5 research outputs found

    Nominal Unification of Higher Order Expressions with Recursive Let

    Get PDF
    A sound and complete algorithm for nominal unification of higher-order expressions with a recursive let is described, and shown to run in non-deterministic polynomial time. We also explore specializations like nominal letrec-matching for plain expressions and for DAGs and determine the complexity of corresponding unification problems.Comment: Pre-proceedings paper presented at the 26th International Symposium on Logic-Based Program Synthesis and Transformation (LOPSTR 2016), Edinburgh, Scotland UK, 6-8 September 2016 (arXiv:1608.02534

    Nominal C-Unification

    Full text link
    Nominal unification is an extension of first-order unification that takes into account the \alpha-equivalence relation generated by binding operators, following the nominal approach. We propose a sound and complete procedure for nominal unification with commutative operators, or nominal C-unification for short, which has been formalised in Coq. The procedure transforms nominal C-unification problems into simpler (finite families) of fixpoint problems, whose solutions can be generated by algebraic techniques on combinatorics of permutations.Comment: Pre-proceedings paper presented at the 27th International Symposium on Logic-Based Program Synthesis and Transformation (LOPSTR 2017), Namur, Belgium, 10-12 October 2017 (arXiv:1708.07854

    On Nominal Syntax and Permutation Fixed Points

    Full text link
    We propose a new axiomatisation of the alpha-equivalence relation for nominal terms, based on a primitive notion of fixed-point constraint. We show that the standard freshness relation between atoms and terms can be derived from the more primitive notion of permutation fixed-point, and use this result to prove the correctness of the new α\alpha-equivalence axiomatisation. This gives rise to a new notion of nominal unification, where solutions for unification problems are pairs of a fixed-point context and a substitution. Although it may seem less natural than the standard notion of nominal unifier based on freshness constraints, the notion of unifier based on fixed-point constraints behaves better when equational theories are considered: for example, nominal unification remains finitary in the presence of commutativity, whereas it becomes infinitary when unifiers are expressed using freshness contexts. We provide a definition of α\alpha-equivalence modulo equational theories that take into account A, C and AC theories. Based on this notion of equivalence, we show that C-unification is finitary and we provide a sound and complete C-unification algorithm, as a first step towards the development of nominal unification modulo AC and other equational theories with permutative properties

    Nominal unification of higher order expressions with recursive let

    No full text
    A sound and complete algorithm for nominal unification of higher-order expressions with a recursive let is described, and shown to run in non-deterministic polynomial time. We also explore specializations like nominal letrec-matching for expressions, for DAGs, and for garbage-free expressions and determine their complexity. As extension a nominal unification algorithm for higher-order expressions with recursive let and atom-variables is constructed, where we show that it also runs in non-deterministic polynomial time

    Nominal Unification and Matching of Higher Order Expressions with Recursive Let

    Full text link
    A sound and complete algorithm for nominal unification of higher-order expressions with a recursive let is described, and shown to run in nondeterministic polynomial time. We also explore specializations like nominal letrec-matching for expressions, for DAGs, and for garbage-free expressions and determine their complexity. We also provide a nominal unification algorithm for higher-order expressions with recursive let and atom-variables, where we show that it also runs in nondeterministic polynomial time. In addition we prove that there is a guessing strategy for nominal unification with letrec and atom-variable that is a trade-off between exponential growth and non-determinism. Nominal matching with variables representing partial letrec-environments is also shown to be in NP.Comment: 37 pages, 9 figures, This paper is an extended version of the conference publication: Manfred Schmidt-Schau{\ss} and Temur Kutsia and Jordi Levy and Mateu Villaret and Yunus Kutz, Nominal Unification of Higher Order Expressions with Recursive Let, LOPSTR-16, Lecture Notes in Computer Science 10184, Springer, p 328 -344, 2016. arXiv admin note: text overlap with arXiv:1608.0377
    corecore