9,008 research outputs found

    Enhanced Industrial Machinery Condition Monitoring Methodology based on Novelty Detection and Multi-Modal Analysis

    Get PDF
    This paper presents a condition-based monitoring methodology based on novelty detection applied to industrial machinery. The proposed approach includes both, the classical classification of multiple a priori known scenarios, and the innovative detection capability of new operating modes not previously available. The development of condition-based monitoring methodologies considering the isolation capabilities of unexpected scenarios represents, nowadays, a trending topic able to answer the demanding requirements of the future industrial processes monitoring systems. First, the method is based on the temporal segmentation of the available physical magnitudes, and the estimation of a set of time-based statistical features. Then, a double feature reduction stage based on Principal Component Analysis and Linear Discriminant Analysis is applied in order to optimize the classification and novelty detection performances. The posterior combination of a Feed-forward Neural Network and One-Class Support Vector Machine allows the proper interpretation of known and unknown operating conditions. The effectiveness of this novel condition monitoring scheme has been verified by experimental results obtained from an automotive industry machine.Postprint (published version

    Feature-based multi-class classification and novelty detection for fault diagnosis of industrial machinery

    Get PDF
    Given the strategic role that maintenance assumes in achieving profitability and competitiveness, many industries are dedicating many efforts and resources to improve their maintenance approaches. The concept of the Smart Factory and the possibility of highly connected plants enable the collection of massive data that allow equipment to be monitored continuously and real-time feedback on their health status. The main issue met by industries is the lack of data corresponding to faulty conditions, due to environmental and safety issues that failed machinery might cause, besides the production loss and product quality issues. In this paper, a complete and easy-to-implement procedure for streaming fault diagnosis and novelty detection, using different Machine Learning techniques, is applied to an industrial machinery sub-system. The paper aims to offer useful guidelines to practitioners to choose the best solution for their systems, including a model hyperparameter optimization technique that supports the choice of the best model. Results indicate that the methodology is easy, fast, and accurate. Few training data guarantee a high accuracy and a high generalization ability of the classification models, while the integration of a classifier and an anomaly detector reduces the number of false alarms and the computational time

    CBR and MBR techniques: review for an application in the emergencies domain

    Get PDF
    The purpose of this document is to provide an in-depth analysis of current reasoning engine practice and the integration strategies of Case Based Reasoning and Model Based Reasoning that will be used in the design and development of the RIMSAT system. RIMSAT (Remote Intelligent Management Support and Training) is a European Commission funded project designed to: a.. Provide an innovative, 'intelligent', knowledge based solution aimed at improving the quality of critical decisions b.. Enhance the competencies and responsiveness of individuals and organisations involved in highly complex, safety critical incidents - irrespective of their location. In other words, RIMSAT aims to design and implement a decision support system that using Case Base Reasoning as well as Model Base Reasoning technology is applied in the management of emergency situations. This document is part of a deliverable for RIMSAT project, and although it has been done in close contact with the requirements of the project, it provides an overview wide enough for providing a state of the art in integration strategies between CBR and MBR technologies.Postprint (published version

    Novelty detection based condition monitoring scheme applied to electromechanical systems

    Get PDF
    This study is focused on the current challenges dealing with electromechanical system monitoring applied in industrial frameworks, that is, the presence of unknown events and the limitation to the nominal healthy condition as starting knowledge. Thus, an industrial machinery condition monitoring methodology based on novelty detection and classification is proposed in this study. The methodology is divided in three main stages. First, a dedicated feature calculation and reduction over each available physical magnitude. Second, an ensemble structure of novelty detection models based on one-class support vector machines to identify not previously considered events. Third, a diagnosis model supported by a feature fusion scheme in order to reach high fault classification capabilities. The effectiveness of the fault detection and identification methodology has been compared with classical single model approach, and verified by experimental results obtained from an electromechanical machine. © 2018 IEEE.Postprint (author's final draft

    Fault detection and identification methodology under an incremental learning framework applied to industrial machinery

    Get PDF
    An industrial machinery condition monitoring methodology based on ensemble novelty detection and evolving classification is proposed in this study. The methodology contributes to solve current challenges dealing with classical electromechanical system monitoring approaches applied in industrial frameworks, that is, the presence of unknown events, the limitation to the nominal healthy condition as starting knowledge, and the incorporation of new patterns to the available knowledge. The proposed methodology is divided into four main stages: 1) a dedicated feature calculation and reduction over available physical magnitudes to increase novelty detection and fault classification capabilities; 2) a novelty detection based on the ensemble of one-class support vector machines to identify not previously considered events; 3) a diagnosis by means of eClass evolving classifiers for patterns recognition; and 4) re-training to include new patterns to the novelty detection and fault identification models. The effectiveness of the proposed fault detection and identification methodology has been compared with classical approaches, and verified by experimental results obtained from an automotive end-of-line test machine.This work was supported in part by the Generalitat de Catalunya (GRC MCIA) under Grant nâ—¦ SGR 2014-101, in part by the Spanish Ministry of Economy and Competitiveness under Project TRA2016-80472-R Research, and in part by the CONACyT Scholarship under Grant 313604
    • …
    corecore