4 research outputs found

    On palimpsests in neural memory: an information theory viewpoint

    Full text link
    The finite capacity of neural memory and the reconsolidation phenomenon suggest it is important to be able to update stored information as in a palimpsest, where new information overwrites old information. Moreover, changing information in memory is metabolically costly. In this paper, we suggest that information-theoretic approaches may inform the fundamental limits in constructing such a memory system. In particular, we define malleable coding, that considers not only representation length but also ease of representation update, thereby encouraging some form of recycling to convert an old codeword into a new one. Malleability cost is the difficulty of synchronizing compressed versions, and malleable codes are of particular interest when representing information and modifying the representation are both expensive. We examine the tradeoff between compression efficiency and malleability cost, under a malleability metric defined with respect to a string edit distance. This introduces a metric topology to the compressed domain. We characterize the exact set of achievable rates and malleability as the solution of a subgraph isomorphism problem. This is all done within the optimization approach to biology framework.Accepted manuscrip

    Noise-Enhanced Information Systems

    Get PDF
    Noise, traditionally defined as an unwanted signal or disturbance, has been shown to play an important constructive role in many information processing systems and algorithms. This noise enhancement has been observed and employed in many physical, biological, and engineered systems. Indeed stochastic facilitation (SF) has been found critical for certain biological information functions such as detection of weak, subthreshold stimuli or suprathreshold signals through both experimental verification and analytical model simulations. In this paper, we present a systematic noise-enhanced information processing framework to analyze and optimize the performance of engineered systems. System performance is evaluated not only in terms of signal-to-noise ratio but also in terms of other more relevant metrics such as probability of error for signal detection or mean square error for parameter estimation. As an important new instance of SF, we also discuss the constructive effect of noise in associative memory recall. Potential enhancement of image processing systems via the addition of noise is discussed with important applications in biomedical image enhancement, image denoising, and classification

    Noise-Enhanced Information Systems

    Full text link
    corecore