341 research outputs found

    Multispectral and Hyperspectral Image Fusion by MS/HS Fusion Net

    Full text link
    Hyperspectral imaging can help better understand the characteristics of different materials, compared with traditional image systems. However, only high-resolution multispectral (HrMS) and low-resolution hyperspectral (LrHS) images can generally be captured at video rate in practice. In this paper, we propose a model-based deep learning approach for merging an HrMS and LrHS images to generate a high-resolution hyperspectral (HrHS) image. In specific, we construct a novel MS/HS fusion model which takes the observation models of low-resolution images and the low-rankness knowledge along the spectral mode of HrHS image into consideration. Then we design an iterative algorithm to solve the model by exploiting the proximal gradient method. And then, by unfolding the designed algorithm, we construct a deep network, called MS/HS Fusion Net, with learning the proximal operators and model parameters by convolutional neural networks. Experimental results on simulated and real data substantiate the superiority of our method both visually and quantitatively as compared with state-of-the-art methods along this line of research.Comment: 10 pages, 7 figure

    Unsupervised Sparse Dirichlet-Net for Hyperspectral Image Super-Resolution

    Full text link
    In many computer vision applications, obtaining images of high resolution in both the spatial and spectral domains are equally important. However, due to hardware limitations, one can only expect to acquire images of high resolution in either the spatial or spectral domains. This paper focuses on hyperspectral image super-resolution (HSI-SR), where a hyperspectral image (HSI) with low spatial resolution (LR) but high spectral resolution is fused with a multispectral image (MSI) with high spatial resolution (HR) but low spectral resolution to obtain HR HSI. Existing deep learning-based solutions are all supervised that would need a large training set and the availability of HR HSI, which is unrealistic. Here, we make the first attempt to solving the HSI-SR problem using an unsupervised encoder-decoder architecture that carries the following uniquenesses. First, it is composed of two encoder-decoder networks, coupled through a shared decoder, in order to preserve the rich spectral information from the HSI network. Second, the network encourages the representations from both modalities to follow a sparse Dirichlet distribution which naturally incorporates the two physical constraints of HSI and MSI. Third, the angular difference between representations are minimized in order to reduce the spectral distortion. We refer to the proposed architecture as unsupervised Sparse Dirichlet-Net, or uSDN. Extensive experimental results demonstrate the superior performance of uSDN as compared to the state-of-the-art.Comment: Accepted by The IEEE Conference on Computer Vision and Pattern Recognition (CVPR 2018, Spotlight

    Hyperspectral and multispectral image fusion via tensor sparsity regularization

    Get PDF
    Hyperspectral image (HSI) super-resolution scheme based on HSI and multispectral image (MSI) fusion has been a prevalent research theme in remote sensing. However, most of the existing HSI-MSI fusion (HMF) methods adopt the sparsity prior across spatial or spectral domains via vectorizing hyperspectral cubes along a certain dimension, which results in the spatial or spectral informations distortion. Moreover, the current HMF works rarely pay attention to leveraging the nonlocal similar structure over spatial domain of the HSI. In this paper, we propose a new HSI-MSI fusion approach via tensor sparsity regularization which can encode essential spatial and spectral sparsity of an HSI. Specifically, we study how to utilize reasonably the sparsity of tensor to describe the spatialspectral correlation hidden in an HSI. Then, we resort to an efficient optimization strategy based on the alternative direction multiplier method (ADMM) for solving the resulting minimization problem. Experimental results on Pavia University data verify the merits of the proposed HMF algorithm

    Mixture-Net: Low-Rank Deep Image Prior Inspired by Mixture Models for Spectral Image Recovery

    Full text link
    This paper proposes a non-data-driven deep neural network for spectral image recovery problems such as denoising, single hyperspectral image super-resolution, and compressive spectral imaging reconstruction. Unlike previous methods, the proposed approach, dubbed Mixture-Net, implicitly learns the prior information through the network. Mixture-Net consists of a deep generative model whose layers are inspired by the linear and non-linear low-rank mixture models, where the recovered image is composed of a weighted sum between the linear and non-linear decomposition. Mixture-Net also provides a low-rank decomposition interpreted as the spectral image abundances and endmembers, helpful in achieving remote sensing tasks without running additional routines. The experiments show the MixtureNet effectiveness outperforming state-of-the-art methods in recovery quality with the advantage of architecture interpretability

    InSPECtor: an end-to-end design framework for compressive pixelated hyperspectral instruments

    Full text link
    Classic designs of hyperspectral instrumentation densely sample the spatial and spectral information of the scene of interest. Data may be compressed after the acquisition. In this paper we introduce a framework for the design of an optimized, micro-patterned snapshot hyperspectral imager that acquires an optimized subset of the spatial and spectral information in the scene. The data is thereby compressed already at the sensor level, but can be restored to the full hyperspectral data cube by the jointly optimized reconstructor. This framework is implemented with TensorFlow and makes use of its automatic differentiation for the joint optimization of the layout of the micro-patterned filter array as well as the reconstructor. We explore the achievable compression ratio for different numbers of filter passbands, number of scanning frames, and filter layouts using data collected by the Hyperscout instrument. We show resulting instrument designs that take snapshot measurements without losing significant information while reducing the data volume, acquisition time, or detector space by a factor of 40 as compared to classic, dense sampling. The joint optimization of a compressive hyperspectral imager design and the accompanying reconstructor provides an avenue to substantially reduce the data volume from hyperspectral imagers.Comment: 23 pages, 12 figures, published in Applied Optic
    corecore