53,562 research outputs found

    Nominal Logic Programming

    Full text link
    Nominal logic is an extension of first-order logic which provides a simple foundation for formalizing and reasoning about abstract syntax modulo consistent renaming of bound names (that is, alpha-equivalence). This article investigates logic programming based on nominal logic. We describe some typical nominal logic programs, and develop the model-theoretic, proof-theoretic, and operational semantics of such programs. Besides being of interest for ensuring the correct behavior of implementations, these results provide a rigorous foundation for techniques for analysis and reasoning about nominal logic programs, as we illustrate via examples.Comment: 46 pages; 19 page appendix; 13 figures. Revised journal submission as of July 23, 200

    Relating Nominal and Higher-order Abstract Syntax Specifications

    Full text link
    Nominal abstract syntax and higher-order abstract syntax provide a means for describing binding structure which is higher-level than traditional techniques. These approaches have spawned two different communities which have developed along similar lines but with subtle differences that make them difficult to relate. The nominal abstract syntax community has devices like names, freshness, name-abstractions with variable capture, and the new-quantifier, whereas the higher-order abstract syntax community has devices like lambda-binders, lambda-conversion, raising, and the nabla-quantifier. This paper aims to unify these communities and provide a concrete correspondence between their different devices. In particular, we develop a semantics-preserving translation from alpha-Prolog, a nominal abstract syntax based logic programming language, to G-, a higher-order abstract syntax based logic programming language. We also discuss higher-order judgments, a common and powerful tool for specifications with higher-order abstract syntax, and we show how these can be incorporated into G-. This establishes G- as a language with the power of higher-order abstract syntax, the fine-grained variable control of nominal specifications, and the desirable properties of higher-order judgments.Comment: To appear in PPDP 201

    A Simple Nominal Type Theory

    Get PDF
    Abstract. Nominal logic is an extension of first-order logic with features useful for reasoning about abstract syntax with bound names. For computational applications such as programming and formal reasoning, it is desirable to develop constructive type theories for nominal logic which extend standard type theories for propositional, first- or higher-order logic. This has proven difficult, largely because of complex interactions between nominal logic’s name-abstraction operation and ordinary functional abstraction. This difficulty already arises in the case of propositional logic and simple type theory. In this paper we show how this difficulty can be overcome, and present a simple nominal type theory which enjoys properties such as type soundness and strong normalization, and which can be soundly interpreted using existing nominal set models of nominal logic. We also sketch how recursion combinators for languages with binding structure can be provided. This is an important first step towards understanding the constructive content of nominal logic and incorporating it into existing logics and type theories.

    Relational Programming in miniKanren: Techniques, Applications, and Implementations

    Get PDF
    Thesis (Ph.D.) - Indiana University, Computer Sciences, 2009The promise of logic programming is that programs can be written relationally, without distinguishing between input and output arguments. Relational programs are remarkably flexible—for example, a relational type-inferencer also performs type checking and type inhabitation, while a relational theorem prover generates theorems as well as proofs and can even be used as a simple proof assistant. Unfortunately, writing relational programs is difficult, and requires many interesting and unusual tools and techniques. For example, a relational interpreter for a subset of Scheme might use nominal unification to support variable binding and scope, Constraint Logic Programming over Finite Domains (CLP(FD)) to implement relational arithmetic, and tabling to improve termination behavior. In this dissertation I present miniKanren, a family of languages specifically designed for relational programming, and which supports a variety of relational idioms and techniques. I show how miniKanren can be used to write interesting relational programs, including an extremely flexible lean tableau theorem prover and a novel constraint-free binary arithmetic system with strong termination guarantees. I also present interesting and practical techniques used to implement miniKanren, including a nominal unifier that uses triangular rather than idempotent substitutions and a novel “walk”-based algorithm for variable lookup in triangular substitutions. The result of this research is a family of languages that supports a variety of relational idioms and techniques, making it feasible and useful to write interesting programs as relations

    A simple sequent calculus for nominal logic

    Full text link
    Nominal logic is a variant of first-order logic that provides support for reasoning about bound names in abstract syntax. A key feature of nominal logic is the new-quantifier, which quantifies over fresh names (names not appearing in any values considered so far). Previous attempts have been made to develop convenient rules for reasoning with the new-quantifier, but we argue that none of these attempts is completely satisfactory. In this article we develop a new sequent calculus for nominal logic in which the rules for the new- quantifier are much simpler than in previous attempts. We also prove several structural and metatheoretic properties, including cut-elimination, consistency, and equivalence to Pitts' axiomatization of nominal logic

    Constraint Handling Rules with Binders, Patterns and Generic Quantification

    Full text link
    Constraint Handling Rules provide descriptions for constraint solvers. However, they fall short when those constraints specify some binding structure, like higher-rank types in a constraint-based type inference algorithm. In this paper, the term syntax of constraints is replaced by λ\lambda-tree syntax, in which binding is explicit; and a new ∇\nabla generic quantifier is introduced, which is used to create new fresh constants.Comment: Paper presented at the 33nd International Conference on Logic Programming (ICLP 2017), Melbourne, Australia, August 28 to September 1, 2017 16 pages, LaTeX, no PDF figure

    MetTeL: A Generic Tableau Prover.

    Get PDF
    • …
    corecore