750 research outputs found

    Interior Point Decoding for Linear Vector Channels

    Full text link
    In this paper, a novel decoding algorithm for low-density parity-check (LDPC) codes based on convex optimization is presented. The decoding algorithm, called interior point decoding, is designed for linear vector channels. The linear vector channels include many practically important channels such as inter symbol interference channels and partial response channels. It is shown that the maximum likelihood decoding (MLD) rule for a linear vector channel can be relaxed to a convex optimization problem, which is called a relaxed MLD problem. The proposed decoding algorithm is based on a numerical optimization technique so called interior point method with barrier function. Approximate variations of the gradient descent and the Newton methods are used to solve the convex optimization problem. In a decoding process of the proposed algorithm, a search point always lies in the fundamental polytope defined based on a low-density parity-check matrix. Compared with a convectional joint message passing decoder, the proposed decoding algorithm achieves better BER performance with less complexity in the case of partial response channels in many cases.Comment: 18 pages, 17 figures, The paper has been submitted to IEEE Transaction on Information Theor

    Graph-Based Decoding in the Presence of ISI

    Full text link
    We propose an approximation of maximum-likelihood detection in ISI channels based on linear programming or message passing. We convert the detection problem into a binary decoding problem, which can be easily combined with LDPC decoding. We show that, for a certain class of channels and in the absence of coding, the proposed technique provides the exact ML solution without an exponential complexity in the size of channel memory, while for some other channels, this method has a non-diminishing probability of failure as SNR increases. Some analysis is provided for the error events of the proposed technique under linear programming.Comment: 25 pages, 8 figures, Submitted to IEEE Transactions on Information Theor

    An Iterative Joint Linear-Programming Decoding of LDPC Codes and Finite-State Channels

    Full text link
    In this paper, we introduce an efficient iterative solver for the joint linear-programming (LP) decoding of low-density parity-check (LDPC) codes and finite-state channels (FSCs). In particular, we extend the approach of iterative approximate LP decoding, proposed by Vontobel and Koetter and explored by Burshtein, to this problem. By taking advantage of the dual-domain structure of the joint decoding LP, we obtain a convergent iterative algorithm for joint LP decoding whose structure is similar to BCJR-based turbo equalization (TE). The result is a joint iterative decoder whose complexity is similar to TE but whose performance is similar to joint LP decoding. The main advantage of this decoder is that it appears to provide the predictability of joint LP decoding and superior performance with the computational complexity of TE.Comment: To appear in Proc. IEEE ICC 2011, Kyoto, Japan, June 5-9, 201

    An Iteratively Decodable Tensor Product Code with Application to Data Storage

    Full text link
    The error pattern correcting code (EPCC) can be constructed to provide a syndrome decoding table targeting the dominant error events of an inter-symbol interference channel at the output of the Viterbi detector. For the size of the syndrome table to be manageable and the list of possible error events to be reasonable in size, the codeword length of EPCC needs to be short enough. However, the rate of such a short length code will be too low for hard drive applications. To accommodate the required large redundancy, it is possible to record only a highly compressed function of the parity bits of EPCC's tensor product with a symbol correcting code. In this paper, we show that the proposed tensor error-pattern correcting code (T-EPCC) is linear time encodable and also devise a low-complexity soft iterative decoding algorithm for EPCC's tensor product with q-ary LDPC (T-EPCC-qLDPC). Simulation results show that T-EPCC-qLDPC achieves almost similar performance to single-level qLDPC with a 1/2 KB sector at 50% reduction in decoding complexity. Moreover, 1 KB T-EPCC-qLDPC surpasses the performance of 1/2 KB single-level qLDPC at the same decoder complexity.Comment: Hakim Alhussien, Jaekyun Moon, "An Iteratively Decodable Tensor Product Code with Application to Data Storage

    Density Evolution for Asymmetric Memoryless Channels

    Full text link
    Density evolution is one of the most powerful analytical tools for low-density parity-check (LDPC) codes and graph codes with message passing decoding algorithms. With channel symmetry as one of its fundamental assumptions, density evolution (DE) has been widely and successfully applied to different channels, including binary erasure channels, binary symmetric channels, binary additive white Gaussian noise channels, etc. This paper generalizes density evolution for non-symmetric memoryless channels, which in turn broadens the applications to general memoryless channels, e.g. z-channels, composite white Gaussian noise channels, etc. The central theorem underpinning this generalization is the convergence to perfect projection for any fixed size supporting tree. A new iterative formula of the same complexity is then presented and the necessary theorems for the performance concentration theorems are developed. Several properties of the new density evolution method are explored, including stability results for general asymmetric memoryless channels. Simulations, code optimizations, and possible new applications suggested by this new density evolution method are also provided. This result is also used to prove the typicality of linear LDPC codes among the coset code ensemble when the minimum check node degree is sufficiently large. It is shown that the convergence to perfect projection is essential to the belief propagation algorithm even when only symmetric channels are considered. Hence the proof of the convergence to perfect projection serves also as a completion of the theory of classical density evolution for symmetric memoryless channels.Comment: To appear in the IEEE Transactions on Information Theor

    Asymptotic Analysis and Design of Iterative Receivers for Non Linear ISI Channels

    Get PDF
    International audienceIn this paper, iterative receiver analysis and design for non linear satellite channels is investigated. To do so, an EXtrinsic Information Transfer (EXIT) chart-based optimization is applied using two major assumptions: the equalizer outputs follow a Gaussian Mixture distribution since we use non-binary modulations and partial interleavers are used between the Low Density Parity Check (LDPC) code and the mapper. Achievable rates, performance and thresholds of the optimized receiver are analysed. The objective in fine is to answer the question: Is it worth optimizing an iterative receiver for non linear satellite channels
    • …
    corecore