85,447 research outputs found

    Level Up: Private Non-Interactive Decision Tree Evaluation using Levelled Homomorphic Encryption

    Full text link
    As machine learning as a service continues gaining popularity, concerns about privacy and intellectual property arise. Users often hesitate to disclose their private information to obtain a service, while service providers aim to protect their proprietary models. Decision trees, a widely used machine learning model, are favoured for their simplicity, interpretability, and ease of training. In this context, Private Decision Tree Evaluation (PDTE) enables a server holding a private decision tree to provide predictions based on a client's private attributes. The protocol is such that the server learns nothing about the client's private attributes. Similarly, the client learns nothing about the server's model besides the prediction and some hyperparameters. In this paper, we propose two novel non-interactive PDTE protocols, XXCMP-PDTE and RCC-PDTE, based on two new non-interactive comparison protocols, XXCMP and RCC. Our evaluation of these comparison operators demonstrates that our proposed constructions can efficiently evaluate high-precision numbers. Specifically, RCC can compare 32-bit numbers in under 10 milliseconds. We assess our proposed PDTE protocols on decision trees trained over UCI datasets and compare our results with existing work in the field. Moreover, we evaluate synthetic decision trees to showcase scalability, revealing that RCC-PDTE can evaluate a decision tree with over 1000 nodes and 16 bits of precision in under 2 seconds. In contrast, the current state-of-the-art requires over 10 seconds to evaluate such a tree with only 11 bits of precision

    PROBONITE : PRivate One-Branch-Only Non-Interactive decision Tree Evaluation

    Get PDF
    Decision trees are among the most widespread machine learning model used for data classification, in particular due to their interpretability that makes it easy to explain their prediction. In this paper, we propose a novel solution for the private classification of a client request in a non-interactive manner. In contrast to existing solutions to this problem, which are either interactive or require evaluating all the branches of the decision tree, our approach only evaluates a single branch of the tree. Our protocol is based on two primitives that we also introduce in this paper and that maybe of independent interest : Blind Node Selection and Blind Array Access. Those contributions are based on recent advances in homomorphic cryptography, such as the functional bootstrapping mechanism recently proposed for the Fully Homomorphic Encryption over the Torus scheme TFHE. Our private decision tree evaluation algorithm is highly efficient as it requires only one round of communication and dd comparisons, with dd being the depth of the tree, while other state-of-the-art non-interactive protocols need 2d2^d comparisons

    SortingHat: Efficient Private Decision Tree Evaluation via Homomorphic Encryption and Transciphering

    Get PDF
    Machine learning as a service scenario typically requires the client to trust the server and provide sensitive data in plaintext. However, with the recent improvements in fully homomorphic encryption (FHE) schemes, many such applications can be designed in a privacy preserving way. In this work, we focus on such a problem, private decision tree evaluation (PDTE) --- where a server has a decision tree classification model, and a client wants to use the model to classify her private data without revealing the data or the classification result to the server. We present an efficient non-interactive design of PDTE, that we call SortingHat, based on FHE techniques. As part of our design, we solve multiple cryptographic problems related to FHE: (1) we propose a fast homomorphic comparison function where one input can be in plaintext format; (2) we design an efficient binary decision tree evaluation technique in the FHE setting, which we call homomorphic traversal, and apply it together with our homomorphic comparison to evaluate private decision tree classifiers, obtaining running times orders of magnitude faster than the state of the art; (3) we improve both the communication cost and the time complexity of transciphering, by applying our homomorphic comparison to the FiLIP stream cipher. Through a prototype implementation, we demonstrate that our improved transciphering solution runs around 400 times faster than previous works. We finally present a choice in terms of PDTE design: we present a version of SortingHat without transciphering that achieves significant improvement in terms of computation cost comparing to prior works; and another version with transciphering that has a communication cost about 20 thousand times smaller but comparable running time

    Towards Accountable AI: Hybrid Human-Machine Analyses for Characterizing System Failure

    Full text link
    As machine learning systems move from computer-science laboratories into the open world, their accountability becomes a high priority problem. Accountability requires deep understanding of system behavior and its failures. Current evaluation methods such as single-score error metrics and confusion matrices provide aggregate views of system performance that hide important shortcomings. Understanding details about failures is important for identifying pathways for refinement, communicating the reliability of systems in different settings, and for specifying appropriate human oversight and engagement. Characterization of failures and shortcomings is particularly complex for systems composed of multiple machine learned components. For such systems, existing evaluation methods have limited expressiveness in describing and explaining the relationship among input content, the internal states of system components, and final output quality. We present Pandora, a set of hybrid human-machine methods and tools for describing and explaining system failures. Pandora leverages both human and system-generated observations to summarize conditions of system malfunction with respect to the input content and system architecture. We share results of a case study with a machine learning pipeline for image captioning that show how detailed performance views can be beneficial for analysis and debugging

    Multi-agent evolutionary systems for the generation of complex virtual worlds

    Full text link
    Modern films, games and virtual reality applications are dependent on convincing computer graphics. Highly complex models are a requirement for the successful delivery of many scenes and environments. While workflows such as rendering, compositing and animation have been streamlined to accommodate increasing demands, modelling complex models is still a laborious task. This paper introduces the computational benefits of an Interactive Genetic Algorithm (IGA) to computer graphics modelling while compensating the effects of user fatigue, a common issue with Interactive Evolutionary Computation. An intelligent agent is used in conjunction with an IGA that offers the potential to reduce the effects of user fatigue by learning from the choices made by the human designer and directing the search accordingly. This workflow accelerates the layout and distribution of basic elements to form complex models. It captures the designer's intent through interaction, and encourages playful discovery

    The Translation Evidence Mechanism. The Compact between Researcher and Clinician.

    Get PDF
    Currently, best evidence is a concentrated effort by researchers. Researchers produce information and expect that clinicians will implement their advances in improving patient care. However, difficulties exist in maximizing cooperation and coordination between the producers, facilitators, and users (patients) of best evidence outcomes. The Translational Evidence Mechanism is introduced to overcome these difficulties by forming a compact between researcher, clinician and patient. With this compact, best evidence may become an integral part of private practice when uncertainties arise in patient health status, treatments, and therapies. The mechanism is composed of an organization, central database, and decision algorithm. Communication between the translational evidence organization, clinicians and patients is through the electronic chart. Through the chart, clinical inquiries are made, patient data from provider assessments and practice cost schedules are collected and encrypted (HIPAA standards), then inputted into the central database. Outputs are made within a timeframe suitable to private practice and patient flow. The output consists of a clinical practice guideline that responds to the clinical inquiry with decision, utility and cost data (based on the "average patient") for shared decision-making within informed consent. This shared decision-making allows for patients to "game" treatment scenarios using personal choice inputs. Accompanying the clinical practice guideline is a decision analysis that explains the optimized clinical decision. The resultant clinical decision is returned to the central database using the clinical practice guideline. The result is subsequently used to update current best evidence, indicate the need for new evidence, and analyze the changes made in best evidence implementation. When updates in knowledge occur, these are transmitted to the provider as alerts or flags through patient charts and other communication modalities
    corecore