3 research outputs found

    Non-Parametric Bayesian State Space Estimator for Negative Information

    No full text
    Simultaneous Localization and Mapping (SLAM) is concerned with the development of filters to accurately and efficiently infer the state parameters (position, orientation, etc.) of an agent and aspects of its environment, commonly referred to as the map. A mapping system is necessary for the agent to achieve situatedness, which is a precondition for planning and reasoning. In this work, we consider an agent who is given the task of finding a set of objects. The agent has limited perception and can only sense the presence of objects if a direct contact is made, as a result most of the sensing is negative information. In the absence of recurrent sightings or direct measurements of objects, there are no correlations from the measurement errors that can be exploited. This renders SLAM estimators, for which this fact is their backbone such as EKF-SLAM, ineffective. In addition for our setting, no assumptions are taken with respect to the marginals (beliefs) of both the agent and objects (map). From the loose assumptions we stipulate regarding the marginals and measurements, we adopt a histogram parametrization. We introduce a Bayesian State Space Estimator (BSSE), which we name Measurement Likelihood Memory Filter (MLMF), in which the values of the joint distribution are not parametrized but instead we directly apply changes from the measurement integration step to the marginals. This is achieved by keeping track of the history of likelihood functions’ parameters. We demonstrate that the MLMF gives the same filtered marginals as a histogram filter and show two implementations: MLMF and scalable-MLMF that both have a linear space complexity. The original MLMF retains an exponential time complexity (although an order of magnitude smaller than the histogram filter) while the scalable-MLMF introduced independence assumption such to have a linear time complexity. We further quantitatively demonstrate the scalability of our algorithm with 25 beliefs having up to 10,000,000 states each. In an Active-SLAM setting, we evaluate the impact that the size of the memory’s history has on the decision-theoretic process in a search scenario for a one-step look-ahead information gain planner. We report on both 1D and 2D experiments

    Learning Search Strategies from Human Demonstrations

    Get PDF
    Decision making and planning with partial state information is a problem faced by all forms of intelligent entities. The formulation of a problem under partial state information leads to an exorbitant set of choices with associated probabilistic outcomes making its resolution difficult when using traditional planning methods. Human beings have acquired the ability of acting under uncertainty through education and self-learning. Transferring our know-how to artificial agents and robots will make it faster for them to learn and even improve upon us in tasks in which incomplete knowledge is available, which is the objective of this thesis. We model how humans reason with respect to their beliefs and transfer this knowledge in the form of a parameterised policy, following a Programming by Demonstration framework, to a robot apprentice for two spatial navigation tasks: the first task consists of localising a wooden block on a table and for the second task a power socket must be found and connected. In both tasks the human teacher and robot apprentice only rely on haptic and tactile information. We model the human and robot's beliefs by a probability density function which we update through recursive Bayesian state space estimation. To model the reasoning processes of human subjects performing the search tasks we learn a generative joint distribution over beliefs and actions (end-effector velocities) which were recorded during the executions of the task. For the first search task the direct mapping from belief to actions is learned whilst for the second task we incorporate a cost function used to adapt the policy parameters in a Reinforcement Learning framework and show a considerable improvement over solely learning the behaviour with respect to the distance taken to accomplish the task. Both search tasks above can be considered as active localisation as the uncertainty originates only from the position of the agent in the world. We consider searches in which both the position of the robot and features of the environment are uncertain. Given the unstructured nature of the belief a histogram parametrisation of the joint distribution of the robots position and features is necessary. However, naively doing so becomes quickly intractable as the space and time complexity is exponential. We demonstrate that by only parametrising the marginals and by memorising the parameters of the measurement likelihood functions we can recover the exact same solution as the naive parametrisations at a cost which is linear in space and time complexity
    corecore