1,171 research outputs found

    An ant colony optimization approach for maximizing the lifetime of heterogeneous wireless sensor networks

    Get PDF
    Maximizing the lifetime of wireless sensor networks (WSNs) is a challenging problem. Although some methods exist to address the problem in homogeneous WSNs, research on this problem in heterogeneous WSNs have progressed at a slow pace. Inspired by the promising performance of ant colony optimization (ACO) to solve combinatorial problems, this paper proposes an ACO-based approach that can maximize the lifetime of heterogeneous WSNs. The methodology is based on finding the maximum number of disjoint connected covers that satisfy both sensing coverage and network connectivity. A construction graph is designed with each vertex denoting the assignment of a device in a subset. Based on pheromone and heuristic information, the ants seek an optimal path on the construction graph to maximize the number of connected covers. The pheromone serves as a metaphor for the search experiences in building connected covers. The heuristic information is used to reflect the desirability of device assignments. A local search procedure is designed to further improve the search efficiency. The proposed approach has been applied to a variety of heterogeneous WSNs. The results show that the approach is effective and efficient in finding high-quality solutions for maximizing the lifetime of heterogeneous WSNs

    Coverage Protocols for Wireless Sensor Networks: Review and Future Directions

    Full text link
    The coverage problem in wireless sensor networks (WSNs) can be generally defined as a measure of how effectively a network field is monitored by its sensor nodes. This problem has attracted a lot of interest over the years and as a result, many coverage protocols were proposed. In this survey, we first propose a taxonomy for classifying coverage protocols in WSNs. Then, we classify the coverage protocols into three categories (i.e. coverage aware deployment protocols, sleep scheduling protocols for flat networks, and cluster-based sleep scheduling protocols) based on the network stage where the coverage is optimized. For each category, relevant protocols are thoroughly reviewed and classified based on the adopted coverage techniques. Finally, we discuss open issues (and recommend future directions to resolve them) associated with the design of realistic coverage protocols. Issues such as realistic sensing models, realistic energy consumption models, realistic connectivity models and sensor localization are covered

    The Online Disjoint Set Cover Problem and its Applications

    Full text link
    Given a universe UU of nn elements and a collection of subsets S\mathcal{S} of UU, the maximum disjoint set cover problem (DSCP) is to partition S\mathcal{S} into as many set covers as possible, where a set cover is defined as a collection of subsets whose union is UU. We consider the online DSCP, in which the subsets arrive one by one (possibly in an order chosen by an adversary), and must be irrevocably assigned to some partition on arrival with the objective of minimizing the competitive ratio. The competitive ratio of an online DSCP algorithm AA is defined as the maximum ratio of the number of disjoint set covers obtained by the optimal offline algorithm to the number of disjoint set covers obtained by AA across all inputs. We propose an online algorithm for solving the DSCP with competitive ratio lnn\ln n. We then show a lower bound of Ω(lnn)\Omega(\sqrt{\ln n}) on the competitive ratio for any online DSCP algorithm. The online disjoint set cover problem has wide ranging applications in practice, including the online crowd-sourcing problem, the online coverage lifetime maximization problem in wireless sensor networks, and in online resource allocation problems.Comment: To appear in IEEE INFOCOM 201

    Solving Target Coverage Problem in Wireless Sensor Network Using Genetic Algorithm

    Get PDF
    The past few years have seen tremendous increase of interest in the field of wireless sensor network. These wireless sensor network comprise numerous small sensor nodes distributed in an area and collect specific data from that area. The nodes comprising a network are mostly battery driven and hence have a limited amount of energy. The target coverage deals with the surveillance of the area under consideration taking into account the energy constraint associated with nodes. In nutshell, the lifetime of the network is to be maximized while ensuring that all the targets are monitored. The approach of segregating the nodes into various covers is used such that each cover can monitor all the targets while other nodes in remaining covers are in sleep state. The covers are scheduled to operate in turn thereby ensuring that the targets are monitored all the time and the lifetime of the network is also maximized. The segregation method is based on Maximum Set Cover (MSC) problem which is transformed into Maximum Disjoint Set Cover problem (MDSC). This problem of finding Maximum Disjoint Set Cover falls under the category of NP-Complete problem. Hence, two heuristics based approach are discussed in this work; first Greedy Heuristic is implemented to be used as baseline. Then a Genetic Algorithm based approach is proposed that can solve this problem by evolutionary global search technique. The existing and proposed algorithms are coded and functionality verified using MATLAB R2010b and performance evaluation and comparisons are made in terms of number of sensors and sensing range

    An energy efficient coverage guaranteed greedy algorithm for wireless sensor networks lifetime enhancement

    Get PDF
    One of the most significant difficulties in Wireless Sensor Networks (WSNs) is energy efficiency, as they rely on minuscule batteries that cannot be replaced or recharged. In battery-operated networks, energy must be used efficiently. Network lifetime is an important metric for battery-powered networks. There are several approaches to improve network lifetime, such as data aggregation, clustering, topology, scheduling, rate allocation, routing, and mobile relay. Therefore, in this paper, the authors present a method that aims to improve the lifetime of WSN nodes using a greedy algorithm. The proposed Greedy Algorithm method is used to extend the network lifetime by dividing the sensors into a number of disjoint groups while satisfying the coverage requirements. The proposed Greedy algorithm has improved the network lifetime compared to heuristic algorithms. The method was able to generate a larger number of disjoint groups

    A near optimal algorithm for lifetime optimization in wireless sensor networks

    No full text
    International audienceA problem that has received a lot of interest in wireless sensor networks (WSN) is lifetime optimization. Indeed, in WSN each sensor node is battery powered and it is not convenient to recharge or replace the batteries in many cases, especially in remote and hostile environments. In this paper, we introduce an efficient energy-aware algorithm to enhance the lifetime of WSN by i) organizing/clustering the sensor nodes into disjoint cover sets where each cover set is capable of monitoring all the targets of the region of interest and ii) scheduling these cover sets successively/periodically. This study differs from previous works for the following reasons: i) it achieves near optimal solutions compared to the optimal ones obtained by the exact method and ii) unlike existing algorithms that construct gradually cover sets one after the other, our algorithm builds the different sets in parallel. Indeed, at each step of the clustering process, the algorithm attempts to add to each cover set a sensor capable of monitoring the most critical target (a critical target is defined to be the one covered by the smallest set of sensors). The choice of a sensor to be placed/clustered in each cover set is based on solving a linear assignment problem. The proposed algorithm provides a lower bound Kmin of the optimal number of disjoint cover sets Kopt . Intuitively, the upper bound Kmax of the optimal value is given by the size of the smallest set of sensors covering a target. We deduce Kopt by performing a binary search procedure. At each step of the binary search process, we check if there exists a partition of the sensors in K cover sets by solving an integer programming problem. Simulation results show the efficiency of our algorithm

    Maximum Lifetime Scheduling in Wireless Sensor Networks

    Get PDF

    Movement-Efficient Sensor Deployment in Wireless Sensor Networks With Limited Communication Range.

    Get PDF
    We study a mobile wireless sensor network (MWSN) consisting of multiple mobile sensors or robots. Three key factors in MWSNs, sensing quality, energy consumption, and connectivity, have attracted plenty of attention, but the interaction of these factors is not well studied. To take all the three factors into consideration, we model the sensor deployment problem as a constrained source coding problem. %, which can be applied to different coverage tasks, such as area coverage, target coverage, and barrier coverage. Our goal is to find an optimal sensor deployment (or relocation) to optimize the sensing quality with a limited communication range and a specific network lifetime constraint. We derive necessary conditions for the optimal sensor deployment in both homogeneous and heterogeneous MWSNs. According to our derivation, some sensors are idle in the optimal deployment of heterogeneous MWSNs. Using these necessary conditions, we design both centralized and distributed algorithms to provide a flexible and explicit trade-off between sensing uncertainty and network lifetime. The proposed algorithms are successfully extended to more applications, such as area coverage and target coverage, via properly selected density functions. Simulation results show that our algorithms outperform the existing relocation algorithms
    corecore