14,447 research outputs found

    Effect of dead space on avalanche speed

    Get PDF
    The effects of dead space (the minimum distance travelled by a carrier before acquiring enough energy to impact ionize) on the current impulse response and bandwidth of an avalanche multiplication process are obtained from a numerical model that maintains a constant carrier velocity but allows for a random distribution of impact ionization path lengths. The results show that the main mechanism responsible for the increase in response time with dead space is the increase in the number of carrier groups, which qualitatively describes the length of multiplication chains. When the dead space is negligible, the bandwidth follows the behavior predicted by Emmons but decreases as dead space increase

    Nonlocal effects in thin 4H-SiC UV avalanche photodiodes

    Get PDF
    The avalanche multiplication and excess noise characteristics of 4H-SiC avalanche photodiodes with i-region widths of 0.105 and 0.285 mum have been investigated using 230-365-nm light, while the responsivities of the photodiodes at unity gain were examined for wavelengths up to 375 nm. Peak unity gain responsivities of more than 130 mA/W at 265 nm, equivalent to quantum efficiencies of more than 60%, were obtained for both structures. The measured avalanche characteristics show, that beta > alpha and that the beta/alpha ratio remains large even in thin 4H-SiC avalanche regions. Very low excess noise, corresponding to k(eff) < 0.15 in the local noise model, where k(eff) = alpha/beta(beta/alpha) for hole (electron) injection, was measured with 365-nm light in both structures. Modeling the experimental results using a simple quantum efficiency model and a nonlocal description yields effective ionization threshold energies of 12 and 8 eV for electrons and holes, respectively, and suggests that the dead space in 4H-SiC is soft. Although dead space is important, pure hole injection is still required to ensure low excess noise in thin 4H-SiC APDs owing to beta/alpha ratios that remain large, even at very high fields

    The effects of nonlocal impact ionization on the speed of avalanche photodiodes

    Get PDF
    The nonlocal enhancement in the velocities of charge carriers to ionization is shown to outweigh the opposing effects of dead space, increasing the avalanche speed of short avalanche photodiodes (APDs) over the predictions of a conventional local model which ignores both of these effects. The trends in the measured gain-bandwidth product of two short InAlAs APDs reported in the literature support this result. Relatively large speed benefits are predicted to result from further small reductions in the lengths of short multiplication regions

    Avalanche multiplication in AlxGa1-xAs (x=0to0.60)

    Get PDF
    Electron and hole multiplication characteristics, Me and Mh, have been measured in AlxGa1-xAs (x=0-0.60) homojunction p+-i-n+ diodes with i-region thicknesses, w, from 1 μm to 0.025 μm and analyzed using a Monte Carlo model (MC). The effect of the composition on both the macroscopic multiplication characteristics and microscopic behavior is therefore shown for the first time. Increasing the alloy fraction causes the multiplication curves to be shifted to higher voltages such that the multiplication curves at any given thickness are practically parallel for different x. The Me/Mh ratio also decreases as x increases, varying from ~2 to ~1 as x increases from 0 to 0.60 in a w=1 μm p+-i-n+. The Monte-Carlo model is also used to extract ionization coefficients and dead-space distances from the measured results which cover electric field ranges from ~250 kV/cm-1200 kV/cm in each composition. These parameters can be used to calculate the nonlocal multiplication process by solving recurrence equations. Limitations to the applicability of field-dependent ionization coefficients are shown to arise however when the electric-field profile becomes highly nonunifor

    Field dependence of impact ionization coefficients in In0.53Ga0.47As

    Get PDF
    Electron and hole ionization coefficients in In/sub 0.53/Ga/sub 0.47/As are deduced from mixed carrier avalanche photomultiplication measurements on a series of p-i-n diode layers, eliminating other effects that can lead to an increase in photocurrent with reverse bias. Low field ionization is observed for electrons but not for holes, resulting in a larger ratio of ionization coefficients, even at moderately high electric fields than previously reported. The measured ionization coefficients are marginally lower than those of GaAs for fields above 250 kVcm/sup -1/, supporting reports of slightly higher avalanche breakdown voltages in In/sub 0.53/Ga/sub 0.47/As than in GaAs p-i-n diodes

    Effect of impact ionization in the InGaAs absorber on excess noise of avalanche photodiodes

    Get PDF
    The effects of impact ionization in the InGaAs absorption layer on the multiplication, excess noise and breakdown voltage are modeled for avalanche photodiodes (APDs), both with InP and with InAlAs multiplication regions. The calculations allow for dead space effects and for the low field electron ionization observed in InGaAs. The results confirm that impact ionization in the InGaAs absorption layer increases the excess noise in InP APDs and that the effect imposes tight constraints on the doping of the charge control layer if avalanche noise is to be minimized. However, the excess noise of InAlAs APDs is predicted to be reduced by impact ionization in the InGaAs layer. Furthermore the breakdown voltage of InAlAs APDs is less sensitive to ionization in the InGaAs layer and these results increase tolerance to doping variations in the field control layer

    Radiation Risks and Mitigation in Electronic Systems

    Full text link
    Electrical and electronic systems can be disturbed by radiation-induced effects. In some cases, radiation-induced effects are of a low probability and can be ignored; however, radiation effects must be considered when designing systems that have a high mean time to failure requirement, an impact on protection, and/or higher exposure to radiation. High-energy physics power systems suffer from a combination of these effects: a high mean time to failure is required, failure can impact on protection, and the proximity of systems to accelerators increases the likelihood of radiation-induced events. This paper presents the principal radiation-induced effects, and radiation environments typical to high-energy physics. It outlines a procedure for designing and validating radiation-tolerant systems using commercial off-the-shelf components. The paper ends with a worked example of radiation-tolerant power converter controls that are being developed for the Large Hadron Collider and High Luminosity-Large Hadron Collider at CERN.Comment: 19 pages, contribution to the 2014 CAS - CERN Accelerator School: Power Converters, Baden, Switzerland, 7-14 May 201

    Space Radiation and Impact on Instrumentation Technologies

    Get PDF
    Understanding the interactions of the Sun, Earth and other natural and man-made objects in the solar system with the space radiation environment is crucial for improving activities of humans on Earth and in space. An important component of understanding these interactions is their effects on the instrumentation required in the exploration of air and space. NASA's Glenn Research Center (GRC) fills the role of developing supporting technologies to enable improved instruments for space science missions, as well as improved instruments for aeronautics and ground-based applications. In this review, the space radiation environment and its effects are outlined, as well the impact it has on instrumentation and the technology that GRC is developing to improve performance for space science
    corecore