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ABSTRACT

Hyperspectral image (HSI) super-resolution scheme based on
HSI and multispectral image (MSI) fusion has been a preva-
lent research theme in remote sensing. However, most of the
existing HSI-MSI fusion (HMF) methods adopt the sparsity
prior across spatial or spectral domains via vectorizing hyper-
spectral cubes along a certain dimension, which results in the
spatial or spectral informations distortion. Moreover, the cur-
rent HMF works rarely pay attention to leveraging the non-
local similar structure over spatial domain of the HSI. In this
paper, we propose a new HSI-MSI fusion approach via ten-
sor sparsity regularization which can encode essential spatial
and spectral sparsity of an HSI. Specifically, we study how to
utilize reasonably the sparsity of tensor to describe the spatial-
spectral correlation hidden in an HSI. Then, we resort to an ef-
ficient optimization strategy based on the alternative direction
multiplier method (ADMM) for solving the resulting mini-
mization problem. Experimental results on Pavia University
data verify the merits of the proposed HMF algorithm.

Index Terms— Hyperspectral and multispectral image
fusion, tensor sparsity regularization.

1. INTRODUCTION

Hyperspectral image (HSI) are recorded by simultaneously
capturing the information over two spatial and one spectral
dimensions. The abundant spatial-spectral informations pro-
vide more accurate and reliable signature features on distinct
materials, which contributes to various applications such as
scene classification [1] and agriculture applications [2], etc.
However, since the photon collected by the HSI sensors is
spread over many spectral bands, which will greatly reduce
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spatial resolution of an HSI. Compared with HSI sensors,
the MSI sensors provide much wider bandwidth and higher
spatial resolution [3]. Therefore, it has become an important
technology to fuse a low resolution (LR) HSI with a high res-
olution (HR) MSI to improve the spatial resolution of HSI
[4, 5].

Recently, many approaches have been applied to fuse HSI
and MSI effectively [6, 7, 8, 9, 10, 11]. In the light of the
prior informations of the latent HSI used in HSI-MSI fusion,
we can roughly classify these fusion approaches into two cat-
egories. The most commonly exploited research line for HMF
problem is the spectral unmixing or matrix factorization based
methods [6, 7, 8], which always concentrate to unmix the la-
tent HSI into endmember and abundance with suitable con-
straints. For instance, given an LR HSI and an HR MSI,
Kawakami et al. [6] first employed the unmixing scheme
to perform HSI-MSI fusion, which is considered as sparse
matrix factorization problem for the input HSI with /;-norm
constraint. Naoto et al. [7, 8] exploited a coupled nonnegative
matrix factorization algorithm to alternately unmix a couple
of HSI and MSI, the endmember of HSI and abundance matri-
ces of MSI can be achieved simultaneously. Another research
line for HMF problem is sparse representation based methods.
The core issue of these methods is how to sparsely represent
the latent HSI on an appropriate spectral dictionary learned
from the input HSI. Specifically, Akhtar et al. [9] used K-
SVD technique to learn the spectral dictionary, and then the
learned spectral dictionary is employed to jointly code the la-
tent HSI and the input MSI. Lately, they proposed a Bayesian
sparse representation scheme to infer the spectral dictionary
and sparse coefficient [10]. Recently, Dong et al. [11] intro-
duced a non-negative spectral dictionary learning algorithm.

Although works reported in [6, 7, 8, 9, 10, 11] considered
the prior information across the spatial or spectral structures
of the latent HSI, few of them investigated the tensor sparsity
prior, not to mention exploiting the multilinear sparsity struc-
tures over the spatial and spectral domains in the latent HSI.
In [12, 13], the reasonable usage of GCS (i.e., global correla-
tion across spectrum) and NSS (i.e., nonlocal self-similarity



over space) have led to quite powerful HSI denoising algo-
rithms. In this paper, we are the first to exploit the GCS and
NSS prior knowledge to construct the tensor structure sparsity
of latent HSI that is a faithful sparsity form for HSI-MSI fu-
sion task. Similar as in [14], we establish 3"%-order tensors by
stacking all their unfolding version of non-local similar full-
band patches. For this way, it is natural for the formed tensors
to provide a reliable description with the purpose of delivering
both the GCS and NSS priors underlying an HSI, which can
jointly represent the global spectral and local-nonlocal spatial
correlations along different modes of this tensor.

2. PROBLEM FORMULATION

In the paper, we follow exactly the same description of def-
initions of tensor terminologies in [13]. A tensor of order
N, is denoted as X € RI>¥xInx-xIN_ Denote ||X| r
and || X||, as the F-norm and /; norm of a tensor X, re-
spectively. The “unfold” and “fold” operations along the
mode-n of a tensor X" are defined as unfold,,(X) := X (n) €
RIn XTI Xn_1lns1X--XIN) gnd fOldn(X(n)) -— X. The
Kronecker product of matrices A € R'*/ and B € RE* % is
a matrix of size I K x.JL, denoted by A ® B. The multipli-
cation of a tensor X’ with a matrix Y € R’**’* on mode-k is
denoted by X' XY = Z, which also can be defined in terms
of mode-k unfolding as Z;, = Y Xj. The Tucker decomposi-
tion form of a tensor X is: X = Gx1Uj X4 -+ x vy Uy, where
G is the core tensor and U, is the factor matrix in each mode.

2.1. HSI-MSI Fusion Formulation

The target HR-HSI is denoted by 3"%-order tensor X €
RWXHXS (W x H spatial resolution and S spectral bands).
The LR-HSI Y € R“*"*S and HR-MSI 2 € RW*Hxs
are corresponding to spatially and spectrally downsampled
versions of the &, repectively, i.e.,

V=X x1P1x2Pg, Z=&X x3P3, (1

where P; € RY*W and P, € R"*# are two spatial down-
sampling matrixes, and P3 € R** is the spectral downsam-
pling matrix. Combining with the observation model in Eq.
(1), the HSI-MSI fusion can be formulated as

min Y = Ax1P1xaPaf + (|2 - X x3Ps||% + Ap(X),
(2

where A is a parameter and ¢(X’) denotes a suitable regular-
ization term of the X. In the following, we will study the
tensor sparsity term of &X', and then introduce it into the HSI-
MSI fusion framework.

2.2. Tensor Sparsity Regularization

Some pioneering studys related with tensor sparsity were pre-
sented in [13, 14]. And the work of [14] has drawn attention to
the tensor sparsity formulation of an HSI in HSI compressive

sensing reconstruction. Along this research direction, we im-
pose the tensor sparsity constraint on nonlocal patch group to
characterize the spatial-spectral correlation in our work. For
each patch group, it contains similar patches by k-NN clus-
tering. When clustering, to avoid destroying the high spec-
tral correlation, we unfold a series of 3D cubes into corre-
sponding 2D matrices along the spectral modes and obtain a
new 3"%-order tensor by stacking a set of similar items. Such
constructed 3"%-order tensor simultaneously employ the local
and nonlocal spatial sparsity, and spectral sparsity, which con-
tribute to maximize the benefit from tensor sparsity represen-
tation. Thus each 3"?-order tensor R ; Z can be approximated
by tensor sparsity problem:
gi,Ui,f{l[iJril,mU;,z)\ Zz ”RZX N gz x 1Ui’1 X2Ui"2 X3U113 ||2F
+B1Gills
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where R is the operation to extract similar patches within the
i-th group of X'. We incorporate the tensor sparsity regular-
ization into the HSI-MSI fusion framework in Eq. (2) as
R T IV = X x1PyxaPs|[7 + |2 — XxaPs]7
+A Zl IR:iX — Gix1Us 1 x2Us 2 x3Us 5 + BlIGi .
“)

2.3. Algorithm Optimization

For the proposed fusion model, we apply the ADMM [15], an
effective strategy for solving large scale optimization prob-
lems, to optimize Eq. (4). First, we introduce two auxiliary
variables U/, S, and equivalently reformulated Eq. (4) as

i — Xx Py xoPs: + |12 — Sx3Ps)2
ngifo,I}}%i,QgUi.ﬁ ”y XX 2||F+|| "3 3||F

+ )\Zi IR:U — Gix1Ui 1 x2U; 2x3Uj 5]
st. X =U,X=S,
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Then, we have following augmented Lagrangian function:
»C(X,Z/{, 87 gi7 Ui,l; Ui,27 Ui,37 Vl) VQ) =

|V — X x1P1xoPs|[% + | 2 — Sx3sPs]|% +
V2 Vo 1|2 6
— +uHX—S+2 + ©
2u || g 2u || g

A Zz IR — Gix1Us 1 x2Us 2 x5 Us s[5 + BIIGsll,

where V; and Vs, are the Lagrange multipliers, p is the pos-
itive scalars. We shall break Eq. (6) into five sub-problems

and iteratively update each variable via fixing the other ones.
(I) <gi, Ui717 Ui)g, U173> sub—problem:

. 2
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According to [13, 14], we can solve the orthogonal dic-
tionaries Uj 1, Uj 2, Uj 3 by the SVD-based method and the
sparse core tensor G; by tensor-based iterative shrinkage
thresholding algorithm.

(II) U sub-problem:

V2

= +

2pllp ®)
A ZZ IR — Gix1Us1 x2Us 2 x3Us 5|5,
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ol

By solving the Eq. (7), we can form a new tensor £ as an
intermediate variable through aggregating all patches to the
corresponding positions in the HSI X’ and averaging on over-
lapped areas. Then, its equivalent form is

2
AU - L) ©9)
F

XUt
21

min
u H‘

The objective function can be solve by ridge regression
strategy.

u:w+»4wx+%+cy (10)

(IIT) S sub-problem:

Vs |I?

. 2
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Along the third-mode unfolding, we have
min ||Y psyﬁ+4k S+ 20
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Similar to the optimization of Eq. (9), we have the fol-
lowing closed-from solution

_ Vags
S = (Ps Py + pul) 'Ps" Y (5) + uZs) + 2( Loa3)
(IV) X sub-problem:
2
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Let M = (P; ® Py)?, then we have Y (3)=X(3)M. When
unfolding the Eq. (14) along third-mode, its equivalent form
is

min HY(3) — X(g)M||2 + 1% HX(3) — U(3) + V1(3) i +
X3 F 21 |l
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Its closed-from solution is as follows

Vi Vags
Zig) = (X@M" + uUgs) = —5 2 + pSg) — —2)
(Mg Ms) +2u) 7,
(16)
(V) Multipliers updating
Vi<WV +pu(X—U) (17)
Vo <= Vo 4 pp(X = S)

where p is a parameter associated with convergence rate with
fixed value, i.e., 1.05. The above five steps will stop until
convergence, and we abbreviate the proposed method as TSR.

3. EXPERIMENT RESULTS AND ANALYSIS

We now test the proposed method on University of Pavia data,
which is the size of 610 x 340 x 115. We reserve 93 bands by
removing the water vapor absorption bands, and only choose
a sub-region of 256 x 256 for each band in the experiment.
We choose three popular methods for comparisons, namely
coupled spectral unmixing (CSU) [8], sparse spatio-spectral
representation (SSSR) [9], and Bayesian sparse representa-
tion (BSR) [10]. Two objective metrics for evaluation includ-
ing peak signal-to-noise ratio (PSNR) and root-mean-square
error (RMSE) are employed to quantitatively evaluate the per-
formance of all methods. Three different scaling factors (SF),
i.e., s =8, 16, 32 are used to test the effectiveness of the pro-
posed method. The HR MSI and LR HSI are generated by
same down-sampling methods with [2, 5, 7].

Table I presents the quantitative results, we can see that
under different SFs the TSR method is superior to all compar-
ison methods in PSNR and RMSE. For SF 8, TSR improves
the PSNR about 2.0db than state-of-the-art CSU method, and
gain of PSNR value of TSR is more amplified compared to
CSU, up to 2.2db under SF 32. These observations provide
evidence that the HSI-MSI fusion results obtained by TSR
are more close to the ground truth in the PSNR and RMSE. In
addition, we also give the visual comparison results on band
20 from all methods under SF 16 and their reconstruction er-
ror maps to the ground truth in Fig. 1. We can find that the
TSR method can reconstruct more edges and details than oth-
ers, and its reconstruction error is more close to zero. The
improvement mainly comes from the tensor sparsity regular-
ization which can well characterize the more refined spatial-
spectral structure of the latent HSI.

4. CONCLUSION

In this paper, we propose a novel method for HSI-MSI fu-
sion by tensor sparsity regularization. The proposed method
considers intrinsic sparsity, where the nonlocal similarity
between spatial cubes and the global correlation across all
bands are considered fully. Each cube group contains similar
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Fig. 1. Reconstruction results of different methods for band
20 from the Pavia University when scaling factor s = 16. The
first row is the fusion results and the second row is the corre-
sponding fusion error maps for the different methods.

Table 1. PSNR and RMSE Comparison for Different Fusion

Methods.

SFs | Metrics CSU SSSR BSR TSR

3 PSNR 40.87 32.62 38.92 42.76
RMSE 1.115 2.902 1.028 0.828

16 PSNR 39.73 31.35 38.30 41.30
RMSE 1.341 2.999 1.382 1.232

o PSNR 38.49 30.13 38.17 40.63
RMSE 1.999 3.635 1.863 1.678

structures, its tensor-based sparsity property can be regarded
as very valuable priors. Experimental results reveal that the
proposed methods outperform the state-of-the-art methods in
term of visual inspection and quantitative assessment.
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