1,291 research outputs found

    Noisy EEG signals classification based on entropy metrics. Performance assessment using first and second generation statistics

    Full text link
    [EN] This paper evaluates the performance of first generation entropy metrics, featured by the well known and widely used Approximate Entropy (ApEn) and Sample Entropy (SampEn) metrics, and what can be considered an evolution from these, Fuzzy Entropy (FuzzyEn), in the Electroencephalogram (EEG) signal classification context. The study uses the commonest artifacts found in real EEGs, such as white noise, and muscular, cardiac, and ocular artifacts. Using two different sets of publicly available EEG records, and a realistic range of amplitudes for interfering artifacts, this work optimises and assesses the robustness of these metrics against artifacts in class segmentation terms probability. The results show that the qualitative behaviour of the two datasets is similar, with SampEn and FuzzyEn performing the best, and the noise and muscular artifacts are the most confounding factors. On the contrary, there is a wide variability as regards initialization parameters. The poor performance achieved by ApEn suggests that this metric should not be used in these contexts.Cuesta Frau, D.; Miró Martínez, P.; Jordán Núñez, J.; Oltra Crespo, S.; Molina Picó, A. (2017). Noisy EEG signals classification based on entropy metrics. Performance assessment using first and second generation statistics. Computers in Biology and Medicine. 87:141-151. doi:10.1016/j.compbiomed.2017.05.028S1411518

    Sample Entropy Analysis of Noisy Atrial Electrograms during Atrial Fibrillation

    Full text link
    [EN] Most cardiac arrhythmias can be classified as atrial flutter, focal atrial tachycardia, or atrial fibrillation. They have been usually treated using drugs, but catheter ablation has proven more effective. This is an invasive method devised to destroy the heart tissue that disturbs correct heart rhythm. In order to accurately localise the focus of this disturbance, the acquisition and processing of atrial electrograms form the usual mapping technique. They can be single potentials, double potentials, or complex fractionated atrial electrogram (CFAE) potentials, and last ones are the most effective targets for ablation. The electrophysiological substrate is then localised by a suitable signal processing method. Sample Entropy is a statistic scarcely applied to electrograms but can arguably become a powerful tool to analyse these time series, supported by its results in other similar biomedical applications. However, the lack of an analysis of its dependence on the perturbations usually found in electrogram data, such as missing samples or spikes, is even more marked. This paper applied SampEn to the segmentation between non-CFAE and CFAE records and assessed its class segmentation power loss at different levels of these perturbations. The results confirmed that SampEn was able to significantly distinguish between non-CFAE and CFAE records, even under very unfavourable conditions, such as 50% of missing data or 10% of spikes.This research was supported by Research Center for Informatics (no. CZ.02.1.01/0.0/0.0/16-019/0000765).Cirugeda Roldan, EM.; Molina Picó, A.; Novák, D.; Cuesta Frau, D.; Kremen, V. (2018). Sample Entropy Analysis of Noisy Atrial Electrograms during Atrial Fibrillation. Computational and Mathematical Methods in Medicine. https://doi.org/10.1155/2018/1874651SAhmed, S., Claughton, A., & Gould, P. A. (2015). Atrial Flutter — Diagnosis, Management and Treatment. Abnormal Heart Rhythms. doi:10.5772/60700Kirchhof, P., & Calkins, H. (2016). Catheter ablation in patients with persistent atrial fibrillation. European Heart Journal, 38(1), 20-26. doi:10.1093/eurheartj/ehw260Nademanee, K., Lockwood, E., Oketani, N., & Gidney, B. (2010). Catheter ablation of atrial fibrillation guided by complex fractionated atrial electrogram mapping of atrial fibrillation substrate. Journal of Cardiology, 55(1), 1-12. doi:10.1016/j.jjcc.2009.11.002NG, J., & GOLDBERGER, J. J. (2007). Understanding and Interpreting Dominant Frequency Analysis of AF Electrograms. Journal of Cardiovascular Electrophysiology, 18(6), 680-685. doi:10.1111/j.1540-8167.2007.00832.xKottkamp, H., & Hindricks, G. (2007). Complex fractionated atrial electrograms in atrial fibrillation: A promising target for ablation, but why, when, and how? Heart Rhythm, 4(8), 1021-1023. doi:10.1016/j.hrthm.2007.05.011Křemen, V., Lhotská, L., Macaš, M., Čihák, R., Vančura, V., Kautzner, J., & Wichterle, D. (2008). A new approach to automated assessment of fractionation of endocardial electrograms during atrial fibrillation. Physiological Measurement, 29(12), 1371-1381. doi:10.1088/0967-3334/29/12/002Nademanee, K., McKenzie, J., Kosar, E., Schwab, M., Sunsaneewitayakul, B., Vasavakul, T., … Ngarmukos, T. (2004). A new approach for catheter ablation of atrial fibrillation: mapping of the electrophysiologic substrate. Journal of the American College of Cardiology, 43(11), 2044-2053. doi:10.1016/j.jacc.2003.12.054Scherr, D., Dalal, D., Cheema, A., Cheng, A., Henrikson, C. A., Spragg, D., … Dong, J. (2007). Automated detection and characterization of complex fractionated atrial electrograms in human left atrium during atrial fibrillation. Heart Rhythm, 4(8), 1013-1020. doi:10.1016/j.hrthm.2007.04.021Almeida, T. P., Chu, G. S., Salinet, J. L., Vanheusden, F. J., Li, X., Tuan, J. H., … Schlindwein, F. S. (2016). Minimizing discordances in automated classification of fractionated electrograms in human persistent atrial fibrillation. Medical & Biological Engineering & Computing, 54(11), 1695-1706. doi:10.1007/s11517-016-1456-2Molina-Picó, A., Cuesta-Frau, D., Aboy, M., Crespo, C., Miró-Martínez, P., & Oltra-Crespo, S. (2011). Comparative study of approximate entropy and sample entropy robustness to spikes. Artificial Intelligence in Medicine, 53(2), 97-106. doi:10.1016/j.artmed.2011.06.007Cuesta–Frau, D., Miró–Martínez, P., Jordán Núñez, J., Oltra–Crespo, S., & Molina Picó, A. (2017). Noisy EEG signals classification based on entropy metrics. Performance assessment using first and second generation statistics. Computers in Biology and Medicine, 87, 141-151. doi:10.1016/j.compbiomed.2017.05.028Demont-Guignard, S., Benquet, P., Gerber, U., & Wendling, F. (2009). Analysis of Intracerebral EEG Recordings of Epileptic Spikes: Insights From a Neural Network Model. IEEE Transactions on Biomedical Engineering, 56(12), 2782-2795. doi:10.1109/tbme.2009.2028015Molina–Picó, A., Cuesta–Frau, D., Miró–Martínez, P., Oltra–Crespo, S., & Aboy, M. (2013). Influence of QRS complex detection errors on entropy algorithms. Application to heart rate variability discrimination. Computer Methods and Programs in Biomedicine, 110(1), 2-11. doi:10.1016/j.cmpb.2012.10.014Ganesan, P., Cherry, E. M., Pertsov, A. M., & Ghoraani, B. (2015). Characterization of Electrograms from Multipolar Diagnostic Catheters during Atrial Fibrillation. BioMed Research International, 2015, 1-9. doi:10.1155/2015/272954Lake, D. E., Richman, J. S., Griffin, M. P., & Moorman, J. R. (2002). Sample entropy analysis of neonatal heart rate variability. American Journal of Physiology-Regulatory, Integrative and Comparative Physiology, 283(3), R789-R797. doi:10.1152/ajpregu.00069.2002Kim, K. K., Baek, H. J., Lim, Y. G., & Park, K. S. (2012). Effect of missing RR-interval data on nonlinear heart rate variability analysis. Computer Methods and Programs in Biomedicine, 106(3), 210-218. doi:10.1016/j.cmpb.2010.11.011Richman, J. S., & Moorman, J. R. (2000). Physiological time-series analysis using approximate entropy and sample entropy. American Journal of Physiology-Heart and Circulatory Physiology, 278(6), H2039-H2049. doi:10.1152/ajpheart.2000.278.6.h2039Cirugeda–Roldán, E., Novak, D., Kremen, V., Cuesta–Frau, D., Keller, M., Luik, A., & Srutova, M. (2015). Characterization of Complex Fractionated Atrial Electrograms by Sample Entropy: An International Multi-Center Study. Entropy, 17(12), 7493-7509. doi:10.3390/e17117493PORTER, M., SPEAR, W., AKAR, J. G., HELMS, R., BRYSIEWICZ, N., SANTUCCI, P., & WILBER, D. J. (2008). Prospective Study of Atrial Fibrillation Termination During Ablation Guided by Automated Detection of Fractionated Electrograms. Journal of Cardiovascular Electrophysiology, 19(6), 613-620. doi:10.1111/j.1540-8167.2008.01189.xKonings, K. T., Kirchhof, C. J., Smeets, J. R., Wellens, H. J., Penn, O. C., & Allessie, M. A. (1994). High-density mapping of electrically induced atrial fibrillation in humans. Circulation, 89(4), 1665-1680. doi:10.1161/01.cir.89.4.1665Fay, M. P., & Proschan, M. A. (2010). Wilcoxon-Mann-Whitney or t-test? On assumptions for hypothesis tests and multiple interpretations of decision rules. Statistics Surveys, 4(0), 1-39. doi:10.1214/09-ss051Richman, J. S. (2007). Sample Entropy Statistics and Testing for Order in Complex Physiological Signals. Communications in Statistics - Theory and Methods, 36(5), 1005-1019. doi:10.1080/03610920601036481Pincus, S. M., Gladstone, I. M., & Ehrenkranz, R. A. (1991). A regularity statistic for medical data analysis. Journal of Clinical Monitoring, 7(4), 335-345. doi:10.1007/bf01619355Alcaraz, R., & Rieta, J. J. (2009). Non-invasive organization variation assessment in the onset and termination of paroxysmal atrial fibrillation. Computer Methods and Programs in Biomedicine, 93(2), 148-154. doi:10.1016/j.cmpb.2008.09.001Alcaraz, R., Abásolo, D., Hornero, R., & Rieta, J. J. (2010). Optimal parameters study for sample entropy-based atrial fibrillation organization analysis. Computer Methods and Programs in Biomedicine, 99(1), 124-132. doi:10.1016/j.cmpb.2010.02.009Costa, M., Goldberger, A. L., & Peng, C.-K. (2002). Multiscale Entropy Analysis of Complex Physiologic Time Series. Physical Review Letters, 89(6). doi:10.1103/physrevlett.89.06810

    Neural Network Entropy (NNetEn): EEG Signals and Chaotic Time Series Separation by Entropy Features, Python Package for NNetEn Calculation

    Full text link
    Entropy measures are effective features for time series classification problems. Traditional entropy measures, such as Shannon entropy, use probability distribution function. However, for the effective separation of time series, new entropy estimation methods are required to characterize the chaotic dynamic of the system. Our concept of Neural Network Entropy (NNetEn) is based on the classification of special datasets (MNIST-10 and SARS-CoV-2-RBV1) in relation to the entropy of the time series recorded in the reservoir of the LogNNet neural network. NNetEn estimates the chaotic dynamics of time series in an original way. Based on the NNetEn algorithm, we propose two new classification metrics: R2 Efficiency and Pearson Efficiency. The efficiency of NNetEn is verified on separation of two chaotic time series of sine mapping using dispersion analysis (ANOVA). For two close dynamic time series (r = 1.1918 and r = 1.2243), the F-ratio has reached the value of 124 and reflects high efficiency of the introduced method in classification problems. The EEG signal classification for healthy persons and patients with Alzheimer disease illustrates the practical application of the NNetEn features. Our computations demonstrate the synergistic effect of increasing classification accuracy when applying traditional entropy measures and the NNetEn concept conjointly. An implementation of the algorithms in Python is presented.Comment: 24 pages, 18 figures, 2 table

    Model Selection for Body Temperature Signal Classification Using Both Amplitude and Ordinality-Based Entropy Measures

    Full text link
    [EN] Many entropy-related methods for signal classification have been proposed and exploited successfully in the last several decades. However, it is sometimes difficult to find the optimal measure and the optimal parameter configuration for a specific purpose or context. Suboptimal settings may therefore produce subpar results and not even reach the desired level of significance. In order to increase the signal classification accuracy in these suboptimal situations, this paper proposes statistical models created with uncorrelated measures that exploit the possible synergies between them. The methods employed are permutation entropy (PE), approximate entropy (ApEn), and sample entropy (SampEn). Since PE is based on subpattern ordinal differences, whereas ApEn and SampEn are based on subpattern amplitude differences, we hypothesized that a combination of PE with another method would enhance the individual performance of any of them. The dataset was composed of body temperature records, for which we did not obtain a classification accuracy above 80% with a single measure, in this study or even in previous studies. The results confirmed that the classification accuracy rose up to 90% when combining PE and ApEn with a logistic model.Cuesta Frau, D.; Miró Martínez, P.; Oltra Crespo, S.; Jordán Núñez, J.; Vargas-Rojo, B.; González, P.; Varela-Entrecanales, M. (2018). Model Selection for Body Temperature Signal Classification Using Both Amplitude and Ordinality-Based Entropy Measures. Entropy. 20(11):1-18. https://doi.org/10.3390/e20110853118201

    A HARDWARE-SOFTWARE CO-DESIGNED WEARABLE FOR REAL-TIME PHYSIOLOGICAL DATA COLLECTION AND SIGNAL QUALITY ASSESSMENT

    Get PDF
    In the future, Smart and Connected Communities (S&CC) will use distributed wireless sensors and embedded computing platforms to produce meaningful data that can help individuals, and communities. Here, we presented a scanner, a data reliability estimation algorithm and Electrocardiogram (ECG) beat classification algorithm which contributes to the S&CC framework .In part 1, we report the design, prototyping, and functional validation of a low-power, small, and portable signal acquisition device for these sensors. The scanner was fully tested, characterized, and validated in the lab, as well as through deployment to users homes. As a test case, we show results of the scanner measuring WRAP temperature sensors with relative error within the 0.01% range. The scanner measurement shows distinguish temperature of 1F difference and excellent linear dependence between actual and measured resistance (R2 = 0.998). This device hasdemonstrated the possibility of a small, low-power portable scanner for WRAP sensors.Additionally, we explored the statistical data reliability metric (DReM) to explain the quality of bio-signal quantitatively on a scale between 0.0 -1.0. As proof of concept, we analyzed the ECG signal. Our DReM prediction algorithm measures the reliability of the ECG signals effectively with low Root mean square error = 0.010 and Mean absolute error = 0.008 and coefficient of determination R2 value of 0.990. Finally, we tested our model against the opinions of three independent judges and presented R2 value to determine the agreement between judgments vs our prediction model.We concluded our contribution to the S&CC framework by analyzing ECG beat classification with a pipeline of classifiers that focuses on improving the models performance on identifying minority classes (ventricular ectopic beat, supraventricular ectopic beat). Moreover, we intended to minimize morphological distortion introduced due to indiscriminate use of filtering techniques on ECG signals. Our approach shows an average positive predictive value 95.21%, sensitivity of95.28%, and F-1 score 95.76% respectively

    Recent Applications in Graph Theory

    Get PDF
    Graph theory, being a rigorously investigated field of combinatorial mathematics, is adopted by a wide variety of disciplines addressing a plethora of real-world applications. Advances in graph algorithms and software implementations have made graph theory accessible to a larger community of interest. Ever-increasing interest in machine learning and model deployments for network data demands a coherent selection of topics rewarding a fresh, up-to-date summary of the theory and fruitful applications to probe further. This volume is a small yet unique contribution to graph theory applications and modeling with graphs. The subjects discussed include information hiding using graphs, dynamic graph-based systems to model and control cyber-physical systems, graph reconstruction, average distance neighborhood graphs, and pure and mixed-integer linear programming formulations to cluster networks
    corecore