5,038 research outputs found

    An Enhanced Features Extractor for a Portfolio of Constraint Solvers

    Get PDF
    Recent research has shown that a single arbitrarily efficient solver can be significantly outperformed by a portfolio of possibly slower on-average solvers. The solver selection is usually done by means of (un)supervised learning techniques which exploit features extracted from the problem specification. In this paper we present an useful and flexible framework that is able to extract an extensive set of features from a Constraint (Satisfaction/Optimization) Problem defined in possibly different modeling languages: MiniZinc, FlatZinc or XCSP. We also report some empirical results showing that the performances that can be obtained using these features are effective and competitive with state of the art CSP portfolio techniques

    Proteus: A Hierarchical Portfolio of Solvers and Transformations

    Full text link
    In recent years, portfolio approaches to solving SAT problems and CSPs have become increasingly common. There are also a number of different encodings for representing CSPs as SAT instances. In this paper, we leverage advances in both SAT and CSP solving to present a novel hierarchical portfolio-based approach to CSP solving, which we call Proteus, that does not rely purely on CSP solvers. Instead, it may decide that it is best to encode a CSP problem instance into SAT, selecting an appropriate encoding and a corresponding SAT solver. Our experimental evaluation used an instance of Proteus that involved four CSP solvers, three SAT encodings, and six SAT solvers, evaluated on the most challenging problem instances from the CSP solver competitions, involving global and intensional constraints. We show that significant performance improvements can be achieved by Proteus obtained by exploiting alternative view-points and solvers for combinatorial problem-solving.Comment: 11th International Conference on Integration of AI and OR Techniques in Constraint Programming for Combinatorial Optimization Problems. The final publication is available at link.springer.co

    LLAMA: Leveraging Learning to Automatically Manage Algorithms

    Full text link
    Algorithm portfolio and selection approaches have achieved remarkable improvements over single solvers. However, the implementation of such systems is often highly customised and specific to the problem domain. This makes it difficult for researchers to explore different techniques for their specific problems. We present LLAMA, a modular and extensible toolkit implemented as an R package that facilitates the exploration of a range of different portfolio techniques on any problem domain. It implements the algorithm selection approaches most commonly used in the literature and leverages the extensive library of machine learning algorithms and techniques in R. We describe the current capabilities and limitations of the toolkit and illustrate its usage on a set of example SAT problems

    The Fractal Dimension of SAT Formulas

    Get PDF
    Modern SAT solvers have experienced a remarkable progress on solving industrial instances. Most of the techniques have been developed after an intensive experimental testing process. Recently, there have been some attempts to analyze the structure of these formulas in terms of complex networks, with the long-term aim of explaining the success of these SAT solving techniques, and possibly improving them. We study the fractal dimension of SAT formulas, and show that most industrial families of formulas are self-similar, with a small fractal dimension. We also show that this dimension is not affected by the addition of learnt clauses. We explore how the dimension of a formula, together with other graph properties can be used to characterize SAT instances. Finally, we give empirical evidence that these graph properties can be used in state-of-the-art portfolios.Comment: 20 pages, 11 Postscript figure

    Neural Networks for Predicting Algorithm Runtime Distributions

    Full text link
    Many state-of-the-art algorithms for solving hard combinatorial problems in artificial intelligence (AI) include elements of stochasticity that lead to high variations in runtime, even for a fixed problem instance. Knowledge about the resulting runtime distributions (RTDs) of algorithms on given problem instances can be exploited in various meta-algorithmic procedures, such as algorithm selection, portfolios, and randomized restarts. Previous work has shown that machine learning can be used to individually predict mean, median and variance of RTDs. To establish a new state-of-the-art in predicting RTDs, we demonstrate that the parameters of an RTD should be learned jointly and that neural networks can do this well by directly optimizing the likelihood of an RTD given runtime observations. In an empirical study involving five algorithms for SAT solving and AI planning, we show that neural networks predict the true RTDs of unseen instances better than previous methods, and can even do so when only few runtime observations are available per training instance
    • …
    corecore