14 research outputs found

    Optimal Chebyshev Smoothers and One-sided V-cycles

    Full text link
    The solution to the Poisson equation arising from the spectral element discretization of the incompressible Navier-Stokes equation requires robust preconditioning strategies. One such strategy is multigrid. To realize the potential of multigrid methods, effective smoothing strategies are needed. Chebyshev polynomial smoothing proves to be an effective smoother. However, there are several improvements to be made, especially at the cost of symmetry. For the same cost per iteration, a full V-cycle with kk order Chebyshev polynomial smoothing may be substituted with a half V-cycle with order 2k2k Chebyshev polynomial smoothing, wherein the smoother is omitted on the up-leg of the V-cycle. The choice of omitting the post-smoother in favor of higher order Chebyshev pre-smoothing is shown to be advantageous in cases where the multigrid approximation property constant, CC, is large. Results utilizing Lottes's fourth-kind Chebyshev polynomial smoother are shown. These methods demonstrate substantial improvement over the standard Chebyshev polynomial smoother. The authors demonstrate the effectiveness of this scheme in pp-geometric multigrid, as well as a 2D model problem with finite differences.Comment: 35 pages, 27 figures, 5 tables (including supplementary materials

    Algorithmic Monotone Multiscale Finite Volume Methods for Porous Media Flow

    Full text link
    Multiscale finite volume methods are known to produce reduced systems with multipoint stencils which, in turn, could give non-monotone and out-of-bound solutions. We propose a novel solution to the monotonicity issue of multiscale methods. The proposed algorithmic monotone (AM- MsFV/MsRSB) framework is based on an algebraic modification to the original MsFV/MsRSB coarse-scale stencil. The AM-MsFV/MsRSB guarantees monotonic and within bound solutions without compromising accuracy for various coarsening ratios; hence, it effectively addresses the challenge of multiscale methods' sensitivity to coarse grid partitioning choices. Moreover, by preserving the near null space of the original operator, the AM-MsRSB showed promising performance when integrated in iterative formulations using both the control volume and the Galerkin-type restriction operators. We also propose a new approach to enhance the performance of MsRSB for MPFA discretized systems, particularly targeting the construction of the prolongation operator. Results show the potential of our approach in terms of accuracy of the computed basis functions and the overall convergence behavior of the multiscale solver while ensuring a monotone solution at all times.Comment: 29 pages, 20 figure

    A robust adaptive algebraic multigrid linear solver for structural mechanics

    Full text link
    The numerical simulation of structural mechanics applications via finite elements usually requires the solution of large-size and ill-conditioned linear systems, especially when accurate results are sought for derived variables interpolated with lower order functions, like stress or deformation fields. Such task represents the most time-consuming kernel in commercial simulators; thus, it is of significant interest the development of robust and efficient linear solvers for such applications. In this context, direct solvers, which are based on LU factorization techniques, are often used due to their robustness and easy setup; however, they can reach only superlinear complexity, in the best case, thus, have limited applicability depending on the problem size. On the other hand, iterative solvers based on algebraic multigrid (AMG) preconditioners can reach up to linear complexity for sufficiently regular problems but do not always converge and require more knowledge from the user for an efficient setup. In this work, we present an adaptive AMG method specifically designed to improve its usability and efficiency in the solution of structural problems. We show numerical results for several practical applications with millions of unknowns and compare our method with two state-of-the-art linear solvers proving its efficiency and robustness.Comment: 50 pages, 16 figures, submitted to CMAM
    corecore