used by OBOE suggests that AutoML may be simpler than was previously understood
    • …
    corecore