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Invited Paper

Abstract—Noise, traditionally defined as an unwanted signal
or disturbance, has been shown to play an important constructive
role in many information processing systems and algorithms. This
noise enhancement has been observed and employed in many
physical, biological, and engineered systems. Indeed stochastic
facilitation (SF) has been found critical for certain biological
information functions like detection of weak, subthreshold stimuli
or suprathreshold signals through both experimental verification
and analytical model simulations.

In this paper, we present a systematic noise-enhanced informa-
tion processing framework to analyze and optimize the perfor-
mance of engineered systems. System performance is evaluated
not only in terms of signal-to-noise ratio but also in terms of
other more relevant metrics such as probability of error for
signal detection or mean square error for parameter estimation.
As an important new instance of SF, we also discuss the
constructive effect of noise in associative memory recall. Potential
enhancement of image processing systems via the addition of
noise is discussed with important applications in biomedical
image enhancement, image denoising and classification.

Index Terms—Stochastic facilitation, noise-enhanced signal
processing, stochastic resonance

I. INTRODUCTION

LOOSELY defined as an unwanted signal or disturbance

to a system, understanding and handling noise is an

important research problem in modern science and engineering

[1], [2]. Whether considering problems of communication [3],

detection [4], estimation [5], or learning [6], designing systems

to deal with noise has been the centerpiece of information

processing research for decades.

Generally more system noise leads to less channel capacity,

worse detection performance, degraded estimation accuracy,

and reduced ability to learn in a generalizable way. Hence

noise is often removed or mitigated by a variety of filters and

signal processing algorithms. Despite its generally disruptive

nature, noise may surprisingly play an important constructive
role in many nonlinear information processing systems. Noise

enhancement has been employed in many areas such as

dithering in quantization, stochastic optimization techniques

such as genetic algorithms or simulated annealing, and in

learning [7]. Noise enhancement has also been observed in

physical systems as stochastic resonance (or more generally as

stochastic facilitation). Moreover, understanding the functional
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role of noise in information processing has shed light into the

way biological systems operate [8]–[11].

Building on inspiration from biology, electronic information

processing circuits are now being built to take advantage of

stochastic facilitation [12] for several applications, including

some not discussed here. Stochastic electronics designs are

especially useful at nanoscale, where randomness is abundant.

The primary purpose of this paper is to present an overview

of mathematical theories of information processing where

noise enhancement arises, to indicate how these effects can be

optimally utilized, and to demonstrate their utility in a variety

of engineering applications.

As a starting vignette to provide intuition, we demonstrate

the value of noise in quantization through the technique called

dithering. The sequel delves into other information processing

tasks for which a little bit of noise helps rather than hurts.

A. A Vignette: Dithering

Consider the simplest of image quantization tasks: take a

grayscale image with pixel values between 1 and 256 and

convert to a black and white image with only one bit per

pixel. Figure 1 shows an example. Pane (a) is the original

image; pane (b) is the original image quantized to one bit

with a uniform quantizer; and pane (c) is the same original

image quantized with the same quantizer, however, indepen-

dent Gaussian noise with mean zero and standard deviation 45
was added to the image before quantization, relative to pixel

values in the range 1 to 256. As can be observed both contours

and textures are better preserved.

The same example can be extended to a setting for detecting

subthreshold signals. If a one-bit quantizer, such that all pixel

values are below the threshold, is used then no image will be

seen, pane (d). The addition of noise for the same quantizer

can recover some visual information. Pane (e) shows the result

when independent Gaussian noise of mean zero and standard

deviation 100 is added before quantization.

In this elementary setting, we can viscerally observe that

noise has a benefit in sensory processing. In the remainder of

the paper, we go through a variety of information processing

settings where this is true. Before closing this vignette, though,

some details are in order.

Adding some noise to the signal before quantization—

the process of dithering—has been shown to improve signal

quality and mitigate the artifact effect introduced by quan-

tization [13]–[18]. Let the signal to be quantized be x =
[x1, . . . , xN ] ∈ RN , the dithering noise be n = [n1, . . . , nN ] ∈
RN and the multi-bit quantizer be q(·). The quantized signal z
is z = q(x+n). Depending on whether the receiver knows the
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(a)

(b) (c)

(d) (e)

Fig. 1: One-bit image quantization. (a) the original 8-bit

image. (b) 1-bit uniformly quantized image. (c) 1-bit uniformly

quantized image with additive noise. (d) 1-bit subthreshold

quantized image. (e) 1-bit subthreshold quantized image with

additive noise.

dithering noise n or not, there are two approaches to dithering:

subtractive dithering and nonsubtractive dithering where the

estimated signal x̂ is given by x̂ = z − n = q(x + n) − n, or

x̂ = z = q(x + n) respectively.

When applying subtractive dithering methods under certain

conditions, the error residual e = x − x̂ is independent of x
and thus reduces artifacts [14]–[16]. As it requires the exact

value of the dithering noise n, subtractive dithering provides

a better statistical result but is impractical in many instances.

Nonsubtractive dithering is of more interest in quantizer design

[19]. For nonsubtractive dithering, the residual is no longer

independent of the signal but moments of the total error can

be made independent of x by choosing a suitable probability

density function (pdf) of n [17], [18]. Dithering may also

improve signal quality. For example, for a ΣΔ quantizer with a

weak sinusoid signal input, the output signal-to-noise ratio can

be improved by choosing the right amount of dithering noise

[20]. There are precise connections between quantization,

dithering, and stochastic resonance [21].

B. Preview and Organization of Paper

In the above vignette, we demonstrated that introducing

some noise improves visualization of quantized images. In-

troduction of noise or other randomization has been observed

in many biological systems and provides motivation to explore

this bio-inspired concept while designing or enhancing system

performance. Although we discuss this for imaging systems

which is the theme of this special issue, we also provide a

much broader presentation encompassing several areas under

the umbrella of information systems.

The remainder of the paper is organized as follows. In

Sec. II, we describe the phenomenon of stochastic resonance,

the term used by many investigators in the field, and present

two quantitative metrics to characterize system performance.

In Sec. III, we give several illustrative examples of biological

systems where SF has been observed. In Secs. IV and V, we

discuss noise-enhanced detection and estimation as well as

image processing systems. In Secs. VI and VII, we point out

the role randomization plays in stochastic search algorithms

for optimization and associative memory recall.

II. STOCHASTIC RESONANCE

The focus of this paper is on noise-enhanced systems for

which extensive research has also been carried out under the

name stochastic resonance (SR). Since proposed by Benzi et

al. in 1981 [22] to explain the periodicity of the earth’s ice

ages, the SR effect, or more generally stochastic facilitation
(SF), has been observed and applied in many systems—

physical, biological, and engineered [8], [9], [23], [24]. The

classic signature of SR is the output signal-to-noise ratio

(SNR) being greater than the input SNR when an appropriate

amount of noise (usually Gaussian) is added to weak periodic

input signals [25]–[39].

Later, for a set of parallel networks consisting of multiple

SR elements and a sum unit, suprathreshold SR (SSR) effects

were demonstrated and investigated in terms of mutual infor-

mation improvement via additive noise [40]–[42] or overall

detection performance [43]. Unlike conventional SR, the input

signals to the parallel arrays are predominantly suprathreshold.

For a given noise form, the optimal noise variance was

determined for hypotheses testing, estimation, and watermark

decoding [44]–[46], though some results are valid under the

rather strong assumption of asymptotic normality of the output

signal, which is not likely to be true in practice due to

statistical dependence of the SR elements arising from the

common input signal.

Due to its richness and close relationship with the topic of

this paper, we provide a brief background on SF theory and

applications in the remainder of this section as well as in the

next sections. This is by no means a thorough treatment of the

subject; interested readers are referred to [8], [9], [21], [23]

and references therein for further development.

Although noise manifests additively in many information

systems with stochastic resonance, this is not the only way.

When engineering systems to have noise enhancement [47],

one may also introduce randomness into signals via other

random transformations. For example, one could consider

multiplicative noise. Also, unlike most current approaches,

one may consider signal-dependent noise. Next, we discuss

some fundamental metrics to characterize system performance

enhancement due to SF.
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A. Signal-to-noise ratio Gain by Stochastic Resonance

In many information processing systems, performance is

quantified in terms of SNR. Some approaches have been

proposed to tune the SR system by maximizing SNR [23].

For some SR systems, robustness enhancement using non-

Gaussian noises was reported in [32]. For a fixed type of

noise, Mitaim and Kosko [48] proposed an adaptive stochastic

learning scheme performing a stochastic gradient ascent search

on the SNR to determine the optimal noise level based on the

samples from the process. Rather than adjusting the input noise

level, Xu et al. [49] proposed a numerical method for realizing

SR by tuning system parameters to maximize SNR gain. As

an example, stochastic resonance in a 3-level quantizer is

illustrated as follows [50].

Consider a symmetric 3-level quantizer with thresholds −ζ
and ζ driven by a sequence x[n] = s[n] + w[n] which is the

sum of a subthreshold sinusoid signal s[n] = A cos(2πn/N −
θ0) with amplitude A, frequency N , and phase θ0 and w[n],
an independent and identically distributed (i.i.d.) zero-mean

noise signal with variance σ2. The output y[n] is given by

y[n] =

⎧⎪⎨
⎪⎩
−1, x[n] ≤ −ζ

0, −ζ < x[n] ≤ ζ

1, x[n] > ζ.

(1)

Further, consider the case where w[n] belongs to the gen-

eralized Gaussian family such that its pdf satisfies

f(w) =
a

σ
e(−b|w/σ|p)

where

a =
p

2

Γ1/2(3/p)

Γ3/2(2/p)

and

b =

[
Γ(3/p)

Γ(1/p)

]p/2
.

The Laplacian, Gaussian, and uniform pdfs belong to the

family defined by p = 1, 2, and ∞, respectively.

The input SNR is SNRi = A2/4σ2. The output SNR is

given by [29] as SNRo = |Y1|2/σ̄2
y , where

Y1 =
1

N

N−1∑
n=0

E(y[n])ej2πn/N

and

σ̄2
y =

1

N

N−1∑
n=0

σ2
y[n].

Thus, the SNR gain is G = SNRo/SNRi.

When the signal amplitude A
σ � 1 is very small, the Taylor

series expansion implies at the output

|Y1|2 =
A2

σ2
f2

(
ζ

σ

)
+O

((
A

σ

)4
)

and

σ̄2
y ≈ 2

[
1− F

(
ζ

σ

)]
+O

((
A

σ

)2
)

.
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Fig. 2: Output SNRo as a function of the standard deviation of

input noise, with threshold ζ = 1 and A = 0.01. Input noise

pdf is generalized Gaussian, with p = 1, 2, 10.

Thus, the output SNR and the SNR gain G are given by

SNRo
∼=

A2f2
(

ζ
σ

)
σ2
[
2− 2F

(
ζ
σ

)] ,

G =
2f2

(
ζ
σ

)
1− F

(
ζ
σ

) ,

respectively, where F is the cumulative distribution function

of the normalized Generalized Gaussian.

SNRo as a function of σ is shown in Fig. 2 when the

quantization threshold ζ = 1. Clearly, the maximum output

SNR occurs when σ = σopt > 0, i.e., the output SNR is

maximum when there exists an appropriate amount of noise.

When σ < σopt, increasing the input noise σ will increase

SNRo. Instead of adding noise to the input signal, the authors

adjusted the quantizer threshold to maximize the output SNR

and achieve positive SNR gains [50].

B. Mutual Information Gain by Stochastic Resonance

As a well-known metric, mutual information (MI) measures

the mutual dependence between two signals. SR has also

been found to enhance the MI between input and output

signals [51]–[56], thereby helping information flow through

the nonlinear system [57]. While McDonnell, et al. point

out that the capacity of an SR channel cannot exceed the

actual capacity at the input due to the data processing theorem

in information theory [58], Mitaim and Kosko showed that

almost all noise pdfs produce some SR effect resulting in

increased mutual information in threshold neurons [56]. A

new statistically robust learning law was proposed to find the

optimal noise level.

This is an author-produced, peer-reviewed version of this article.  The final, definitive version of this document can be found online at Proceedings of IEEE, 
published by IEEE. Copyright restrictions may apply.  doi:  10.1109/JPROC.2014.2341554



PROCEEDINGS OF THE IEEE, SUBMITTED 4

As an illustrative example, let us consider a single threshold

image processing system, similar to the ones evaluated in [59]

and also shown in Fig. 1. In such systems, the input gray

level images are passed through a binary quantization system

to convert with a relatively low threshold before presenting to

the human subjects for visual inspection. Due to the extreme

threshold, the resulting images are not clearly seen.

The output image y is equal to I((x + n) − T )) where x
is the ‘Lena’ image, n is the additive noise, T is a predefined

threshold and I(x) = 1 if x ≥ 0 and 0 otherwise. Panes (a)-

(e) of Fig. 3 show the effect of different noise levels. Clearly,

the subjective performance is best when an intermediate level

of noise is added. The mutual information between X and Y
as a function of standard deviation σ is shown in Fig. 4, the

maximum MI value is obtained when σ 	= 0, i.e., when some

SR noise is applied. Here, the input image has been normalized

to [0, 1] and T = 0.9. The joint distributions between the

input and output images for mutual information calculations

are estimated using the 2-D histogram.

(a) (b)

(c) (d)

(e)

Fig. 3: Uniform noise can improve subjective image quality.

(a) Original ’Lena’ image; (b) No noise; (c) Little noise; (d)

‘Just right’ amount of noise; (e) Too much noise.

III. STOCHASTIC RESONANCE IN BIOLOGICAL SYSTEMS

The stochastic resonance phenomenon has been observed

not only in a variety of theoretical models of information

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

σ

M
I(Y

;X
)

Gaussian
Uniform

Fig. 4: The non-monotonic signature of stochastic resonance

in mutual information

processing as illustrated in Sec. II and in natural systems

in physics [23], but also in many experimental neuroscience

studies on information processing either in single neurons

or in neuronal networks [9], [60]–[62]. Further, it has been

seen in biological information processing systems outside of

neuroscience, such as biochemical reaction networks [63]. In

this section, we briefly review some neurobiological exam-

ples of stochastic resonance, especially focusing on sensory

processing. The goal is not to be comprehensive, but rather

illustrative.

An early experiment demonstrating stochastic resonance in

sensory processing was in the cricket cercal system. The cercal

system detects the presence of either predators or other crickets

by changes in air currents. In the experiment, cercal receptors

were stimulated with naturalistic air currents modulated either

at a single frequency or at multiple frequencies in the range

due to predator attack, together with noisy broadband air

currents as would occur in the natural environment. Spike

trains from the cercal receptors to connected interneurons

were recorded. Operating in the frequency domain, the SNR

was extracted from the spike train, and further the mutual

information between the air current stimulus and the spike

train was computed. Both SNR and MI had maximum values

at intermediate, non-zero levels of broadband noise, demon-

strating the stochastic facilitation phenomenon [64].

An example of sensory stochastic resonance with wide-scale

clinical applications is in tactile sensing and motor control

[65]. Somatosensory function declines in people as we age,

and further such changes are associated with diminished motor

performance. Indeed diminished somatosensation in adults 65

years or older has been associated with increased likelihood of

falling, since somatosensory feedback is crucial for balance. It

has been demonstrated that input noise can enhance sensory

[66] and motor [67] function, in measures such as SNR or

accuracy. Thus, noise-based devices such as randomly vibrat-

ing shoe insoles are an effective way to enhance performance

This is an author-produced, peer-reviewed version of this article.  The final, definitive version of this document can be found online at Proceedings of IEEE, 
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on dynamic balance activities such as walking and enable

older adults to overcome age-related instability. The same

basic noise-enhancement principles are also useful for neural

prosthetics for patients with loss of neural function [68].

SR has also been observed in human visual processing,

and suggests methods for improving visual systems involving

both people and machines. We will see this in Sec. V.

Two interesting experiments to characterize primary visual

processing were carried out at the level of individual neurons

in the visual cortex of the human brain. First, it was found that

when the signal is a contrast-reversing square-wave grating

and flicker noise uniform in spatial and temporal frequency

is added, then the evoked spike train in visual processing

is enhanced [69]. Next, it was found that when the visual

stimulus signal is a flickering 5 Hz wave and the noise is 10
Hz to 70 Hz roughly uniform flicker noise, this enhanced the

10 Hz entrainment response of the visual system [70].

Stochastic resonance has even been found in experiments

on visual attention control, a higher human brain function.

When subjects were asked to detect a weak gray-level target

inside a marker box either in the left or the right visual field,

signal detection performance was optimized by presenting ran-

domly flickering noise between and outside the two possible

target locations, because noise increased eye movement rates.

Thus, noise at the cognitive level is associated with enhanced

switching behavior between multi-stable attention states [71].

Stochastic resonance appears to be a prevalent design prin-

ciple for neural information processing, but strong computa-

tional hypotheses are needed to understand it fully [9].

IV. NOISE-ENHANCED SIGNAL DETECTION AND

ESTIMATION

In this section, we consider some fundamental theories

of noise-enhanced signal processing, especially for signal

detection and estimation.

A. Noise-Enhanced Binary Hypothesis Testing

In signal detection theory, noise may play a very important

role in improving signal detectability. Some studies investi-

gated the potential detection performance gain for certain sub-

optimal detection schemes with a few particular types of noise.

In [38], [72], improvement of detection performance of a weak

sinusoid signal via addition of noise is reported. To detect

a constant signal in a Gaussian mixture noise background,

Kay showed that under certain conditions, performance of the

sign detector can be enhanced by adding some white Gaus-

sian noise [73]. For another suboptimal detector, the locally

optimal detector (LOD), Zozor and Amblard pointed out that

detection performance is optimum when the noise parameters

and detector parameters are matched [39]. A study of noise

enhancement in quantizers by Saha and Anand showed that

better detection performance is achieved by proper choice of

quantizer thresholds [50] and for a fixed quantizer, by adding

a suitable amount of noise.

In binary hypothesis testing, a likelihood ratio test (LRT)

detector is optimal in both the Bayesian and Neyman-Pearson

frameworks. However, implementing the LRT detector re-

quires complete knowledge of the pdfs p0(·) and p1(·) under

the respective hypothesis H0 and H1, which may not be

available in practice. Also, the input data statistics may vary

with time or may change from one application to another. To

make matters worse, there are many detection problems where

the exact form of the LRT is too complicated to implement.

Therefore, simpler and more robust suboptimal detectors are

often used [74].

In [75], [76], improving performance of any given detection

system through additive noise is considered. Some of the find-

ings are summarized as follows. Consider a general problem

with observations x ∈ X and known probability distribution

under both hypotheses.

• Binary hypotheses.

H0 : px(x;H0) = p0(x)
H1 : px(x;H1) = p1(x),

where p0(x) and p1(x) are the pdfs of x under H0 and

H1, respectively.

• Decision function φ(x) ∈ [0, 1]. The detector for this

problem can be completely characterized by a decision

function such that the detector output U = H1 with

probability φ(x).
• Additive noise n ∈ N . As an attempt to improve system

performance, an independent additive noise n with pdf

pn(n) ∈ PN is added to the observed data x to obtain

a “new” observation y = x + n ∈ Y as the input to the

detector. X ,Y,N ,PN are the domains of x, y, n, and

pn(n), respectively.

• Performance measures. The detection performance is

evaluated via three key metrics: probability of detection

Pd = P (U = H1;H1), probability of false alarm Pf =
P (U = H1;H0) under the Neyman-Pearson framework,

and probability of error Pe = π1(1− Pd) + π0Pf where

πi = P (Hi) is the prior probability of Hi under the

Bayesian setting, i = 0, 1.

For this binary detection problem, with the noise n added, the

probability of detection is given by

Pd = E1(y) (2)

= E1En (φ(x+ n))

= En {E1 (φ(x+ n))}
= EnF1(n),

where Ei(·) is the expected value under Hi, En is the expecta-

tion with noise distribution pn(n) and Fi(n) ≡ Ei (φ(x+ n)),
i = 0, 1.

Similarly, the noise-modified probability of false alarm and

probability of error become

Pf = E0(y) = EnF0(n), (3)

and

Pe = π1+En (π0F0(n)− π1F1(n)) = π1+En (Fe(n)) , (4)

where Fe(n) ≡ π0F0(n)− π1F1(n).
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1) Optimal Noise Distributions: In this subsection, we

discuss the effect of the noise distribution in detection per-

formance and optimal noise distributions that achieve the best

possible performance, i.e. the best pn ∈ PN . Noise-enhanced

detectors can be treated as equivalent to randomization (due

to the noise distribution) between detectors corresponding to a

particular noise level. Due to the complexity of the problems,

next we focus on finding simple noise distribution forms that

attain the maximum achievable detection performance and the

conditions on whether a detector can be improved or not.

Consider the case where PN is the set of all possible prob-

ability distributions, though discussion can be easily extended

to cases where the distribution functions are limited to certain

sets. Let Fi be the domain of Fi(n), i = 0, 1, e. Clearly,

under the Bayesian setting, when the minimum exists in Fe,

i.e., when Fe is a closed set, Pe can be minimized by letting

n = n0 ≡ argminn∈N Fe(n) with probability 1. That is, the

optimal “noise” is a constant signal n0 under the Bayesian

setting. However, when the domain of Fe is not a closed

set, the minimum may not exist. When it happens, certainly

there does not exist a noise distribution which can obtain

the so-called “minimum”. Nevertheless, the “noise” with a

single constant level can obtain the detection performance

that any other optimal noise distribution can achieve. Overall,

we conclude that the optimal noise form to minimize the

probability of error is a single constant noise such that

pon,e = δ(n− n0), (5)

where δ(·) is the Dirac delta function.

The optimization problem under the Neyman-Pearson

framework is similar. Due to the extra constraint on the

probability of false alarm Pf ≤ α, from Carathéodory’s

theorem in convex optimization theory [77], under this linear

constraint on noise distributions, we can conclude that the

optimal noise form is a randomization of at most two constant

levels such that

P o
n = (1− λ)δ(n− n1) + λδ(n− n2), (6)

where λ ∈ [0, 1],n1,n2 are appropriate noise parameters to

be tuned to satisfy the constraint on probability of false alarm

while maximizing the probability of detection. In other words,

it is sufficient to only consider the “2-peak” noises of the form

given in (6) when designing and optimizing noise-enhanced

detectors under the Neyman-Pearson criterion.

Improvability of the given detector when the noise is added

can be determined by computing and comparing P y
f,opt and

P x
D where the latter is the special case of n = 0. When

P y
d,opt > P x

d , the given detector is improvable by adding

additional noise. However, it requires the complete knowledge

of F1(·) and F0(·) and significant computation. To determine

the improvability of the detector under this noise-enhanced

framework, let us now consider a function J(t) such that

J(t) = max(F1 : F0 = t) is the maximum value of F1 given

F0(n) = t. Clearly, J(P x
f ) ≥ F1(0) = P x

d . It follows that for

any noise pn, we have P y
D(pn) ≤ EnJ (F0(n)). Therefore,

the optimum P y
d is attained when F1 (F0(n)) ≤ J(f0) and

P y
D,opt = En(J). For a large class of detectors, defined by the

local properties of J , we may determine sufficient conditions

for improvability and non-improvability more easily. Proofs of

the following theorems can be found in [75].

Theorem 1 (Improvability of detection via noise addition).
If J(P x

f ) > P x
d or J ′′(P x

f ) > 0 when J(t) is second-order
continuously differentiable around P x

f (local convexity), then
there exists at least one noise process n that can improve the
detection performance.

Theorem 2 (Non-improvability of detection via noise addi-

tion). If there exists a non-decreasing concave function Ψ(t)
where Ψ(P x

FA) = J(P x
FA) = F1(0) and Ψ(t) ≥ J(t) for

every t, then P y
D ≤ P x

D for any independent noise, i.e., the
detection performance cannot be improved by adding noise.

When the domain of F0 or F1 is not a closed set, the

maximum/minimum may not exist. However, the optimal noise

forms proposed below can above the detection performance

that any other noise distribution can. This observation as

well as optimal noise form determination under certain linear

constraints were also reported in [78].

In the above discussion, the detector was assumed fixed and

we could only add noise to the input signals. The above results

hold true even when the detector φ(·) can be changed/adjusted

along with the choice of noise distributions [76]. In fact,

adding/changing the input noise distribution can be considered

as a particular way of adjusting the detector.

When the additive noise is constrained to a particular

distribution family but with tunable parameters (like standard

deviation), a set of forbidden interval theorems to determine

the improvability of SR effects were proven. These theorems

are used in a range of applications such as signal detection in

carbon nanotubes and quantum computing, with a variety of

noise distributions [21], [79]–[83].

Besides improving detection performance, adding noise can

also improve the security performance of a network. It has

been shown in [84], [85] that for a distributed inference

network consisting of malicious sensors [86], an appropriate

addition of noise makes the system more robust to attacks and

increases the minimum number of attacked sensors required

to deteriorate the network’s performance.

2) A Detection Example: Consider detecting a constant

signal in a mixture Gaussian noise background, a problem

first considered in [73] and later revisited in [75], [76]. The

two hypotheses H0 and H1 are given as

H0 : x[i] = w[i]

H1 : x[i] = A+ w[i]

for i = 0, 1, · · · , N − 1, A > 0 is fixed and known, and w[i]
are i.i.d. noise samples with a symmetric Gaussian mixture

noise pdf pw(w) =
1
2γ(w;−μ, σ2

0) +
1
2γ(w;μ, σ

2
0) where

γ(w;μ, σ2) =
1√
2πσ2

exp

[
− (w − μ)

2

2σ2

]

is the Gaussian pdf with mean μ and variance σ2. A simple

but suboptimal sign detector is employed such that when

null hypothesis H0 is rejected when the number of positive
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Fig. 5: ROC curves for different SR noise enhanced sign

detectors, N = 30 [75, Fig. 9]: LRT is optimal likelihood

ratio test; Opt SR is noise-enhanced detector with optimal

i.i.d. noise; Opt Sym is noise-enhanced detector with optimal

symmetric i.i.d. noise; Opt Unif is noise-enhanced detector

with optimal i.i.d. uniform noise; Opt WGN is noise-enhanced

detector with optimal symmetric i.i.d. Gaussian noise; and

No SR is the original detector with no noise added. LRT

performance is nearly perfect (PD ≈ 1 for all Pf values).

observation samples is greater than a given threshold. When

there is only one observation (N = 1), the detector test statistic

becomes x with threshold η = 0.

Depending on the parameter settings, the detection perfor-

mance of the sign detector can be very poor. For example,

when A = 3, μ = 3, σ = 1, the probability of false alarm is

P x
f = 0.5 and the probability of detection is P x

d = 0.5114.

The problem of determining the optimal “noise” to be injected

to the system is to determine the optimal p(n) where for

the new observation y = x + n, the probability of detection

P y
D = p(y > 0;H1) is maximum without increasing the prob-

ability of false alarm. From before, the simplest optimal noise

form is no more than randomization between two constant

values. When A = 3, μ = 3, σ = 1 the optimal noise pdf

is poptn (n) = 0.3085δ(n + 3.5) + 0.6915δ(n − 2.5) [75]. By

injecting this noise, the resulting P y
d = 0.6915, far greater

than the original P x
d = 0.5114.

Determining the optimal noise for N > 1 is more difficult

as it involves an optimization problem with 2N parameters.

However, due to the particular structure of this detector, we

can inject i.i.d. noise to each data sample x[i]. Fig. 5 shows the

receiver operating characteristic (ROC) curves when N = 30
and different types of i.i.d. noise added; different degrees of

improvement are observed for different noises. The optimal SR

detector and the optimal symmetric SR detector performance

levels are superior to those of the optimal uniform and optimal

Gaussian SR detectors and more closely approximate the LRT

curve.

3) Sequential Detection: Aiming to reduce the expected

sample size (ESS) to make a decision with a given desired

accuracy, the potential of stochastic facilitation in sequential

detection was investigated in [87], [88]. Sequential detection

techniques have been widely applied in a broad range of appli-

cations where observations are collected sequentially [89]. For

a binary detection problem with completely known distribution

functions under both hypotheses, the sequential probability

ratio test (SPRT) achieves the same probability of decision

errors with minimum expected sample size (ESS) among all

possible detectors [90]. In practice, data at the input of a

sequential detector may be degraded since measurements may

be subject to impairments like quantization or transmission

over noise channels [91]–[93]. Such impairments may also

arise for some nonparametric sequential detectors [94], [95],

resulting in significant performance loss. Development of

methods to combat performance loss without changing the

system structure is highly desirable.

Since sample size is often not a constant in sequential

detection, optimal noise distributions in (5) or (6) are no

longer applicable. In [87], the sequential detection problem

was investigated under a framework where data samples are

collected sequentially and transformed one sample at a time

through a nonlinear, memoryless transformation system, and

the SPRT is applied at the output.

If the additive noise introduced at the input is i.i.d., the

ESS under the hypothesis H0 (H1) is minimized by maxi-

mizing the corresponding Kullback-Leibler divergence (KLD)

between output sample distributions under H0 and H1 (H1

and H0). Using the concavity of the KLD [96], it can be

shown the optimal noise is a constant vector per data sample,

under either hypothesis. However, the optimal noise form to

minimize the overall average sample size is still unknown as it

involves optimization of the geometrical average of KLDs. The

stochastic facilitation effect in suboptimal sequential detectors

(not SPRT-based) for shift-in-mean binary hypothesis testing

problems with detectors is investigated in [88]. It is found

that certain sequential detection procedures can be made more

efficient by randomly adding or subtracting a suitable constant

value to the data at the input of the (suboptimal) detector,

similar to the conclusions in [87].

B. Noise-Enhanced Parameter Estimation

Noise enhancement can also be performed for estimation

problems when the estimator is a nonlinear system. It has

been shown that the estimation performance may be improved

by adding a suitable noise at the input of such systems. For

example, in [97], for a distributed estimation problem, a better

Cramer-Rao lower bound has been obtained by adding suitable

noise to the observed data at local sensors before quantization.

In [43], the problem of estimating the frequency of a periodic

wave employing the optimum Bayesian estimator based on

the output of the one bit quantization system is evaluated

and a non-monotonic relationship between the estimation

performance and noise power is demonstrated. In [98], noise-

enhanced systems for general parameter estimation problems

have been considered, not only for additive noise but also for

other non-additive noise scenarios. The problem formulations

and main findings are summarized as follows.

This is an author-produced, peer-reviewed version of this article.  The final, definitive version of this document can be found online at Proceedings of IEEE, 
published by IEEE. Copyright restrictions may apply.  doi:  10.1109/JPROC.2014.2341554



PROCEEDINGS OF THE IEEE, SUBMITTED 8

Similar to the binary hypothesis detection setting, we con-

sider an estimator that consists of an input signal x, a parame-

ter to be estimated θ, and an estimator θ̂ = T (x) which infers θ
from x. The estimator performance is evaluated by a risk/cost

function ri(θ, θ̂), i = 1, . . . , I where I is the total number of

metrics. The risk/cost can also be evaluated in the average

sense such that Ri = E[ri(θ, θ̂)]. Many widely employed

estimation metrics can be characterized under this framework.

For example the bias, covariance matrix, and mean-square-

error (MSE) of the estimator are, respectively:

B(θ) = Ex(θ̂ − θ),

V (θ) = Ex(θ̂ − θ)(θ̂ − θ)T ,

M = ExEθ(θ̂ − θ)T (θ̂ − θ).

Instead of merely focusing on additive noise, we consider a

general form of stochastic facilitation. Here, the relationship

between the noise modified input signal y, the input signal

x and the introduced n is determined by p(y|x, n) = ζ(x, n)
where ζ is a prespecified stochastic transform function. The

modified input signal y is then used for the estimation process.

Similar to the detection problem, the fundamental optimization

questions become: Given the estimator T and the transform

ζ, determine the simplest noise distribution p(n) for any

achievable RI subject to the risk/cost constraints

Ri ≤ αi, i = 1, · · · , I − 1. (7)

For this general noise-modified estimator, notice the cost

functions can be rewritten as

Ri = Eri

(
θ, θ̂ (y)

)
= EEnri

(
θ, θ̂ (y (x,n))

)
= En

{
Eri

(
θ, θ̂ (y (x,n))

)}
= EnRn,i (n) .

For optimization, it can be shown it is sufficient to limit

consideration to “I-peak” noises with distributions

pn (n) =

I∑
i=1

λiδ (n− ni) , (8)

where λi ≥ 0,
∑

λi = 1, and n1, · · · ,nI are suitable constant

vectors.

For example, if the overall goal is to minimize the MSE,

then the optimal noise is a single constant, which is equivalent

to choosing a single noise parameter no. Similarly, for a scalar

estimation problem where the goal is to reduce the estimation

variance while keeping the unbiasedness of the estimator, the

optimal noise form is P o
n = (1− λ) δ(n−n1) + λδ(n−n2).

With some transformations and reformulations, the basic

framework established here can be extended to cover other

scenarios, e.g., the cases with further constraints on noise

distributions, such as noise power constraints.

Theorem 3. In addition to the constraints on the risk/cost
functions, if there are other “linear” constraints on the noise
distributions such as

Cj = En (cj (n)) ≤ εj ,

for j = 1, · · · , J , then it is sufficient to consider the “I + J”
peak noises such that pn (n) =

∑I+J
i=1 λiδ (n− ni) .

In some applications, especially while studying biological

systems, sources of noise are often inherent in the system [47],

[99] and are not easily adjustable except possibly tuning a

few parameters. In such cases, PN is no longer the set of

all possible noise distributions, but can be, say, a mixture of

certain types of distributions, like a Gaussian mixture resulting

from randomization between different Gaussian noise sources.

The same analysis procedure still applies in these cases and

the optimal noise forms remain the same except replacing the

δ(·) function with the suitable noise distribution kernels. By

relating the risk/cost function Ri with Pd, Pf and Pe, it can

be shown that the same noise forms are also optimal for noise-

enhanced detectors.

We point out here that the optimal noise forms obtained

above are mainly for the optimization problems with linear

constraints on noise distribution. There are many applications

where the constraints are nonlinear, for example, when the

performance is measured by the geometrical average of KLDs

or when the input noises are i.i.d. and the system performance

depends on convolutions of noise distributions. Other than

determining the optimal parameters for certain distribution

families [21], little is known for the optimal noise distributions

in the nonlinear cases.

V. NOISE-ENHANCED IMAGE PROCESSING

The structure of and algorithms in image processing systems

vary significantly from one application to another; perfor-

mance evaluation is also carried out via different metrics

[100]. Image modeling plays an important role in image

processing theory. Whether explicitly or implicitly, image

compression, image restoration, image visualization, and other

image processing applications can benefit from a suitable

statistical image model [59]: performance is maximized when

the underlying model fits the actual image [101]. Due to the

nature of images, a perfect model is usually very difficult if

not impossible to find. That is, no matter how one models the

image, some degree of mismatch always exists. As a result, no

matter how sophisticated it is, an image processing algorithm

may not achieve best visual performance even if it is the

optimum based on the assumed model.

Noise enhancement has been observed and applied to some

image processing systems in the past. For a subthreshold image

in a threshold detector, it has been shown that adding some

noise to the image before thresholding can improve the visual

perception of the thresholded images [59]. The constructive

roles of noise in human vision are further examined in [10],

[11], [102]–[104].

For a prespecified type of noise, the optimal level of

additive noise to maximize mutual information between input

and output images was determined in [56]. For a binary

quantizer, the relationship among the expected value of the

output image, the noise distribution, and the input image

is discussed in [105]. Stochastic facilitation has also been

applied to the Radon transform to extract weak lines from
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a noisy image and some other image enhancement applica-

tions in [106]. Some applications of stochastic resonance for

image denoising, enhancement, and edge detection have been

reported in [104], [107]–[113]. A suitable amount of noise

has also been shown to improve image segmentation quality

[114], [115], watermark/logo recognition, and image resizing

detection [116]–[118]. Utilizing noisy quantizer arrays, the

SSR effect was also explored in watermark detection [46].

At first glance, one may cast noise-enhanced image process-

ing problems into the estimation framework, and determine

that the optimal noisy image to be “injected” to the image pro-

cessing system is a suitable randomization of several different

images. This approach, although theoretically sound, underes-

timates the huge complexity of image processing problems due

to image size, image modeling and performance evaluations.

Determination of the optimal image is nearly impossible in

practice. Therefore, in many applications, the noises to be

added are restricted to certain types of noises such as images

generated with i.i.d. Gaussian noises.

Under this i.i.d. noise assumption, except for a few notable

exceptions, the constraint on the noise distribution is no longer

“linear”, and as a result, the results obtained in the previous

section cannot be directly applied. To improve the quality of

noise-enhanced image processing systems, one can use more

than one noise-modified system in parallel, each with the same

or different noise distribution. The final image is obtained via

data fusion of the output images.

Next, let us give a rather counter-intuitive example, a noise-

enhanced image denoising system which improves denoising

performance by adding more noise to the input image.

Example 1. Let us examine the possibility of improving a

median filter via the addition of noise. For a noisy image, the

median filter Med(L) estimates the original image value by

replacing each pixel value with the median value of its (2L+
1)× (2L+ 1) local neighborhood. Let the original noise-free

image be x0, the cost function the MSE between the estimated

image and the noise-free image.

Next, let us examine the denoising performance when the

original image is contaminated by a symmetric Gaussian

mixture noise with mean ±μ and Gaussian variance σ2. In this

experiment, the frequently used ‘Lena’ image of size 512×512
is tested. Here, due to the large dimensionality of the image,

the optimal constant image to be added is very difficult to

find. Alternatively, a random Gaussian noise image with zero

mean and σ2
n variance is applied in the single noise framework.

We consider five different noise-enhanced systems: two single-

noise-modified image processing systems (SNMIPSs) are em-

ployed here with σn = 10 and 30 respectively, one multiple-

noise-modified image processing system (MNMIPS) with 9
subsystems with each noisy image being a random Gaussian

image with zero mean and standard deviation σi = 5(i − 1)
for i = 1, 2, · · · , 9; and another two INMIPS (identical-

noise-modified image processing systems) with σn = 10 and

σn = 30, respectively. The experiment is repeated 30 times

and the system performance is evaluated in terms of their

means and variances as shown in panes (a) and (b) of Fig. 6.

It can be seen that adding some noise to the observed

image can improve the denoising performance significantly.

For example, when σ = 10, for the single noise system, the

mean MSE is reduced from 361.8 for the original system

to 284.1 and 227.8 for SNMIPS with σn = 10 and 30
respectively. The denoising performance is further improved

when an MNMIPS is employed. The MNMIPS using different

noises achieved a MSE of 200.6 and the mean MSE is 260.8
for an INMIPS with σn = 10 and is 153.6 for the INMIPS with

σn = 30. The uncertainty of denoising performance is also

shown to decrease when an MNMIPS is applied. Compared

to the SNMIPSs, the MSE variance of the MNMIPSs are also

much smaller which indicates a more stable and predictable

performance.
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Fig. 6: Denoising performance of the noise modified median

filters for a mixture Gaussian noise contaminated ‘Lena’ image

with μ = 30.
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(a)

(b) (c)

Fig. 7: Comparison of Lesion Detection Performance (a) the

original mammogram image. (b) Detection Performance of

the iterative mode separation (IMS) method [121]. (c) Noise

Enhanced IMS Detection Result [120, Fig. 2].

A. Noise-Enhanced Detection of Micro-Calcifications in Dig-
ital Mammograms

There is clear evidence showing early diagnosis and treat-

ment of breast cancer can significantly increase the chance of

survival for patients. One of the important early symptoms of

breast cancer in mammograms is the appearance of micro-

calcification clusters and so accurate detection of micro-

calcifications is highly desirable to ensure early diagnosis

[119]. Many existing detectors treat lesion detection as an

anomaly detection problem using some particular known back-

ground models. These models are often based on Gaussian

assumptions. However, in practical datasets, the Gaussian

assumptions are often not true. As a result, the detection

performance of those lesion detectors is degraded due to model

mismatch.

In [120], a noise enhancement approach to improve some

micro-calcification detectors has been proposed wherein suit-

able noise is added to the digital mammograms before ap-

plying the detectors. Instead of relying on a prespecified

model and parameters, the additive noise distribution in this

case is learnt adaptively. The framework and algorithms were

tested on a set of 75 representative abnormal mammograms.

They yield superior performance when compared with several

existing classification and detection approaches available in

the literature. One detection result of an image in the testing

dataset is presented in Fig. 7. For more detailed information

and results, please refer to [120].

VI. NOISE-ENHANCED SEARCH ALGORITHMS

Another area where introduction of randomness enhances

performance is optimization. This is especially true when

search for an optimum is likely to get trapped in local minima.

In these cases, randomization assists in the search for optimal

or near-optimal solutions. As an example of a search technique

for the optimum solution, a genetic algorithm reformulates the

parameters of a solution to a chromosome often written as a

sequences of binary bits. The optimum solution is searched

by creating and reproducing sets of chromosomes to find the

optimum solution under predefined conditions. In GA, the new

chromosomes are created by both crossover where a fraction of

the chromosomes are swapped between two chromosomes and

mutation where some bits of the chromosomes are changed

randomly with certain probabilities [122]. With the random-

ness introduced using crossover and mutation, GA avoids

local minima by preventing the population of chromosomes

from becoming too similar to each other. Note that here, the

role of mutation is actually similar to injecting noise into the

system. That is, if the mutation operation changes a bit xi

with probability α, the same result can be obtained by adding

noise ni to it such that the noisy version of the signal xi⊕ni

instead of the noise free xi is used for future optimization.

Here, ‘⊕’ is the XOR operator with and ni is an independent

Bernoulli random variable with p(ni = 1) = α. Also similar to

dithering, choice of a suitable mutation rate is very important

to the system.

In simulated annealing (SA), to search for an optimal

solution, a random sequence of solutions is generated that

eventually converges to a final solution. Unlike many other

approaches, SA involves a temperature parameter T to control

the randomness of the search procedure. Higher the T , better

the chance that SA will accept a solution which is worse than

the current one. This probability goes down as T becomes

smaller. In the limit, T eventually reaches zero and a final

decision is made. The randomness in SA can also be modeled

as noise. Compared to dithering and GA, the noise variance

goes down as T becomes smaller and equals 0 when T = 0
where the randomness disappears.

In learning with discrete finite-state Markov chains, addi-

tion of a suitable amount of noise helps the Markov chain

explore improbable regions of the state space, improving

convergence speed to equilibrium [123]. Findings for noise-

enhanced hidden Markov models and speech recognition were

reported in [124]. The positive effects of noisy was also

shown to speed up the average convergence of the Expectation-

Maximization (EM) algorithm [125], and centroid-based clus-

tering algorithms such as K-means algorithm [126], under

certain conditions.

One interesting application of randomization of inputs is in

the complexity analysis of algorithms. Conventional analysis

of algorithms is carried out in two ways, either by worst-case

or average-case analysis. Neither of these approaches provide

realistic and convincing complexity estimates. In [127], a

smoothed analysis approach is presented where slight random

perturbations of arbitrary inputs are employed to evaluate

algorithm complexity. This approach has been used to show,

for example, that the simplex method for linear programming

has polynomial smoothed complexity.
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VII. NOISE-ENHANCED ASSOCIATIVE MEMORY RECALL

In the last section, we saw how noise can facilitate search-

based optimization procedures, essentially by smoothing out

rough energy surfaces with many local minima. Here we

consider the recall phase of associative memory, which is

essentially a form of nearest-neighbor search. The associative

memory model is how many brain regions such as olfactory

cortex and hippocampus are thought to work, and stochastic

facilitation has been noted in hippocampal memory [128]. The

basic idea is that a set of patterns are memorized using a

learning rule in the training phase.1 Then noisy or incomplete

versions of these patterns are presented during recall: the

memory produces the closest match.

Besides aiding in understanding neurobiology, content-

addressable associative memories are of growing technological

importance in the era of big data. Storage systems need not

only store more and more information (as location-addressed

memory systems also do), but help in determining whether

there is data relevant to the task at hand, and then retrieving

it. The goal is to store a desired set of states—the memories—

as fixed points of a network such that errors in an input

representation of a memory are corrected and the memory

retrieved. One approach for building content-addressable as-

sociative memory is to use ideas from modern coding theory,

where the matrix of synaptic weights is like a code matrix

[129].

Traditional models of associative memory recall have as-

sumed that the algorithm and circuit implementation are

noiseless, however it has recently been shown that adding

noise in algorithm steps can improve the final error proba-

bility achieved [129]. Here we review this coding-theoretic

associative memory architecture and recall algorithm.

The set of patterns stored via the learning algorithm span a

subspace of the larger space of possible patterns, and may be

represented using a bipartite graph with variable nodes and

check nodes that enforce subspace constraints among vari-

ables. The bipartite graph is organized in a clustered fashion

similar to the cortical column structure of the mammalian

brain, where nodes within a cluster are well-connected and

there is a small level of connection between clusters. In

recall, a noisy version of a pattern is presented and a two-

level iterative message-passing algorithm is used to propagate

information so as to perform error correction by local com-

putations to enforce subspace constraints. The first level of

the algorithm operates within a cluster like belief propagation,

whereas the second level spreads information between clusters

like sequential peeling algorithms in decoding [130]. The

algorithms operate iteratively.

As part of noise enhancement, any message passed in the

algorithm is perturbed with additive noise. Messages that

go from variable-to-check nodes have noise level υ whereas

messages that go from check-to-variable nodes have noise

level ν. Let the fraction of external errors (as part of the query)

corrected by a noiseless recall algorithm after T iterations be

Λ(T ) and that of a recall algorithm with internal noise be

1Interestingly, adding noise to training data enhances certain neural network
learning algorithms [124].

Λυ,ν(T ), for the same set of patterns memorized with the

same storage capacity. Further let the T → ∞ values be Λ∗

and Λ∗
υ,ν .

Theorem 4. For an appropriately chosen design (such that
a noiseless query is successful), for the same realizations of
external errors, Λ∗

υ,ν ≥ Λ∗.

The high-level idea why a noisy network outperforms

a noiseless one comes from understanding stopping sets—

realizations of external errors where sequential peeling cannot

make progress towards error correction. Stopping sets shrink

as internal noise is added, and so in the T → ∞ limit,

the noisy network can correct any error pattern that can be

corrected by the noiseless version and it can also get out

of stopping sets that cause the noiseless network to fail.

Although the theorem does not say whether the noisy neural

network may need more iterations to achieve the same error

correction performance, empirical experiments demonstrate

many settings where even the running time improves when

using a noisy network.

Noise facilitates recall in associative memory, but since

the basic approach is the same as in other iterative message-

passing algorithms, whether for decoding low-density parity-

check codes or other applications [131], we conjecture the

same stochastic facilitation property will hold in finitary

regimes for these other problems (cf. [132] and references

therein).

VIII. CONCLUSION

In this paper, we presented a state-of-the-art review of

several seemingly unrelated research areas with the underlying

common theme of system performance enhancement due to

introduction of some noise or random transformations in

the system. Such phenomenon had been observed in many

biological systems over the years but had not been explored

in the context of performance enhancement of information

systems. Most of our presentation was illustrative in nature

in that many examples were provided. In some instances

such as detection and estimation, the noise-enhanced system

framework has been formulated mathematically and optimum

noise to be introduced has been determined. It has been

observed that noise has a tendency to convexify problems

which leads to improved performance. This is the case in

detection, where stochastic facilitation is intimately related

to randomized decision rules [133]. However, mathematical

formulation of this bio-inspired phenomenon in most cases

is still in its infancy and much research still needs to be

done. Mathematical models to characterize the phenomenon

need to be developed and achievability results in terms of

performance need to be derived. We presented a number of

examples where promising and encouraging results have been

obtained. Finding new areas where this phenomenon could be

exploited is expected to be a fruitful endeavor.

ACKNOWLEDGMENT

The authors would like to thank Dr. Willard Larkin for his

patience and valuable advice during the preparation of this

This is an author-produced, peer-reviewed version of this article.  The final, definitive version of this document can be found online at Proceedings of IEEE, 
published by IEEE. Copyright restrictions may apply.  doi:  10.1109/JPROC.2014.2341554



PROCEEDINGS OF THE IEEE, SUBMITTED 12

paper. Aditya Vempaty was very helpful in the preparation of

the final version of the paper.

REFERENCES

[1] L. Cohen, “The history of noise,” IEEE Signal Process. Mag., vol. 22,
no. 6, pp. 20–45, Nov. 2005.

[2] B. Kosko, Noise. Viking Adult, 2006.
[3] T. M. Cover and J. A. Thomas, Elements of Information Theory. New

York: John Wiley & Sons, 1991.
[4] E. L. Lehmann, Testing Statistical Hypotheses, 2nd ed. John Wiley

& Sons, 1986.
[5] S. M. Kay, Fundamentals of Statistical Signal Processing: Estimation

Theory. Upper Saddle River, NJ: Prentice Hall PTR, 1993.
[6] M. Mohri, A. Rostamizadeh, and A. Talwalkar, Foundations of Machine

Learning. Cambridge, MA: MIT Press, 2012.
[7] W. Maass, “Noise as a resource for computation and learning in

networks of spiking neurons,” Proc. IEEE, vol. 102, no. 5, pp. 860–880,
May 2014.

[8] F. Moss, L. M. Ward, and W. G. Sannita, “Stochastic resonance and
sensory information processing: a tutorial and review of application,”
Clin. Neurophysiol., vol. 115, no. 2, pp. 267–281, Feb. 2004.

[9] M. D. McDonnell and L. M. Ward, “The benefits of noise in neural
systems: bridging theory and experiment,” Nat. Rev. Neurosci., vol. 12,
no. 7, pp. 415–426, Jul. 2011.

[10] E. Sejdic and L. A. Lipsitz, “Necessity of noise in physiology and
medicine,” Comput. Methods Programs Biomed., vol. 111, no. 2, pp.
459–470, Aug. 2013.

[11] M. Wang, R. Sun, W. Huang, and Y. Tu, “Internal noise induced
pattern formation and spatial coherence resonance for calcium signals
of diffusively coupled cells,” Physica A.

[12] T. J. Hamilton, S. Afshar, A. van Schaik, and J. Tapson, “Stochastic
electronics: A neuro-inspired design paradigm for integrated circuits,”
Proc. IEEE, vol. 102, no. 5, pp. 843–859, May 2014.

[13] L. G. Roberts, “Picture coding using pseudo-random noise,” IRE Trans.
Inf. Theory, vol. IT-8, no. 2, pp. 145–154, Feb. 1962.

[14] L. Schuchman, “Dither signals and their effect on quantization noise,”
IEEE Trans. Commun. Technol., vol. 12, no. 4, pp. 162–165, Dec. 1964.

[15] J. O. Limb, “Design of dither waveforms for quantized visual signals,”
Bell Syst. Tech. J., vol. 48, no. 7, pp. 2555–2582, Sep. 1969.

[16] N. S. Jayant and L. R. Rabiner, “The application of dither to the
quantization of speech signals,” Bell Syst. Tech. J., vol. 51, no. 6, pp.
1293–1304, July-Aug. 1972.

[17] R. M. Gray and T. G. Stockham, Jr., “Dithered quantizers,” IEEE Trans.
Inf. Theory, vol. 39, no. 3, pp. 805–812, May 1993.

[18] R. A. Wannamaker, S. P. Lipshitz, J. Vanderkooy, and J. N. Wright, “A
theory of nonsubtractive dither,” IEEE Trans. Signal Process., vol. 48,
no. 2, pp. 499–516, Feb. 2000.

[19] R. M. Gray and D. L. Neuhoff, “Quantization,” IEEE Trans. Inf.
Theory, vol. 44, no. 6, pp. 2325–2383, Oct. 1998.

[20] S. Zozor and P.-O. Amblard, “Noise-aided processing: Revisiting
dithering in a Σ Δ quantizer,” IEEE Trans. Signal Process., vol. 53,
no. 8, pp. 3202–3210, Aug. 2005.

[21] M. D. McDonnell, N. G. Stocks, C. E. M. Pearce, and D. Abbott,
Stochastic Resonance: From Suprathreshold Stochastic Resonance to
Stochastic Signal Quantization. Cambridge: Cambridge University
Press, 2008.

[22] R. Benzi, A. Sutera, and A. Vulpiani, “The mechanism of stochastic
resonance,” J. Phys. A: Math. Gen., vol. 14, no. 11, pp. L453–L457,
Nov. 1981.

[23] L. Gammaitoni, P. Hänggi, P. Jung, and F. Marchesoni, “Stochastic
resonance,” Rev. Mod. Phys., vol. 70, no. 1, pp. 223–287, Jan. 1998.

[24] V. S. Anishchenko, A. B. Neiman, F. Moss, and L. Schimansky-
Geier, “Stochastic resonance: noise-enhanced order,” Physics-Uspekhi,
vol. 42, no. 1, pp. 7–36, 1999.

[25] J. J. Collins, C. C. Chow, and T. T. Imhoff, “Stochastic resonance
without tuning,” Nature, vol. 376, no. 6537, pp. 236–238, Jul. 1995.

[26] K. Lorincz, Z. Gingl, and L. B. Kiss, “A stochastic resonator is able
to greatly improve signal-to-noise ratio,” Phys. Lett. A, vol. 224, no.
1–2, pp. 63–67, Dec. 1996.

[27] S. M. Bezrukov and I. Vodyanoy, “Stochastic resonance in non-
dynamical systems without response thresholds,” Nature, vol. 385, no.
6614, pp. 319–321, Jan. 1997.

[28] F. Chapeau-Blondeau, “Input-output gains for signal in noise in
stochastic resonance,” Phys. Lett. A, vol. 232, no. 1–2, pp. 41–48, Jul.
1997.

[29] F. Chapeau-Blondeau and X. Godivier, “Theory of stochastic resonance
in signal transmission by static nonlinear systems,” Phys. Rev. E,
vol. 55, no. 2, pp. 1478–1495, Feb. 1997.

[30] F. Chapeau-Blondeau, “Periodic and aperiodic stochastic resonance
with output signal-to-noise ratio exceeding that at the input,” Int. J.
Bifurc. Chaos, vol. 9, no. 1, pp. 267–272, Jan. 1999.

[31] P. Hänggi, M. E. Inchiosa, D. Fogliatti, and A. R. Bulsara, “Nonlinear
stochastic resonance: The saga of anomalous output-input gain,” Phys.
Rev. E, vol. 62, no. 5, pp. 6155–6163, Nov. 2000.

[32] F. J. Castro, M. N. Kuperman, M. Fuentes, and H. S. Wio, “Experimen-
tal evidence of stochastic resonance without tuning due to non-gaussian
noises,” Phys. Rev. E, vol. 64, no. 5, p. 051105, Oct. 2001.

[33] Z. Gingl, P. Makra, and R. Vajtai, “High signal-to-noise ratio gain by
stochastic resonance in a double well,” Fluct. Noise Lett., vol. 1, no. 3,
pp. L181–L188, Sep. 2001.

[34] G. P. Harmer, B. R. Davis, and D. Abbott, “A review of stochastic
resonance: Circuits and measurement,” IEEE Trans. Instrum. Meas.,
vol. 51, no. 2, pp. 299–309, Apr. 2002.

[35] P. Makra, Z. Gingl, and L. B. Kish, “Signal-to-noise ratio gain in non-
dynamical and dynamical bistable stochastic resonators,” Fluct. Noise
Lett., vol. 2, no. 3, pp. L145–L153, Sep. 2002.
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