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Abstract

The mid 20t century saw the publication of two pioneering works in the fields of
neural networks and coding theory, respectively the work of McCulloch and Pitts in
1943, and the work of Shannon in 1948. The former paved the way for artificial neural
networks while the latter introduced the concept of channel coding, which made reliable
communication over noisy channels possible.

Though seemingly distant, these fields share certain similarities. One example is
the neural associative memory, which is a particular class of neural networks capable of
memorizing (learning) a set of patterns and recalling them later in the presence of noise,
i.e., retrieving the correct memorized pattern from a given noisy version. As such, the
neural associative memory problem is very similar to the one faced in communication
systems where the goal is to reliably and efficiently retrieve a set of patterns (so called
codewords) from noisy versions.

More interestingly, the techniques used to implement artificial neural associative
memories look very similar to some of the decoding methods used in modern graph-
based codes. This makes the pattern retrieval phase in neural associative memories very
similar to iterative decoding techniques in modern coding theory.

However, despite the similarity of the tasks and techniques employed in both prob-
lems, there is a huge gap in terms of efficiency. Using binary codewords of length n,
one can construct codes that are capable of reliably transmitting 2" codewords over a
noisy channel, where 0 < r < 1 is the code rate. In current neural associative memo-
ries, however, with a network of size n one can only memorize O(n) binary patterns of
length n. To be fair, these networks are able to memorize any set of randomly chosen
patterns, while codes are carefully constructed. Nevertheless, this generality severely
restricts the efficiency of the network.

In this thesis, we focus on bridging the performance gap between coding techniques
and neural associative memories by exploiting the inherent structure of the input patterns
in order to increase the pattern retrieval capacity from O(n) to O(a™), where a > 1.
Figure 1 illustrates the idea behind our approach; namely, it is much easier to memorize
more patterns that have some redundancy like natural scenes in the left panel than to
memorize the more random patterns in the right panel.



Figure 1: Which one is easier to memorize? Van Gogh’s natural scenes or Picasso’s cubism
paintings?

More specifically, we focus on memorizing patterns that form a subspace (or more
generally, a manifold). The proposed neural network is capable of learning and reliably
recalling given patterns when they come from a subspace with dimension k < n of the
n-dimensional space of real vectors. In fact, concentrating on redundancies within pat-
terns is a fairly new viewpoint. This point of view is in harmony with coding techniques
where one designs codewords with a certain degree of redundancy and then use this
redundancy to correct corrupted signals at the receiver’s side.

We propose an online learning algorithm to learn the neural graph from examples
and recall algorithms that use iterative message passing over the learned graph to elimi-
nate noise during the recall phase. We gradually improve the proposed neural model to
achieve the ability to correct a linear number of errors in the recall phase.

In the later stages of the thesis, we propose a simple trick to extend the model from
linear to nonlinear regimes as well. Finally, we will also show how a neural network
with noisy neurons—rather counter-intuitively—achieves a better performance in the re-
call phase.

Finally, it is worth mentioning that (almost) all the MATLAB codes that are used
in conducting the simulations mentioned in this thesis are available online at https:
//github.com/saloot/NeuralAssociativeMemory.

Keywords: Neural associative memory, error correcting codes, codes on graphs,
message passing, stochastic learning, dual-space method, graphical models
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Résumé

Le milieu du 20 siecle a vu la publication de deux ouvrages pionniers dans les
domaines de réseaux de neurones et la théorie des codes, respectivement le travail de
McCulloch et Pitts dans 1943 et le travail de Shannon en 1948. Le premier a ouvert la
voie a de réseaux de neurones artificiels et le dernier a introduit le concept de codage de
canal, qui fait fiable communication sur les canaux bruyants possible.

Bien qu’apparemment lointain, ces domaines partagent certaines similitudes. Un
exemple est la mémoire associative de neurones, ce qui est une classe particuliere de
réseaux de neurones capables d’'mémorisation (apprentissage) d’un ensemble de motifs
et de les rappeler ultérieurement en présence de bruit, soit, a extraire le motif mémorisé
correcte a partir d’une version bruitée donné. En tant que tel, I’probleme de mémoire
associative de neurones est tres similaire a celle qu’on rencontre en systémes des com-
munication ot le but est de récupérer un ensemble de motifs (appelés mots de code) de
maniere fiable et efficace a partir de versions bruyants.

Plus intéressant encore, les techniques utilisées pour réaliser des mémoires associa-
tives de neurones artificiels ressemblent beaucoup a certains des procédés de décodage
utilisés dans les codes basés sur des graphes. Cela rend la phase de récupération de mo-
tifs dans les mémoires associatives de neurones trés similaires a des techniques itératives
de décodage dans la théorie du codage moderne.

Cependant, malgré la similitude des taches et des techniques employées dans les
deux pro-bleémes, il ya un écart énorme en termes d’efficacité. En utilisant de mots de
code binaires de longueur n, on peut construire des codes qui sont capables de trans-
mettre 2" mots de code de fagon fiable sur un canal bruité, ou 0 < r < 1 est le taux
de code. Dans les mémoires associatives neuronaux actuels, cependant, avec un réseau
de taille n un ne peut mémoriser que O(n) motifs binaires de longueur n. Pour &tre
juste, ces réseaux sont capables de mémoriser un ensemble de motif qui sont choisis de
facon aléatoire, tandis que les codes sont soigneusement construits. Néanmoins, cette
généralité restreint séverement 1’efficacité du réseau.

Dans cette these, nous nous concentrons sur la réduction de 1’écart de performance
entre les techniques de codage et de mémoires associatives de neurones artificiels en
exploitant la structure inhérente a les motifs afin d’augmenter la capacité de récupération
de motifs de O(n) a O(a™), ot a > 1. La figure 2 illustre 1’idée derriére notre approche,
a savoir, il est beaucoup plus facile 2 mémoriser d’autres motifs qui ont une certaine
redondance comme des scenes naturelles dans le panneau de gauche que de mémoriser
les motifs plus aléatoires dans le panneau de droite.



Figure 2: Lequel est le plus facile 8 mémoriser? Scénes naturelles de Van Gogh ou les
peintures de cubisme de Picasso?

Plus précisément, nous nous concentrons sur la mémorisation de modeles qui for-
ment un sous-espace (ou plus généralement, un variété). Le réseau de neurones proposé
est capable d’apprendre et de maniere fiable rappelant motifs donnés quand ils provi-
ennent d’un sous-espace de dimension £ < n de I’espace a n dimensions des vecteurs
réels. En fait, en se concentrant sur les redondance dedans des motifs est assez un nou-
veau point de vue. Ce point de vue est en harmonie avec les techniques de codage ou
I’on congoit des mots de code avec un certain degré de redondance et ensuite utiliser
cette redondance pour corriger les signaux corrompus a coté du récepteur.

Nous proposons un algorithme d’apprentissage "en ligne" pour apprendre le graphe
de neurones a partir d’exemples et d’algorithmes de rappel qui utilisent itératif passage
de messages sur le graphe appris a éliminer le bruit pendant la phase de rappel. Nous
améliorons progressivement le modele neuronal proposé pour atteindre la capacité de
corriger un certain nombre d’erreurs linéaire dans la phase de rappel.

Dans les derniers stades de la theése, nous proposons une truc simple d’étendre le
modele de linéaire a des régimes non-linéaires ainsi. Enfin, nous allons également
montrer comment un réseau de neurones avec des neurones bruyants, plutdt contre-
intuitivement, réalise une meilleure performance dans la phase de rappel.

Finalement, il faut mentionner que (presque) tous les codes MATLAB qui sont util-
isés dans I’exécution des simulations mentionnées dans cette these sont disponibles en
ligne a https://github.com/saloot/NeuralAssociativeMemory.

Mots-clés: Mémoire associative de neurones, codes correcteurs d’erreurs, les codes
sur les graphes, le passage de messages, I’apprentissage stochastique, la méthode a es-
pace dual, les modeles graphiques
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Chapter 1

Introduction

I am really bad at typing. Without the help of an automatic spell-checker, anything that I
write, including this thesis, would most certainly contain many typos, like this onee! Yet,
both you and I could easily detect and correct many misspelled words, and in many circum-
stances even uncounsiously (well, unconsciously, thanks to the spell-checker!).

This ability of our brains, among many others, is truly staggering, especially for someone
whose background is in designing coding techniques to deal with the problem of noise in
communication channels. There, we face the same problem, since what the receiver receives
is not exactly what the transmitter has transmitted, due to the noise in the channel. Thus, we
must find a way to infer what the transmitter had in mind from a corrupted version that we
have at hand.

The fact that we enjoy using our cellphones or laptops to receive calls or download files
in a noisy environment such as the wireless medium means that we have been successful
in designing such coding techniques. However, finding how such techniques relate to their
equivalent in neuronal networks (e.g. our brain) is certainly worth more investigations.

This is how the project that lead to this thesis was initiated. Fascinated by these similar-
ities in the objectives, and motivated by recent advances in applying neural networks to the
design of better coding methods [1,2], we set out to study the reverse problem: that of using
theoretical methods in coding theorey to better understand neural networks.

We encountered many examples that were similar in nature to communication over a
noisy channel [3,4]. In fact, the neural medium in the nervous system is a noisy environment
and the messages neurons exchange among each other is susceptible to noise [5]. So it would
be interesting to see how a system that is built from "unreliable" components could perform



Chapter 1: Introduction

such delicate and accurate tasks as our nervous system is capable of. One immediate guess
would be to check if there are special coding techniques performed by neurons to deal with
the communication noise over the neural channel [3,4].

Nevertheless, the internal noise is not the only source of uncertainty in the nervous sys-
tem as it should also be able to deal with external sources of noise. There are numerous
situations where the system should make the correct decision from corrupted and partial in-
formation. The misspelled words example which we mentioned earlier is a very good case
in point. Another good example is furnished by neural associative memories, which will be
the main focus of this thesis.

1.1 Neural Associative Memories

Briefly speaking, neural associative memories are a particular class of neural networks ca-
pable of memorizing a given set of patterns and recalling them later from corrupted/partial
cues. Therefore, an associative memory has a learning and a recall phase. In the learn-
ing phase, the proposed approach determines the connectivity matrix of the weighted neural
graph from the given patterns. The learning is performed in such a way that the memorized
patterns are the stable states of the system, meaning that the network does not converge to a
different pattern once initialized with a memorized pattern.!

During the recall phase, we are given a noisy version of a memorized pattern, where
certain entries are missing or are corrupted due to noise. The neural system should then find
and retrieve the correct pattern from this partial cue, utilizing the connections in the neural
graph that has captured information about the memorized patterns in the learning phase.

Since neural associative memories also involve dealing with noise and corruptions in the
retrieval phase, they are close to what coding techniques attempt to achieve in communi-
cation systems, namely, to eliminate the effect of noise in the communication channel to
retrieve the correct "codeword" from a corrupted received version.

More interestingly, both methods use similar techniques to accomplish a similar task: in
neural associative memories we have a (neural) graph and a set of update rules that dictate
the message passing process which is responsible to eliminate noise during the recall phase;
and in modern coding techniques, such as LDPC or Raptor codes, we have a graph which
is accompanied by a message passing process to eliminate the effect of channel noise and to
yield the correct transmitted pattern.

To be more precise, this model describes an auto-associative memory. In hetero-associative memories
we have virtually the same concept, except now we memorize the pair-wise relation between two patterns of
different length, e.g. the name of an object and its image.

4



1.2 Problem Formulation

1.2 Problem Formulation

Despite the similarity in the task and techniques employed in both problems, there is a huge
gap in terms of efficiency. Using codewords of length n, one can construct codes that are
capable of reliably transmitting 2" structured codewords over a noisy channel, where 0 <
r < 1 is the code rate. In current neural associative memories, however, with a network of
size n one can only memorize O(n) random patterns of length n.

Bridging this efficiency gap is the main focus of this thesis. More specifically, we are
interested in designing a neural network which is capable of

1. Learning a set of C patterns (vectors) of length n in an "online" and gradual manner,
i.e., being able to learn from examples.

2. Correcting a linear (in n) number of errors during the pattern retrieval (recall) phase.

3. Ensuring that the pattern retrieval capacity is exponential, i.e. C' &< ", for some a > 1.

1.3 Solution Idea and Overview

To achieve these properties, we will borrow ideas from statistical learning and coding tech-
niques to accomplish the first two properties. To make exponential pattern retrieval capacities
possible, we focus on memorizing patterns with suitable regularities and structures. To ex-
pand this concept, note that the mainstream work on neural associative memories requires
the network to be able to memorize any set of randomly chosen patterns of length n. This
requirement surely gives the proposed model a certain sense of generality. Nevertheless, this
generality seems to be severely restricting the efficiency of the network, since a similar model
that only concentrates on structured patterns can achieve much higher retrieval capacities in
modern coding techniques. In fact, it has been shown that any method for choosing the
n x (n — 1) neural weights will result in a neural associative memory that can not memorize
more than 2n random patterns [6].

Furthermore, real-world scenarios seem to support this idea as well, as illustrated in
Figure 1.1: it is much easier to memorize more patterns that have some regularity and redun-
dancy, as in natural scenes shown in the left panel, than to memorize (seemingly) random
images, like the one in the right panel. In addition, dealing with any corruption in the left
image is certainly much easier than in the one on the right.
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Figure 1.1: Which one is easier to memorize?

Therefore, our goal in this thesis would be to propose a neural network which is capable
of memorizing exponentially many patterns that contain suitable regularities. We propose
an online learning algorithm to learn the neural graph from examples and recall algorithms
that use iterative message passing over the learned graph to eliminate noise during the recall
phase.

We start with a failure: in Chapter 4 we explain our first attempt based on memorizing
patterns that have low correlation to each other improves the capacity but fails to achieve the
exponential benchmark. Thus, we move to a different model and in Chapter 5 we focus on
the patterns that form a subspace. This change in the strategy pays off as we could achieve
exponential pattern retrieval capacities. We gradually improve the proposed neural model
through Chapters 6 to 8 to achieve the ability to correct a linear number of errors in the recall
phase as well.

In the later stages of the thesis, we propose a simple trick to extend the model from linear
to nonlinear regimes, i.e. instead of considering only the patterns that come from a subspace,
we also consider those that form a manifold. Chapter 9 will be dedicated to describing this
idea in more details.

Finally, in Chapter 10 we will make a practical modification to the proposed model by
making the neurons in the proposed model noisy as well. This is closer the real neurons,
where the firing rate is a random number sampled from a distribution whose mean and vari-
ance depend on the neurons’ inputs. Rather surprisingly and counter-intuitively, we show
that this modification actually improves the network and we could achieve a better perfor-
mance in the recall phase.

Throughout the thesis, it is assumed that the reader is familiar with the basic concepts of
neural networks and coding techniques. If that is not the case, a short introduction on either
topics is provided in Chapter 2 for the interested reader.
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1.4 Our Model

The models we are going to use in this thesis all inherit basic properties of artificial neural
networks, namely, each neuron calculates a weighted sum over the messages received from
its neighbors and (possibly) applies a non-linear function to update its state and send infor-
mation to its neighbors (for a short introduction on principles of neural networks see Chapter
2).

However, there are some details that distinguish our model from other models in the
mainstream work on neural associative memories.> More specifically, the key properties of
the model used in this thesis are

1. The patterns we are going to memorize contain some sort of regularity. This regularity
can be of the form of having low correlation with each other or belonging to a subspace
or a manifold (of the space of all possible patterns). This is the keypoint in this thesis
and makes our work different from the mainstream approaches in designing associative
memories where there are no restrictions on the patterns.

2. The state of neurons are integers from a finite set of non-negative values Q = {0,1,...,Q—
1}. Note that in general, () > 2 and, thus, our model is different from the binary neural
models for such cases. The integer-valued states could be interpreted as the short-term
(possibly quantized) firing rate of neurons.

3. The neural graph is bipartite (except for the network in Chapter 4).

4. Since we work with integer-valued neurons, the noise in the recall phase is also integer-
valued (in the range of {—S. ..., S}, for some S > 0). This noise can be interpreted as
a neuron missing a spike or firing more spikes than it should. Nevertheless, note that
the same noise model can easily be extended to contain "erasures" in the data (loss of
information) as well. For instance, if a position is erased, we can treat it as a 0, which
is equivalent to having a noise value that has the same magnitude as the correct symbol
but with the opposite sign (although one could benefit from knowing the position of
erasures to design more efficient algorithms).

The above properties make the proposed model very similar to the graphical model used
to decode codes on graphs, such as LDPC codes. As we will see later, the algorithms pro-
posed in this thesis look very similar to message passing techniques to decode such codes.
However, there are two significant differences between the model and proposed algorithm
here and the standard Belief Propagation (BP) technique used to decode LDPC codes

2Note that despite these differences, our model is still a fall within the domain of artificial neural networks,
and as such, can be implemented by relevant algorithms.
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1. The neurons can not transmit different messages over different outgoing links. Every-
thing that a neuron transmits goes to all its neighbors.

2. A neuron can not have access to the individual messages received over its links from its
neighbors. The only quantity that is available to a neuron during the decision-making
process is a weighted sum over the received messages.

Both these differences are imposed by the simple nature of neurons and make it diffi-
cult to apply exactly the same techniques (like BP) to perform the recall phase in a neural
associative memory.

Why this model?

The considered model is appealing in several senses. First of all, the "regularity" assumption
in the patterns makes it possible to design efficient associative memories, as will be seen later
on. Secondly, the non-binary neural model means that it is possible to have exponentially
many integer-valued patterns in the dataset that also form a subspace or manifold. This
makes it possible to have an exponential pattern retrieval capacity.

Furthermore, the non-binary assumption also enables our model to integrate both rate
codes and time codes in a real neuronal network (see Chapter 2 for the definition of rate
and time codes in neurons). More specifically, the integer-valued state of a neuron could be
considered as its short term firing rate (rate code) or if we divide the time interval into very
small "bins", the binary expansion of the same quantity can be considered as the firing pattern
transmitted by the neuron in each bin (for instance in a time interval of 3 bins, () = 7 and the
pattern 100 can be represented by 4 as the state of the neuron). This is particularly pleasing
because it makes future refinements easier and also help us to have a more biologically-
relevant model.

1.5 Where Might This Thesis Be Useful?

The results provided in this thesis are mostly theoretical. However, there are numerous
practical applications where such theory could help. For instance, due to their structure and
capability to retrieve patterns from partial information, associative memories have natural ap-
plications in content-addressable memories [7] as well as search engine algorithms that use
not only users’ inputs but also the association between the keywords in the search domain
(see [8] for example). The inefficiency of current neural associative memories in reliably

3Note that we might not be able to get similar pattern retrieval capacities in a binary model with our setting
since there might not be exponentially many binary patterns in a subspace of 0, 1™.
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memorizing a large number of patterns acts as a barrier in deploying these algorithms in
large-scale practical systems. By proposing a method to increase the pattern retrieval capac-
ity, this thesis might make it one step closer to widespread adoption in practical systems.

Furthermore, and as mentioned earlier, the algorithms proposed in this thesis have close
relations to those performed by codes on graphs (e.g. LDPC and Raptor codes). Chapter 10
provides a surprising result that might be of interest for practical graph-based decoding tech-
niques, especially when the length of the codewords is limited.

1.6 Some Final Preliminary Remarks

Before moving to the technical parts of the thesis, I would like to emphasize one point
(again), as it is really close to my heart: the project that lead to this thesis was initiated to
explore different applications of coding techniques (and the theory behind them) in relevant
biological systems, especially artificial neural networks. I hope that the examples mentioned
in the beginning of this introductory chapter have convinced the reader that the results given
in this thesis are just scratching the surface and there are numerous other potential appli-
cations. This belief is supported by the fact that there is a rich theoretical background on
graphical models and algebraic systems in coding theory which could be useful in analyzing
(and designing artificial) neural networks as they have graphical models deep in their core.*

“For the sake of completeness, one could also think of other biological systems that deal with graphs, for
instance Gene Regulatory Networks, where similar arguments apply.






Chapter 2

A Short Introduction to Neural Networks

This chapter is dedicated to very briefly introducing the main concepts of neuronal and neural
networks. We start by providing a short description of the anatomy of a neuron, how neurons
communicate via electrical pulses and the way a neuron encodes information based on the
received input from its neighbors.

Then, we introduce the artificial neuron model, discuss the way it encodes information
and introduce the model we will be using in this thesis.

2.1 Anatomy of a Neuron

Neuronal systems are made up of small cells called neurons. Each neuron is composed of
four main parts, as shown in Figure 2.1:

1. Soma, which is the main cell body,

2. Axon, which carries neural messages (called action potential) towards the neighboring
neurons,

3. Synapses, where an electrical signal is transformed into chemical form and

4. Dendrites, which re-transform chemical signals back into electrical format and trans-
mit them to the soma.

11
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Figure 2.1: Anatomy of a neuron [9]

The cell body or soma of a typical cortical neuron ranges in diameter from about 10 to
50 pum [10]. Length of dendrites vary from a few microns up to 100 microns. In contrast,
axons are much longer and a single axon could even traverse the whole body.

The soma receives signals from dendrites and transmits another signal based on the re-
ceived input along the axon. The structure of a dendrite, which contains many branches,
allows a neuron to receive signals from many other neurons via synapses. The axon makes
an average of 180 synaptic connections with other neurons per mm of length while the den-
dritic tree receives, on average, 2 synaptic inputs per pum [10].

However, the most important feature of neurons is their specialty in transmitting electri-
cal pulses. These pulses, usually called action potentials or spikes, makes neural message
passing and information processing possible.

12
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Action Potential

Briefly speaking, an action potential is generated as a result of chemical reaction at a given
neuron. Each neuron has many ion channels that allow ions, predominantly sodium (Na™),
potassium (K1), calcium (Ca®*), and chloride (C1~), to move into and out of the cell. This
transform in ion concentration level creates a potential difference, which propagates through-
out the cell as an electric pulse(from soma via axon or from dendrites towards soma). In
synapses, the action potential results in the release of chemicals known as neurotransmitters,
which in return triggers (or inhibits) an action potential in neighboring neurons.!

The shape of an action potential is shown in Figure 2.2. It is an electrical pulse with
amplitude of almost 100mV and approximate width of 1ms.

Due to structure of the neuron and ion channels, it is impossible to generate an action
potential right after another. One must wait a certain amount of time before the neuron
is able to generate the next action potential. This period is called the absolute refractory
period. Moreover, for a longer interval after generation of an action potential, producing
another action potential is more difficult. This longer interval is called relative refractory
period.

Action potentials traverse along the axon in an active process, meaning that the ion cur-
rents are generated continuously along the way through the axon membrane. This prevents
an action potential to become severely attenuated (and vanishing eventually). Nevertheless,
in a particular class of neurons, where there is myelin sheath around the axon, spikes could
travel along the axon without being regenerated in distances up to 1mm. Then, action po-
tentials are regenerated in openings in the myelin sheath called Ranvier nodes. This process
is known as saltatory transmission which is much faster and resembles the transmission of
electrical signals along power transmission lines.

Axons terminate at synapses where the electrical pulse opens ion channels producing an
influx of C'a®* which leads to the release of a neurotransmitter. The neurotransmitter binds
to the dendrites of the neighboring neuron(s) causing ion-conducting channels to open [10].
Depending on the nature of the ion flow, the synapses can either be excitatory, where it
contributes to triggering another action potential, or inhibitory, where it tries to inhibit the
neighboring neurons to generate an action potential.

"More specifically, under resting conditions, the potential inside the cell membrane of a neuron is about
—70mV relative to that of the surrounding medium. In this case, the cell is said to be polarized. When pos-
itively charged ions flow out of the cell (or negative ions flow inward), a current is created which makes the
membrane potential more negative. This is called hyperpolarization. The reverse process, in which positive
ions move inward, makes the membrane potential less negative (or even positive), a process called depolariza-
tion. If a neuron is depolarized sufficiently to raise the membrane potential above a threshold level, the neuron
generates an action potential [10].

13
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Figure 2.2: The schematic of an action potential (from Wikimedia)

Rate Coding, Temporal Coding

A single action potential could carry a relatively small amount of information, e.g., signaling
the existence or lack of a stimulus. Nevertheless, a train of action potentials, usually called a
spike train, could be more informative as the group of action potentials provide more granular
information regarding stimulus or the output of previous processing stages.

However, there is not a universal agreement on how exactly spike trains encode informa-
tion. In certain cases, such as sensory neurons, what seems to be important is the number
of spikes in a short time frame, rather than their relative timing. In fact, it seems that rate
coding is the main way of encoding information in the majority of cases [11].

On the other hand, there is temporal coding where the relative timing of spikes play an
important role in encoding information. Although this makes the system extremely sensitive
and prone to errors, there are pieces of evidence that in vital situations where there is not
enough time for calculating a short-term average on the number of spikes (such as escaping
from a nearby threat), spike timing plays an important role in the decision making process

14
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[11].

2.2 Neuronal Networks

A neuron on its own does not have extensive information processing capabilities. However,
when neurons are connected, their computational power grows enormously. A group of
inter-connected neurons constitutes a network. There are two important factors that affect
the properties of such networks: the number of synapses between the neurons and the weights
of these synapses. By appropriately adjusting these two parameters, one can obtain different
networks performing various tasks.

A neural network can then be characterized be a connectivity matrix W that specifies the
connection weights between any pair of neurons. More specifically, the entry W;; represents
the weight of the connection from neuron 7 to neuron j. If W;; > 0, the connection is
excitatory. A negative weight represents an inhibitory connection and a 0 means the two
neurons are not connected. Note that the matrix need not be symmetric (and in fact it often
1s not).

Network dynamics: the firing rate model

Neurons interact by exchanging electrical messages over this network. There are different
models to capture the influence of neurons over their neighbors in the neural network. One
simple yet intuitive approach is to focus on the rate coding and derive how the firing rate
of pre-synaptic neurons affect that of the post-synaptic one [10]. To this end, let /; and v
be electrical current to soma and the firing rate of the post-synaptic neuron, respectively.
Furthermore, let u; for = 1, ..., n be the firing rates of the n pre-synaptic neurons that are
connected to the post-synaptic neurons with a synaptic efficacy (weight) of w;. Figure 2.3
illustrates the model.

Now if a spike from a pre-synaptic neuron j arrives at time ¢;, it contributes to I, accord-
ing w; * K,(t), where K is the synaptic kernel [10] (for simplicity, we consider the same
kernel for all synapses). Assuming that the spikes at a single synapse are independent, the
total contribution of the pre-synaptic neuron z to I is:

wy YKt —1) = [ K= )y (7)dr, @.1)
t; <t —©

where (1) is the firing rate of neuron j at time 7.2

Note that this equation is an approximation that holds only when neurons have many pre-synaptic con-
nections with uncorrelated firing responses.

15



Chapter 2: A Short Introduction to Neural Networks

Output ‘

Weights
Input ' . . ‘
(V5] Us Us Uy

Figure 2.3: Firing rate model for a simple neural network

Therefore, by summing up the contribution of all pre-synaptic neurons we obtain

n t
L=%w, / Ky(t — 7)uy(r)dr. 2.2)
j=1 I
We can rewrite the above equation as the differential equation
dl -
Ts = —Is + ijuj' (23)
dt =

Finally, we can estimate the output firing rate, v, as a function of I, i.e. v = F(Iy).
Different choices for F'(.) can be considered, e.g., the sigmoid function or a linear-threshold
function F(I) = [I; — 0], where 0 is the firing threshold.

Hence, the output of the network is governed by the dot product of weight vector w and
the input firing rates, u. In fact, this is a crucial property of neuronal networks since by
adjusting w, they can perform different dynamical behaviors which help them to accomplish
different tasks including memorizing, learning and pattern recognition.

Network topology

Based on the received (weighted) integration of signals, neuron send proper responses to
their neighbors. Thus, an important factor that contributes significantly to accomplishing a
specific information processing task is the network topology. In cortex and other areas of the
brain, we find three major interconnection types [10]:
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e Feed-forward: these connections bring signals from an earlier stage and possibly pro-
cess it along the way.

e Recurrent: recurrent synapses connect neurons in a particular processing stage.
e Top-down: these interconnections bring a signal back from later processing stage.

What makes neural networks quite unique is their ability to adjust the network topology
and connection weights according to the task at hand. This process is usually referred to as
learning.

Learning and Plasticity

Neural networks are plastic in the sense that they can learn what to do and how to do it.
In this context, the connection weights in a neural graph are adjusted such that a particular
relationship is constructed between the input and output of the network. Depending on the
circumstances, a learning algorithm can be

1. Supervised: in supervised learning, we give both input and required (correct) output to
the network. Hence, the network knows the answer in advance. All the network has to
do is to choose its synapse weights such that the specified input results in the correct
output.

2. Unsupervised: in this case, the explicit relationship between input and output is not
given. Instead, a cost function is minimized during the learning process which in the
end specifies the input-output relationship.

Both cases usually involve an iterative process, where in each iteration a sample is randomly
selected from input data and the neural weights are slightly adjusted in the proper direction.

2.3 Artificial Neural Networks

McClulloch and Pitts [12] introduced a simple model of neurons. In their proposed model,
a neuron is modeled as a threshold device that computes a weighted sum of received in-
put messages and yield a zero or one, according to how this weighted sum compares to a
specified threshold.

More generally, an artificial neuron is modeled as a device that receives a weighted input
sum and applies a nonlinear transfer function to compute its output state. The nonlinear
mapping, often called activation function, is given by the equation below [13]:

v=g0 wju; —0), (2.4)
J

17



Chapter 2: A Short Introduction to Neural Networks

Figure 2.4: Artificial neuron model [13]

where v is the output state of the neuron, w; is the connection weight from neuron j to the
given neuron, 0 is a fixed threshold and ¢(.) is the nonlinear activation function. Figure 2.4
illustrates the model. If g(x) = sign(x), we obtain the McCulloch-Pitts model.

Despite its simplicity, the artificial neuron is capable of performing powerful computa-
tional tasks. More specifically, McCulloch and Pitts proved that a synchronous assembly of
binary neurons is capable of universal computation for suitably chosen weights.

Nevertheless, the artificial neuron differs from the real one in certain key aspects [13]:

1. Real neurons are often not threshold devices and act more in a continuous way.

2. Many real neurons perform a nonlinear summation over their inputs. There can even
be significant logical process, such as AND, OR or NOT operations within the den-
dritic tree.

3. Real neurons do not a have a fixed delay and they are usually not updated synchronously.

4. Real neurons are noisy in the sense that a fixed input does not result in the same output
all the time but rather on average.

5. In areal neural network, neurons typically emit only one kind of neurotransmitter [6].
This phenomenon, known as Dale’s law, makes a neuron, and all its outgoing synapses,
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either excitatory or inhibitory. In our terminology, this means that the outgoing weights
of a neuron should all be negative or positive.

Throughout this thesis, we will work with the standard artificial neuron model. However, in
the last chapter we will show how a noisy neural model will in fact improve the performance
of the proposed algorithms. Furthermore, for certain algorithms in this thesis, the third point
would in fact be more desirable as it makes asynchronous updates more sensible. Finally,
for other applications the second limitation above can be alleviated by considering several
artificial neurons to represent a single unit that mimics the behavior of a real neuron.

2.4  Our Neural Model

As mentioned earlier, the neural model considered in this thesis is based on the standard
artificial neural model, given by equation (2.4). As a result, a neuron could only calculate a
linear summation over its inputs and apply a possibly nonlinear function to return the output.
However, with the exception of Chapter 4, in all chapters we add the restriction that the
output is a non-binary, non-negative integer (in Chapter 4 the neurons are binary as in the
McCulloch-Pitts model [12]). The integer-valued states of neurons can be interpreted as
their short term (possibly quantized) firing rate. In all cases, the neurons are deterministic.
However, in the last chapter we consider a noisy neural model and show how it can positively
affect the obtained results.

Furthermore, during the recall phase of all proposed neural architectures, we consider
the retrieval of a pattern from a corrupted (or partial) cue. The corruption is modeled by a
noise vector with integer-valued entries. More specifically, and to simplify the analysis, in
most cases the noise is modeled as a vector whose entries are set to +1 with some proba-
bility p. and 0 otherwise, where p. shows the probability of a symbol error. This model can
be thought of as neurons skipping a spike or firing one more spike than they are supposed
to. Nevertheless, unless mentioned otherwise, the algorithms could work with non-binary
integer noise values as well, i.e., where each entry in the noise vector is chosen indepen-
dently and is a non-zero integer from the range {—.S, ..., S} (for some integer S > 0) with
probability p. and 0 with probability 1 — p..

Other noise models, such as real-valued noise, can be considered as well. However, the
thresholding function f : R — Q will eventually lead to integer-valued "equivalent" noise
in our system.

Finally, it is not hard to extend the algorithms to deal with erasures (partial loss of in-
formation) as well. One naive approach could be to model an erasure at neuron z; as an
integer noise with the negative value of z;. So once we have established the performance of
our algorithm for integer-valued noise, it would be straightforward to extend the results as a
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lower bound on the performance of the algorithms in the presence of erasure noise models,
because in that case one could take into account the known position of errors to achieve a
better performance.

To summarize, in our neural model

1. Artificial neurons calculate a linear summation over their input link and apply a (pos-
sibly) nonlinear function to update their states according to equation (2.4).

2. The states of neurons are non-negative and bounded integer values, from a set Q =
{0,...,Q — 1} forsome Q € Z™.

3. The neural graph is weighted with real-valued weights.

4. In the recall phase, each entry in the pattern vector is corrupted due to noise i.i.d. at
random with some probability p.. The noise affecting each entry is an additive integer,
drawn uniformly at random from the set {—S, —(S —1),---—1,1,...,5 — 1, S} for
some S € N. For simplicity, in many cases we assume S = 1.
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Chapter 3

A Short Introduction to Coding Theory

This chapter serves as a brief explanation of main concepts in coding theory. It is by no
means meant to go into details and solely introduces the ideas that are used to design efficient
methods to deal with noise in communication channels. These ideas are crucial and inspiring
for our work, as we will utilize some of them to achieve exponential pattern retrieval capacity
in neural associative memories.

3.1 Communication Over Noisy Channels: the Role of
Redundancy

Communication channels are often noisy. Figure 3.1 illustrates a widely-used model for a
scenario where noise is additive. In such circumstances, what the receiver receives could be
different from what the transmitter has transmitted. The question is if it is possible to tell
if what the receiver has received is corrupted by noise in the first place and if it is possible
retrieve the transmitted message from this corrupted version. Designing efficient methods
that accomplish one or both objectives is among the main tasks we are faced in coding
theory. Such methods are usually called channel coding techniques.

Methods that deal with channel noise are divided into two major categories: automatic
repeat-request (ARQ) and forward error correction (FEC). In the first approach, we employ
algorithms that can only tell if the received message is corrupted due to noise. In that case,
the receiver asks the transmitter to repeat the message. In the second method, if the noise is
fairly limited the algorithm is capable of retrieving the correct message without asking the
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Figure 3.1: Noisy communication channel

transmitter to resend the information. In this thesis, we are more interested in algorithms of
the second type.

Both ARQ and FEC approaches rely on a simple trick to accomplish their respective ob-
jectives: add some redundancy to the original message before transmitting it. The additional
redundancy will then come in handy at the receiver’s side to establish whether the received
message is corrupted and to guess its correct content.

As a simple example to see how this idea works, consider a binary channel where we
are interested in transmitting a single bit x = 0/1. Furthermore, and due to the noise,
the output of the channel would be different from the transmitted bit with some probability
0 < p < 1. Additionally, we assume the noise to act independently on each transmitted bit.
Without any coding technique whatsoever, the receiver has no way of telling if a received bit
is equal to the original one sent by the transmitter. Nevertheless, we could employ a simple
technique to reduce the probability of making an error significantly: we repeat each bit n
times. Thus, instead of sending 1, we will send the vector 111 for n = 3. At the receiver, we
will examine each received message to see if all n entries are equal. If so, we accept it as the
correct transmitted piece of information. Otherwise, we will for instance ask the transmitter
to resend the message. This simple trick will reduce the probability of making an error from
p to p". More sophisticated techniques could be used to enable the receive to also retrieve
the correct message on its on without asking for a re-transmission.

At this point, it is hopefully clear that adding redundancy will help us to increase the re-
liability of communication in noisy environments. However, it did come at a price: waste of
resources. Adding redundancy means sending more bits (symbols) over the channel which
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translates to spending more energy, time and computational resources. Thus, it would be
natural to ask what the best balance would be that makes it possible to have reliable commu-
nication (i.e., with probability of error tending to zero) and minimize the waste of resources
at the same time. Shannon answered this question in 1948 [14] with the notion of channel
capacity, which specifies the best trade-off between close-to-absolute reliability and least
amount of redundancy added to the transmitted messages.

3.2 Channel Capacity

Consider the model shown in Figure 3.1 and for simplicity assume we are interested in
transmitting messages that are binary vectors of length &. In order to deal with channel noise
further assume that we somehow encode the message by adding some sort of redundancy
and consequently increasing its length to n > k. We call the resulting vector of length n a
codeword. Finally, define the code rate r as r = k/n, i.e., the ratio of "useful" bits to the
total amount of transmitted bits.

Then, the "noisy channel coding theorem" states that for each noisy channel, there is an
upper bound c on the code rate, such that if » < ¢, there exist codes that allow arbitrarily
small probabilities of error at the receiver’s side. Furthermore, if > ¢, all coding schemes
will result in a probability of error that is greater than a minimal level, which increases as
rate grows [14].

The quantity c is often called the channel capacity. In many cases, it can be calculate
from the physical properties of the channel.

The noisy channel coding theorem is important for different reasons:

1. It shows that reliable communication in noisy environments is indeed possible, a fact
that had not been know before.

2. It provides a bound on the minimum amount of redundancy required to achieve reliable
communication.

However, the theorem only shows the existence of coding techniques that could achieve
reliable communication. It does not actually give an efficient method to accomplish this
objective. As a result, coding theorists have put a great deal of effort into finding appro-
priate coding techniques whose rate is arbitrarily close to channel capacity while achieving
reliable communication over the noisy channel. While Forney had proposed one such cod-
ing schemes [15], it was only recently that the relationship between the running time of the
decoder and the proximity to the channel capacity has been extablished [16].
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3.3 Linear Coding Strategies

As Shannon did not describe a particular channel coding method in his theorem, different
strategies could be used to add redundancy to the transmitted codewords. The only com-
mon part is that the messages of length £ should be somehow mapped to a larger space of
dimension n, i.e., codewords of length n. However, among different strategies, the one that
is based on a linear mapping between the messages and the codewords has been extensively
considered in the past 60 years due to its computational simplicity, which makes it more
suitable for practical applications.

To simplify the argument, suppose we are interested in communication over a binary
channel, and, therefore, are interested in binary messages and codewords. Furthermore,
assume that all operations are performed in the binary field, GF'(2). In linear codes, one is
faced with the task of finding a suitable /inear mapping between the space of messages with
dimension £k, to the space of codewords with dimension n > k, while r = k/n < c. As a
result, it is not hard to see that in the final n-dimensional space, the codewords actually form
a subspace of dimension k.

The fact that codewords form a subspace in the n-dimensional space provides the first
stepping stone in dealing with noise in communication channels. Let H,_j.,, called the
parity check matrix be the binary matrix whose rows form the basis for the dual space of the
codewords. In other words, the rows of [ are orthogonal to the codewords. Consequently,
if x is the trnasmitted codeword and z is the additive noise vector caused by the channel,
the receiver’s input would be y = x + 2.! Now the receiver could compute the syndrome
s =Hy=Hx+ Hz = Hz, since Hx = (0. As a result, what is left is purely the effect of
noise.

The next step would obviously be to find an efficient method to obtain z from s = Hz.
There are numerous decoding algorithms designed for this purpose. However, one particular
family is of special interest for us and algorithms related to neural networks: graph-based
codes.

Graph-based Codes

Graph-based codes are a particular family of linear codes where the parity check matrix
represents the connectivity of a bipartite graph. This graph plays a key role in the decoding
process, as shall be seen shortly. Some coding algorithms among this family, such as Low
Density Parity Check (LDPC) [17] and Raptor [18] codes, are very efficient and have been
shown to approach channel capacity for various settings.

IRecall that all operations are performed in the binary field GF(2).
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Check nodes . . .

Variable nodes

Figure 3.2: Gallager’s decoding algorithm for LDPC codes. Here, n = 4 and k = 3.

However, what makes graph-based codes interesting for us is the way they achieve this
degree of efficiency. The retrieval (decoding) process in graph-based codes involves a series
of message-passing over the often-sparse parity check graph. As such, this process has sim-
ilarities to the way neurons exchange messages over the neural graph in order to accomplish
their tasks.

To better understand the decoding mechanism for graph-based codes, let us consider a
simple algorithm design by Gallager for LDPC codes [19]. To this end, consider a bipartite
graph as shown in Figure 3.2. In the graph, the lower and upper nodes are called variable
and check nodes, respectively. The graph has n variable and n — k& check nodes, which
correspond to the bits of the codeword and syndrome, respectively.

The decoding algorithm starts by initializing the variable nodes with the received input
from the channel. The variable nodes send these values to their neighboring check nodes.
Then, the algorithm proceeds in rounds in each of which the variable node v; and its neighbor,
check node c;, exchange the following set of messages:

1. ¢; send the modulu-2 sum of the received bits among its other neighbors to v;. This
shows the belief of c; about the correct state of v;.

2. v; sends its initial state (received from the channel) unless all/ (or in another version,
the majority of) its neighbors tell him to change its state. In that case, v; send the new
State.
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The algorithm continues until the variable nodes converge to a state orthogonal to the parity
check matrix or a decoding failure occurs.

In the example shown in Figure 3.2, suppose the transmitted codeword was x = (0,0, 0, 0)
and the first bit (the red hatched node) is changed to 1 due to channel noise. The messages
that are sent by the check nodes to each variable node are shown beside each edge. It is easy
to see that in the next round, the first variable node changes its state to 0 as all its neighbors
unanimously agree on the correct state and the algorithm finishes successfully. This simple
example can in fact be generalized to much more sophisticated situations with the success
of the algorithm is still guaranteed. They show the power of simple iterative methods over a
properly designed graph.

The design process for an efficient error correcting code usually boils down to two crucial
steps:

1. The choice of the graph, i.e., its degree distribution,
2. The decoding algorithm.

Both criteria have profound effects on the performance of the overall method.

Differences with Neural Algorithms

In comparison to the above two criteria, designing a neural message passing algorithm for
associative memories is different in some key aspects. First and most important of all, the
retrieval (decoding) algorithm has to be simple enough to comply with limitations of neurons.
These limitations are

1. In constraint to variable or check nodes, a neuron can not transmit different messages
over different edges. What a neuron transmits goes to all its neighbors identically.

2. In our model, neurons could not have access to individual messages received over their
input links. The only decision parameter that they have is the weighted input sum plus
some internal threshold.

3. Neurons do not operate in the binary G F'(2) field.

4. In contrast to many state-of-the-art decoding algorithm, such as belief propagation, the
messages that neurons transmit have limited precision. In many cases, the messages
are binary or the number of spikes in a short time interval.

5. In coding techniques, the codewords could be designed at will, whereas in neural net-
works the codewords (patterns) are given and should be learned.
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The second difference in the design process comes from the fact that explicit construction
of neural graphs (or their ensemble) is usually not an option as the graph is learned from
examples that we might not have any control over. As a result, one is usually faced with
analyzing the behavior of the algorithm given certain general properties of the graph, e.g.,
the degree of its sparsity.

In the rest of this work, our main objective is to design efficient algorithms that perform
the learning and recall phases of a neural associative memory when the set of input patterns
forms a subspace. The algorithms comply with the aforementioned neural limitations. We
then borrow some theoretical techniques and utilize them to analyze the performance of the
proposed algorithms. And finally, some simulations are conducted to verify the sharpness of
theoretical analysis in practice.
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Chapter 4

Memorizing Low Correlation Sequences

To improve the pattern retrieval capacity of associative memories, we start by taking a
closer look at one of the cornerstones of the filed: the Hopfield network [21], and its recall
phase. On a closer inspection, we notice that the recall phase reduces to calculating the
"correlation" between the given cue and the memorized patterns. In doing so, the input sum
that each neuron receives can be divided into two parts: the desired term and the undesired
interference caused by the correlation between the memorized patterns and the cue.

That is a good starting point: instead of memorizing any set of random patterns, let
us focus on patterns that have some minimal correlation. This way, we might be able to
increase the pattern retrieval capacity of associative memories similar to the Hopfield net-
work. However, as we will see by the end of this chapter, although the considered family
of low-correlation sequences improve the pattern retrieval capacity, it is still far away from
exponential efficiencies we are looking for in this thesis.

4.1 Related Work

Designing a neural associative memory has been an active area of research for the past three
decades. Hopfield was among the first to design an artificial neural associative memory
in his seminal work in 1982 [21]. The so-called Hopfield network is inspired by Hebbian

The content of this chapter is joint work with Raj K. Kumar, Amin Shokrollahi and Wulfram Gerstner. It was
published in [20].
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learning [22] and is composed of binary-valued (£1) neurons, which together are able to
memorize a certain number of patterns. The learning rule for a Hopfield network is given by

1 C
wi; =~y afxh, 4.1)

n =

where w;; is the weight between neurons ¢ and j in the neural graph, z!' is the it bit of
pattern p, n is the length of the patterns and C' is the total number of patterns.

The pattern retrieval capacity of a Hopfield network of n neurons was derived later by
Amit et al. [23] and shown to be 0.13n, under vanishing bit error probability requirement.
Later, McEliece et al. [24] proved that under the requirement of vanishing pattern error
probability, the capacity of Hopfield networks is n/(21log(n))) = O(n/log(n)).

In addition to neural networks with online learning capability, offline methods have also
been used to design neural associative memories. For instance, in [25] the authors assume
that the complete set of patterns is given in advance and calculate the weight matrix using the
pseudo-inverse rule [13] offline. In return, this approach helps them improve the capacity of
a Hopfield network to /2, under vanishing pattern error probability condition, while being
able to correct one bit of error in the recall phase. Although this is a significant improvement
over the n/log(n) scaling of the pattern retrieval capacity in [24], it comes at the price of
much higher computational complexity and the lack of gradual learning ability.

While the connectivity graph of a Hopfield network is a complete graph, Komlos and Pa-
turi [26] extended the work of McEliece to sparse neural graphs. Their results are of particu-
lar interest as physiological data is also in favor of sparsely interconnected neural networks.
They have considered a network in which each neuron is connected to d other neurons, i.e., a
d-regular network. Assuming that the network graph satisfies certain connectivity measures,
they prove that it is possible to store a linear number of random patterns (in terms of d) with
vanishing bit error probability or C' = O(d/logn) random patterns with vanishing pattern
error probability. Furthermore, they show that in spite of the capacity reduction, the error
correction capability remains the same as the network can still tolerate a number of errors
which is linear in n.

It is also known that the capacity of neural associative memories could be enhanced if the
patterns are of low-activity nature, in the sense that at any time instance many of the neurons
are silent [6]. More specifically, if p < 0.5 is the probability that a neuron fires, then it can
be shown that the pattern retrieval capacity scales with n/(plogp). As p goes towards zero,
the pattern retrieval capacity increases. However, it is still linear in n [27,28].! Furthermore,
these schemes fail when required to correct a fair amount of erroneous bits as the information
retrieval is not better compared to that of normal networks [13].

! Additionally, the total number of patterns that have roughly pn neurons decreases when p — 0.
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4.2 Problem Formulation and the Model

Given that even very complex offline learning methods can not improve the capacity of
binary or multi-state neural associative memories, a group of recent works has made con-
siderable efforts to exploit the inherent structure of the patterns in order to increase capacity
and improve error correction capabilities. Such methods focus merely on memorizing those
patterns that have some sort of inherent redundancy. As a result, they differ from previ-
ous methods in which the network was designed to be able to memorize any random set of
patterns. Pioneering this approach, Berrou and Gripon [29] achieved considerable improve-
ments in the pattern retrieval capacity of Hopfield networks, by utilizing Walsh-Hadamard
sequences. Walsh-Hadamard sequences are a particular type of low correlation sequences
and were initially used in CDMA communications to overcome the effect of noise. The only
slight downside to the proposed method is the use of a decoder based on the winner-take-all
approach which requires a separate neural stage, increasing the complexity of the overall
method.

In this chapter, we propose a neural association mechanism that employs binary neurons
to memorize patterns belonging to another type of low correlation sequences, called Gold
family [30]. The network itself is very similar to that of Hopfield, with a slightly modified
weighting rule. Therefore, similar to a Hopfield network, the complexity of the learning
phase is small. However, we can not increase the pattern retrieval capacity beyond n and
show that the pattern retrieval capacity of the proposed model is C' = n, while being able to
correct a fair number of erroneous input bits.

4.2 Problem Formulation and the Model

The neural network model that we consider can be represented by an undirected complete
graph of binary nodes with weighted links between each pair of nodes. Each node of the
graph represents a neuron. At every instance of the process the state of node 7, denoted by s;,
indicates whether or not neuron ¢ has fired at that instance (we will not show the dependency
of s; on time to alleviate notation). In particular, we set s; = 1 when the neuron fires, and
s; = —1 when it remains silent. The weight w;; between nodes ¢ and j denotes the binding
strength (interaction) between these two neurons and can assume any real number.

At any given instance, a node in the network decides its state based on the inputs from
its neighbors. More specifically, neuron ¢ fires if the weighted sum

hi = Z W;jS; (42)
j=1

over its input links w;; exceeds a firing threshold ©,

{L ifh; > ©
S; —

—1, otherwise ° “.3)
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Chapter 4: Memorizing Low Correlation Sequences

The main task of neural association is to choose the graph weights w;; such that the
network is able to memorize C' binary patterns of length n. Here, we are mostly interested
in auto-association, 1.e., retrieving a memorized pattern from its noisy version. In the sequel,
we denote these patterns by {z!, 22, ..., 2%}, where 2# = (2 - -- 2/) is a binary pattern of
length n with 2%/ € {—1, +1} for all j.

4.3 The Role of Correlation in the Hopfield Network

Consider the case where we use the Hopfield weighting rule (4.1). To gain better insight
on the role of correlation in the recall phase of a Hopfield network, consider the input sum
received by neuron ¢ (h; in equation (4.2)), when we initialize the network with pattern x7:

4.4)

where (z#, 27} is the inner product of patterns =7 and x*. In the above equation, the first
term, i.e., x;, is the “desired term” because we would like the thresholded version of h;
(according to (4.3)) to be equal to the =] (since our objective is to recall pattern z”). The
second term [; is the interference term, which depends on the correlation between pattern
and all other patterns. Ideally, we would like the interference term be as small as possible
such that it allows for recovery of z7.

Therefore, in order to improve the pattern retrieval capacity, one idea is to focus on
patterns that have low correlation among each other, so that the undesired interference term
is minimized.

4.4 Low Correlation Sequences

Summations similar to (4.4) also appear in CDMA communications and there is a rich theo-
retical background on the applications of low correlation patterns in reducing interference
in CDMA networks. One such family of sequences’ is the set of Walsh-Hadamard se-
quences. Recently, this family was employed by Berrou and Gripon [29] to improve the
pattern retrieval capacity of Hopfield networks. However, this approach involves a separate
soft Maximum Likelihood (ML) decoder to deal with noise in the input, which increases the
complexity of the network significantly.

’In this work, we use the terms pattern and sequence to convey the same meaning.
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Furthermore, it can be shown that the traditional CDMA approach of employing any fam-
ily of low-correlation sequences achieving the Welch bound is insufficient for our purpose
(see Appendix 4.A for more details); smarter cancellation is needed among the summands
of the second term in (4.4).

In what follows, we will show that such intelligent cancellation occurs when we suitably
pick the z* from the family of Gold sequences [30]. We continue with a quick overview of
this sequence family.

Gold Sequences

In this subsection, we assume that the reader is familiar with the basics of finite fields. Let
q > 0 be an odd integer, and d = 2' + 1 for some [ such that [ and ¢ are relatively prime.
Also, let « be a primitive element of Fyq, and 7'(-) denote the finite field trace function from
Foq to Fy. We set n = 29 — 1. The family of cyclically distinct Gold sequences is defined
to be the set G = {g(?|a € Fa.}, where each ¢g'@ = (g@ -+ g} is a sequence of length n
with

g & (—1)TleeD e, 45)

Hence the number of sequences in G is n + 1. For later use, we define the notation g(“) (k) to
represent a cyclic shift of ¢(*) by k positions (for simplicity, we will refer to g(»)(0) simply as
g'). Also, it can be easily verified that the Gold sequences are periodic with period n [30].
In the sequel, we will choose our patterns {z!, ..., 2%} to be either Gold sequences, or cyclic
shifts of Gold sequences, depending on the value of C'. The particular sequences chosen will
be specified later. We set the first pattern 2! = ¢(*), where 0 denotes the zero element in F,.

Before we proceed, it must be noted that generating low correlation sequences using neu-
ral networks is easily accomplished, since one can generate the Gold family using only shift
registers and logical AND operations [30] (the logical AND operation may be implemented
using a simple two-layer neural network, see [13]). Owing to lack of space, we will not go
into much details in this regard and point the reader to [30], [31] for further details regarding
how Gold sequences are generated using shift registers.

4.5 Gold Sequence and Hopfield Networks with Scaled
Weights

Now that the patterns are chosen from the Gold family, we show how a variant of Hopfield
network could achieve a higher capacity. The main idea in the proposed method is to consider
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a generalized learning rule,
1 C©
== > Aalal, (4.6)
n=

where the scaling factors ), are to be picked such that the interference term in (4.4) becomes
small. To demonstrate the necessity of A\,’s, we first examine the case of A\, = 1, Vi =

., C, which reduces (4.6) to the original Hopfield weighting rule in (4.1). We will show
that this scheme has very good performance in terms of stability but that the error correction
capability is very poor. As aresult, we propose a way of choosing A,,’s that ensures fair noise
tolerance as well as stability of the network.

Stability Analysis with A\, =1V 1

To assess the stability property of Gold sequences, we pick the C' = n + 1 sequences from
G to constitute the patterns that we would like to memorize (these are all cyclically distinct,
by construction). Without loss of generality, let us assume that the pattern x7, which we
would like to recall at the moment, corresponds to the Gold pattern with a = 0 (see (4.5)).
Specializing the second term of (4.4) for the case of our patterns being Gold sequences, we
obtain

1 n

[Z"/ _ Z ( 1 T(ac)+T(a®) Z T(aa?)
n a€Fyq, a#0 j=1
-1 T(a®) n o
= L C—-1+ Z Z +ad))
n j=1,i a€Fyq
a#0
C— i C— 1
O G I (4.7)
n n n

The first equality in (4.7) holds because a’ + o’ # 0 for i # j (since « is primitive element
of F'(27)), and then since the trace function is a linear form:

ST (=) =0, if b £ 0. (4.8)

a€Fsq

Combining (4.7) and (4.4), we see that for the Gold family with C' = n + 1 we have
h; = %xz Therefore, the sign of h; is equal to that of x], i.e., the network is stable for
C' = n+1 when Gold sequences are memorized. Furthermore, we can also show that setting
C to be an integer multiple of (n + 1), say C' = 6(n + 1), § € Z", and picking our patterns
to be G and (§ — 1) sets of cyclic shifts of all sequences in G will also lead to stability.
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4.6 Simulation Results

Performance in the Presence of Noise when A\, =1V 1

To investigate the performance in the presence of noise, we first consider the simple case of
a single bit error in the input to the network. Suppose that we feed in the pattern 27 which
corresponds to the Gold sequence with a = 0 (see (4.5)), where position % has been flipped.
In other words, our initial pattern is s = x7 + e, where the error vector e is equal to zero in
all positions except for the k' element e, and e, = —2z). Substituting this input pattern
into (4.4) and using (4.7), we obtain:

v
i

c
> atahx). (4.9)

n

The term Ej := ¥, a}'zfx] reduces to Cx] if k = i. When k # i, we obtain using (4.8)
that F/ = 0. From (4.9) and the above, we obtain

C oo
i ifi=~k
i _{ €r7,  Otherwise (4.10)

This essentially means that no error correction is possible: all flipped bits remain erroneous
and all correct bits remain correct as the system evolves.

Choosing )\, to Ensure Good Error Correction

From the above, the need to choose the A, intelligently becomes clear: we need to make sure
that pair-wise pattern correlations cancel each other out when summing up over all patterns,
in the second term of (4.4). Towards this end, we simply pick \, = (—1)7("); since this
term alternates in sign for different p’s, the interference terms in the summation in (4.4)
cancel each other out. This intuition is validated by the simulation results below, where we
show that using this choice of \,, we will be able to memorize C' = n patterns drawn from
the Gold sequence family.

4.6 Simulation Results

We consider three different Gold families, with parameters ¢ = 5, ¢ = 7 and ¢ = 9. These
correspond to having n = 31, n = 127 and n = 511 respectively. As mentioned earlier, the
first C' = n patterns of the Gold family are selected. We consider various numbers of initial
(uniformly random) bit flips and evaluate the pattern error rate. The results are reported in
Figure 4.1 and are compared to the pseudo-inverse method proposed in [25].> As can be seen,

3For clarity purposes, we have illustrated only the pattern error rate corresponding to n = 511 for the
pseudo-inverse method [25] as the results for n = 31 and n = 127 were quite the same.
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the number of initial bit flips that can be corrected by the proposed method depends on the
network size n. With larger n’s, we are able to tolerate larger amounts of noise. For instance,
with n = 31, the suggested method is able to correct one bit flip, while with n = 511, the
proposed solution can correct up to 40 bits of error. Hence, our method results in a robust
associative memory with C' = n, which is significantly better than previous works both in
terms of capacity [24] and noise tolerance [25].

4.7 Final Remarks

In this chapter, we showed how focusing on a particular family of low correlation sequences
will improve the pattern retrieval capacity. In [20], we also proposed another approach based
on Gold sequences over bidirectional associative memories. The proposed model was better

in terms of error correction as it correct up to | (n—/2(n + 1)+1)/2] initial errors. However,
to memorize C patterns of length n we need a network of size C'+n. However, the proposed
approaches are still incapable of achieving exponential pattern retrieval capacities we are
interested in.

We also made several attempts to find an analytical lower bound on the number of errors
that the proposed scaled Hopfiled network can correct when )\, = (—1)T@™) " Unfortu-
nately, the analysis was not straightforward. Ideas based on finding the roots of elliptic
curves seemed promising. However, by that time we had our eyes on a new model based on
memorizing patterns that belong to a subspace, as will be discussed in the following chapters.

4.A Borrowing ideas from CDMA systems

From a cursory examination of (4.4), the similarities of the Hopfield network stability condi-
tion with system design equations for code division multiple access (CDMA) systems [32] is
evident (in the context of CDMA systems, C' would correspond to the number of users, and L
to the pseudorandom spreading sequence length). This similarity was also noticed in [29], as
mentioned previously. The traditional approach adopted by the CDMA community to solve
the neural stability problem would be to choose the set of patterns { 1’“}5:1 from a family of
low correlation sequences [31], such that the magnitude of the correlation |(z#, 27)| is small
for all u,y with i # . However, as we shall argue in the sequel, our requirements turn out
to be a bit more stringent than those encountered in traditional CDMA system design.

Let us first focus on the case of C' > n. In order to lower bound the magnitudes of the
correlations |(x*, x7)|, we recall the Welch bound on cross-correlation [33].

Theorem 1 (Welch). Let {(zf) 1}, p = 1,2,...,C, be a collection of C vectors of length
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Figure 4.1: Pattern error rate for our scaled Hopfield network with C' = n, compared to the
pseudo-inverse method [25] with C' = [n/2] — 1.

n, satisfying
n
Vu: Y g =n
i=1
and let

n

> (@)

i=1

emax .= Inax ) /’L#Va

where (-)* denotes the complex conjugate operation. Then, for k = 1,2, ...

n

2k C
R [(n-;“ﬂ)] |

For the special case of £k = 1 we have

emaXZ\/ﬁ g:z'

Traditional CDMA system design would suggest that we choose our patterns z* from a
family of sequences that achieves the Welch bound (i.e., we have equality in (4.11)). Sup-
posing that we do this, the magnitude of the interference term |I;'| from (4.7) evaluates to

(4.11)

39



Chapter 4: Memorizing Low Correlation Sequences

1 C
o= =3 ket a)
T =1,y
1 C—n
< (C =DV E
B wc—n)(c—l)
- n

From (4.4), we see that a sufficient condition for pattern " to be stable is that 4/ W <
1, which is equivalent to C' < n + 1. This is contrary to our initial assumption of C' > n.
Note that while the above analysis is not rigorous (since it involves analyzing an upper bound
on |7 | that might not be tight), it does give us important insight on how we may design the
patterns {z*} intelligently: we not only need to ensure that the correlation terms in ;' are
low, we also need to design the z* such that summands in I; cancel out each other well.
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Chapter 5

Subspace Learning and Non-Binary
Associative Memories

Although low correlation sequences were giving us an increase in the pattern retrieval capac-
ity, they were still insufficient for bridging the gap between linear to exponential capacities.
As aresult, we decided to change the model. Given that linear codes achieve the exponential
capacities by forming a subspace in the n-dimensional space, we considered non-binary pat-
terns that come from a subspace in our new model. We started by considering a bidirectional
associative memory and showed that if the neural graph is an expander (formally defined in
Appendix 5.B) and is given, then we could achieve exponential pattern retrieval capacities
while being able to correct two initial erroneous symbols in the recall phase. We later ex-
tended this result to any sparse neural graph and proposed a learning algorithm to provide us
with the suitable neural graph.

For brevity, we jump directly to the latter result and explain the steps in more details
(technical details regarding the earlier models based on the expander graphs are given in
Appendix 5.B for the sake of completeness). In particular, we propose a learning algorithm
for the case when patterns belong to a subspace. We show that if the learned connectivity
matrix W has certain properties, we could correct a constant number of errors in the recall
phase. Furthermore, we prove that the proposed approach is capable of memorizing an
exponential number of patterns if they belong to a subspace.

The content of this chapter is joint work with Raj K. Kumar and Amin Shokrollahi. It was published in [34]
and [35].
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5.1 Problem Formulation and the Model

The problem is the same as what we had in the previous chapter: find the connectivity matrix
W of the neural graph such that the patterns in a given database &, are stable states of
the network. Furthermore, the resulting neural associative memory should be fairly noise
resilient.

However, the model which we consider in this chapter differs from that of the previous
chapters in two key aspects:

1. Non-binary neurons: Here, we work with neurons whose states are integers from a
finite set of non-negative values @ = {0, 1,...,Q — 1}. A natural way of interpreting
this model is to think of the integer states as the short-term firing rate of neurons
(possibly quantized). In other words, the state of a neuron in this model indicates the
number of spikes fired by the neuron in a fixed short time interval.

2. Patterns form a subspace of R™: In other words, if Ao, is the matrix that contains the
set of n-dimensional patterns in its rows, with entries in Q, then we assume rank of
this matrix to be k < n.

These two properties help us design neural associative memories that achieve exponential
pattern retrieval capacities. The neural weights are assumed to be real-valued, as was the
case in the previous chapter.

Note thatif £ = nand Q = {—1, 1}, then we are back to the original associative memory
problem [21]. However, our focus will be on the case where k£ < n, which will be shown to
yield much larger pattern retrieval capacities.

Solution Overview

Before going through the details of the algorithms, let us give an overview of the proposed
solution.

The learning phase

Since the patterns are assumed to belong to a subspace, in the learning phase memorize the
dataset X by finding a set of non-zero vectors wy, ..., w,, € R", with m < n — k, that are
orthogonal to the set of given patterns. Note that such vectors are guaranteed to exist, one
example being a basis for the null-space. To learn the set of given patterns, we have adopted
the neural learning algorithm proposed in [36] and modified it to favor sparse solutions (we
will see shortly why sparseness of the neural graph is necessary). In each iteration of the
algorithm, a random pattern from the data set is picked and the neural weights corresponding
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Constraint neurons

Pattern neurons Zq X2 €3 s Tn

Figure 5.1: A bipartite graph that represents the constraints on the training set. The weights
are bidrectional. However, depending on the recall algorithm (which is explained later), the
weight from y; to z; (Wi’}) could be either equal to the weight from z; to y; (IW;;) or its sign.
In other words, we have either Wz’; = sign(W;;) or VV;; = W, depending on the algorithm
used in the recall phase.

to constraint neurons are adjusted is such a way that the projection of the pattern along the
current weight vectors is reduced, while trying to make the weights sparse as well.

As a result, the inherent structure of the patterns is captured in the obtained null-space
vectors, denoted by the matrix W € R™*", whose z'th row is w;. This matrix can be inter-
preted as the adjacency matrix of a bipartite graph which represents our neural network. The
graph is comprised of pattern and constraint neurons (nodes). Pattern neurons, as their name
suggests, correspond to the states of the patterns we would like to learn or recall. The con-
strain neurons, on the other hand, should verify if the current pattern belongs to the database
X. If not, they should send proper feedback messages to the pattern neurons in order to help
them converge to the correct pattern in the dataset. The overall network model is shown in
Figure 5.1.

The recall phase

In the recall phase, the neural network retrieves the correct memorized pattern from a pos-
sibly corrupted version. In this case, the states of the pattern neurons are initialized with a
corrupted version of pattern, say, z*, i.e. x = x* 4 z, where z is the noise.

To eliminate the noise vector z, the algorithm relies on two properties of the neural graph
during the recall process:

1. The neural weights are orthogonal to the patterns (i.e Wa* = 0). As a result, the net
input to the constraint neurons will be caused only by noise (i.e. Wx = Wz).

2. The graph is sparse, which makes it possible to identify the corrupted pattern neurons
from the rest and correct them.
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The second property helps us find which pattern neurons are corrupted and the first one helps
us estimate the value of noise at these particular places.

The proposed recall algorithm is iterative and in each iteration, the constraint neurons
send some feedback to their neighboring pattern neurons, to tell them if they need to update
their state and in which direction. The pattern neurons that receive some feedback from the
majority of their neighbors update their state accordingly in the hope of eliminating input
noise. This process continues until noise is eliminated completely or a failure is declared.

Pattern retrieval capacity

Finally, we are going to show that the proposed model is capable of memorizing an expo-
nentially large number of patterns. The idea behind this proof comes from the fact that there
are sets X with exponentially many integer-valued patterns that form a subspace.

5.2 Related Work

In the previous chapter, we discussed previous work on binary neural associative memories.
Extension of associative memories to non-binary neural models has also been explored in
the past. Hopfield addressed the case of continuous neurons and showed that similar to the
binary case, neurons with states between —1 and 1 can memorize a set of random patterns,
albeit with less capacity [37]. In [38] the authors investigated a multi-state complex-valued
neural associative memory for which the estimated capacity is C' < 0.15n. Under the same
model but using a different learning method, Muezzinoglu et al. [39] showed that the capac-
ity can be increased to C' = n. However the complexity of the weight computation mecha-
nism is prohibitive. To overcome this drawback, a Modified Gradient Descent learning Rule
(MGDR) was devised in [40].

Using patterns from a low rank subspace to increase the pattern retrieval capacity has also
been considered by Gripon and Berrou [41]. They have come up with an approach based on
neural cliques, which increases the pattern retrieval capacity to O(n?). Their method is based
on dividing a neural network of size n into ¢ clusters of size n/c each. Then, the messages
are chosen such that only one neuron in each cluster is active for a given message. Therefore,
one can think of messages as a random vector of length clog(n/c), where the log(n/c) part
specifies the index of the active neuron in a given cluster. The authors also provide a learning
algorithm, similar to that of Hopfield [21], to learn the pairwise correlations within the pat-
terns. Using this technique and exploiting the fact that the resulting patterns are very sparse,
they could boost the capacity to O(n?) while maintaining the computational simplicity of
Hopfield networks.
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In contrast to the pairwise correlation of the Hopfield model, Peretto et al. [42] deployed
higher order neural models: the models in which the state of the neurons not only depends
on the state of their neighbors, but also on the correlation among them. Under this model,
they showed that the storage capacity of a higher-order Hopfield network can be improved
to C = O(nP~2), where p is the degree of correlation considered. The main drawback of
this model is the huge computational complexity required in the learning phase, as one has
to keep track of O(n?~?) neural links and their weights during the learning period.

The proposed model in this chapter can be also thought of as a way to capture higher
order correlations in given patterns while keeping the computational complexity to a minimal
level (since instead of O(n?~%) weights one needs to only keep track of O(n?) of them).
Furthermore, the pattern retrieval capacity of the proposed model is exponential, although it
does not have the generality of the method proposed in [42] as it can only memorize patterns
that belong to a subspace.

An important point to note is that learning linear constraints by a neural network is hardly
a new topic as one can learn a matrix orthogonal to a set of patterns in the training set
(i.e., Wat = 0) using simple neural learning rules (we refer the interested readers to [43]
and [44]). However, to the best of our knowledge, finding such a matrix subject to the
sparsity constraints has not been investigated before. This problem can also be regarded as
an instance of compressed sensing [45], in which the measurement matrix is given by the
big patterns matrix X, and the set of measurements are the constraints we look to satisfy,
denoted by the tall vector b, which for simplicity reasons we assume to be all zero. Thus, we
are interested in finding a sparse vector w such that XYw = 0. Nevertheless, many decoders
proposed in this area are very complicated and cannot be implemented by a neural network
using simple neuron operations. Some exceptions are [46] and [47] which are closely related
to the learning algorithm proposed in this paper.

5.3 Learning Phase

Since the patterns are assumed to be coming from a subspace in the n-dimensional space, we
adapt the algorithm proposed by Oja and Karhunen [36] to learn a basis of the dual space of
the subspace defined by the patterns. In fact, a very similar algorithm is also used in [43] for
the same purpose. However, since we need the basis vectors to be sparse (due to requirements
of the algorithm used in the recall phase), we add an additional term to penalize non-sparse
solutions during the learning phase.

Another difference between the proposed method and that of [43] is that the learning
algorithm proposed in [43] yields dual vectors that form an orthogonal set. Although one
can easily extend our suggested method to such a case as well, we find this requirement un-
necessary in our case. This gives us the additional advantage to make the algorithm parallel
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and adaptive: parallel in the sense that we can design an algorithm to learn one constraint
and repeat it several times in order to find all constraints with high probability; and adaptive
in the sense that we can determine the number of constraints on-the-go, i.e., start by learning
just a few constraints. If needed (for instance due to bad performance in the recall phase), the
network can easily learn additional constraints. This increases the flexibility of the algorithm
and provides a nice trade-off between the time spent on learning and the performance in the
recall phase. Both these points make an approach biologically realistic.

The proposed algorithm in this chapter is online, i.e., the algorithm learns gradually and
iteratively from examples in the dataset. We also proposed an offline learning algorithm
in [48] which we do not discuss here for brevity.

Overview of the proposed algorithm

The problem to find one sparse constraint vector w is given by equations (5.1a), (5.1b), in
which pattern p is denoted by x*.

c
min Y jw'z** + ng(w). (5.1a)
pn=1

subject to:
|, = 1 (5.1b)

In the above problem, ||.||2 represent the ¢, vector norm, g(w) a penalty function to encourage
sparsity and 7 is a positive constant. There are various ways to choose g(w). For instance one
can pick g(w) to be ||.||;, which leads to ¢;-norm penalty and is widely used in compressed
sensing applications [46], [47]. Here, we will use a different penalty function, as explained
later.

To form the basis for the null space of the patterns, we need m = n — k vectors, which
we can obtain by solving the above problem several times, each time from a random initial
point!.

Remark 2. Note that in order to have a sparse graph, the pattern and constraint neurons
should have degrees that are O(1). This implies that m = O(n). However, when the goal
is to correct only a constant number of errors, we could have m = O(1) under special
circumstances. Nevertheless, in this thesis we focus only on the cases where m = O(n).

'Tt must be mentioned that in order to have exactly m = n — k linearly independent vectors, we should
pay some additional attention when repeating the proposed method several times. This issue is addressed later
in the chapter.
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As for the sparsity penalty term g(w) in this problem, we consider the function

glw) = 3 tanh(ow?),

i=1

where ¢ is chosen appropriately. Intuitively, tanh(cw?) approximates |sign(w;)| and, there-
fore, g(w) will approximate {y-norm. Trivially, the larger o is, the closer g(w) will be to
Il

To solve problem (5.1), one can either use standard (batch) gradient descent or stochastic
gradient descent. In standard gradient descent, we iteratively update w towards minimizing
(5.1) and in each iteration, the amount of update is proportional to the derivative of (5.1a)
with respect to w. The stochastic gradient descent is virtually the same, except for the fact
that the amount of update in each iteration is proportional to the derivative of |2/ -w|?+ng(w)
for a randomly picked pattern x*.

Each of these approaches has their pros and cons. For instance, the standard approach is
usually faster and converges more easily. However, the stochastic approach is more suitable
for neural learning algorithms as it requires to "see" one sample at a time. This makes gradual
learning possible as we do not need to have the whole dataset X" available first before being
able to calculate the updates in the standard gradient descent method. Therefore, we will
focus on the stochastic version here. A similar learning algorithm based on standard (offline)
gradient descent is discussed in [48].

Assuming z(t) to be the randomly picked pattern in iteration ¢ of the stochastic gradient
descent approach, we could calculate the derivative of the objective function with respect to
w to get the following iterative algorithm:

y(t) = a(t) - w(t) (5.2a)

Dt +1) = w(t) — oy (2y(8)(t) + D (w(t))) (5.2b)
Wt +1)

w(t+1) = T (5.2¢)

In the above equations, ¢ is the iteration number, x(¢) is the sample pattern chosen at iteration
t uniformly at random from the patterns in the training set X', and oy is a small positive
constant. Finally, I'(w) : R" — R" = Vg(w) is the gradient of the penalty term for non-
sparse solutions. This function has the interesting property that for very small values of
w;(t), T(w;(t)) ~ 20w;(t). To see why, consider the i*" entry of the function I'(w(t)))

Li(w(t)) = dg(w(t))/ow;(t) = 20w;(t)(1 — tanh? (ow;(t)?))

It is easy to see that I';(w(t)) ~ 20w;(t) for relatively small values of w;(t). And for larger
values of w;(t), we get I';(w(t)) ~ 0 (see Figure 5.2). Therefore, by proper choice of
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n and o, equation (5.2b) suppresses small entries of w(t) by pushing them towards zero,
thus, favoring sparser results. To simplify the analysis, with some abuse of notation, we
approximate the function I';(w(t), 6;) with the following function:

wi(t) if Jwi(t)] < 6y

Li(w(t), 0:) = { 0 otherwise, (53)

where 0, is a small positive threshold.

1

:3,: OI—I—I—I—I—I—I—I—I—I—I\./I’.\I—I—I—I—I—I—I—I—I—I—I

= ]

o5t == ;(1 — tanh®(w?)) .
w;(1 — tanh?(10w?))

—&- ;(1 — tanh?(100w?))

_1 | | | | | | | | |
-1 -08 —-06 —-04 0.2 0 0.2 0.4 0.6 0.8 1

Figure 5.2: The sparsity penalty I';(w;), which suppresses small values of the i*" entry of w
in each iteration as a function of w; and . The normalization constant 20 has been omitted
here to make comparison with function f = w; possible. As seen from the figure, the larger
o, the smaller its domain of effect will be (i.e., larger ¢’s are equivalent of smaller 6;’s is
equation (5.3)).

Following the same approach as [36] and assuming a; to be small enough such that
equation (5.2¢) can be expanded as powers of «;, we can approximate equation (5.2) with

the following simpler version:?
y(t) = z(t) - w(t) (5.4a)

The expansion is basically equivalent to the deriving the Taylor expansion of 1//1 + 22 around 0 up to
the second term.
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Algorithm 1 Iterative Learning

Input: Set of patterns z* € X with p =1, ..., C, stopping point .
Output: w
while >°, [z# - w(t)[* > ¢ do
Choose z(t) at random from patterns in X
Compute y(t) = z(t) - w(t)
Update w(t + 1) = w(t) — auy(t) (x(t) — Y950 — amT(w(t), 6;).

w(®)l3
t<t+ 1.
end while
w(t+1) =w(t) — o <y(t) (m(t) - m> + nl'(w(t), Qt)> (5.4b)

In the above approximation, we also omitted the term «;n (w(t) - I'(w(t), 0;)) w(t) since
w(t) - T'(w(t), 8;) would be negligible, specially as #; in equation (5.3) becomes smaller.

Remark 3. In practice, and in order to ensure explicit sparsity, we choose 1 such that a;n =
1 for all t (so it would be more precise to use 1, instead of ). This way, and from equation
(5.3), we observe that in iteration t + 1, the entries in w(t) that are smaller than 0, are set
to zero so that w(t + 1) is calculated from a relatively sparse vector. Furthermore, at the
end of the algorithm we apply the thresholding function again to ensure that values that are
smaller than 0, are set to zero.

In general, in practice we could fix a small threshold and at the end of the learning
phase set all values in the weight vector that are less than this threshold to zero. This way,
although we might use a bit of precision (i.e., in the weight vector being exactly orthogonal
to the patterns) but we gain a sparser neural graph which improves the performance in the
recall phase. Nevertheless, the exact trade off between the precision and performance in the
recall phase depends on the application and has to be obtained via fine-tuning.

The overall learning algorithm for one constraint node is given by Algorithm 1. In words,
y(t) is the projection of x(t) on the basis vector w(t). If for a given data vector z(t), y(t) is
equal to zero, namely, the data is orthogonal to the current weight vector w(t), then according
to equation (5.4b) the weight vector will not be updated. However, if the data vector x(t) has
some projection over w(t) then the weight vector is updated towards the direction to reduce
this projection.

Since we are interested in finding m basis vectors, we have to do the above procedure at
least m times (which can be performed in parallel).’

3In practice, we may have to repeat this process more than m times to ensure the existence of a set of m
linearly independent vectors. However, our experimental results suggest that most of the time, repeating m
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Remark 4. Although we are interested in finding a sparse graph, note that too much sparse-
ness is not desired. This is because we are going to use the feedback sent by the constraint
nodes to eliminate input noise at pattern nodes during the recall phase. Now if the graph is
too sparse, the number of feedback messages received by each pattern node is too small to
be relied upon. Therefore, we must adjust the penalty coefficient 1) such that resulting neural
graph is sufficiently sparse. In the section on experimental results, we compare the error
correction performance for different choices of 1.

Convergence analysis

To prove the convergence of Algorithm 1, let A = E{xz”|x € X'} be the correlation ma-
trix for the patterns in the training set. Also, let A, = x(t)(z(¢))", (hence, A = E(A,)).
Furthermore, let

1 C

E(t) = E(w(t)) = = > (w(t) 'a")* (5.5)

¢4
be the cost function. Finally, assume that the learning rate o is small enough so that terms
that are O(a?) can be neglected, similar to the approximation we made in deriving equation
(5.4). In general, we pick the learning rate o, o 1/t so that oy > 0, > ay — oo and
S a? < co. We first show that the weight vector w(t) never becomes zero, i.e., ||w(t)||s > 0
for all ¢.

Lemma 5. Assume we initialize the weights such that ||w(0)||2 > 0. Furthermore, assume
ay < ag < 1/n. Then, for all iterations t we have ||w(t)||2 > 0.

Proof. We proceed by induction. To this end, assume ||w(t)||2 > 0 and let w'(¢) = w(t) —

(1) ((t) — 192 Note that [’ (1) |3 = [|eo(t)[3+aZy(t)2l|x(t) 222D 2 > [lu() 3
0. Now,

lw(t+ D)5 = [[w' @O + afn* [T (w(), 0)|I* — 2aenT (w(t), ) "w'(¢)
> ' @)1+ ain? [T (w(t), 001" — 20T (w(?), 0) 2]’ (2)]|2
2
= (Iw'(®)ll2 = axnl[T(w(?), 6:)]]2)
Thus, in order to have ||w(t+1)||2 > 0, we must have that ||w’(¢)]|2 — azn|| T (w(t), 6¢)[|2 > 0.

Given that, | I'(w(t), ;) ]]2 < [Jw(t)]|2 < [|w'(t)||2, it is sufficient to have ;1 < 1 in order to
achieve the desired inequality. This proves the lemma. [

Next, the following theorem proves the convergence of Algorithm 1 to a minimum w*
such that F(w*) = 0.

times would be sufficient.
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Theorem 6. Suppose the learning rate «; is sufficiently small and both the learning rate o
and the sparsity threshold 0, decay according to 1/t. Then, Algorithm 1 converges to a local
minimum w* for which E(w*) = 0. At this point, w* is orthogonal to the patterns in the data
set X.

Proof. From equation (5.4b) recall that

w(t+1) = w(t) — a (y(t) (x(t) - ﬁ/l(t?(;”)(@ > D (w(t), 99) .

LetY(t) = E,(Xw(t)), where E,(.) is the expectation over the choice of pattern z(¢). Thus,
we will have

Y(t+1) = Y(¢) <1 + atW> — oy (XY Aw(t) + nXT (w(t),0y)) .

Noting that E(t) = £[|Y (t)||3, we obtain

w(t)TAw(t)>2
lw(t)]3

+ t||/"wa()+77/"fF (1), 00113

E(t+1) = E(t) <1+ozt

TA’LU T 2
- 2o (14 R ) (ot
TAw )T
— 2q (14_@ Gl )(nw AT (w )Ht))
@ TAw(t
~ E()<1+2 G OIE )
— 200 (wlt) A% <>+nw< )T AL (w(t), 6,)
B oo [w(B)T A2 _ w(t) Aw(t)
= Bl -2 ( N RO E“>>
— 20w (t)TAT(w(t), 6,)
(®) ~ 90 [w(®)T A2w _w(t) Aw(t)
Y 50 - 20 (wt atut) - 20 A0 ).

In the above equations, approximation (a) is obtained by omitting all terms that are O(a;)?.
Approximation (b) follows by noting that

| (w(t)) " AT (w(t), 0)l2 < aenllw(®) |2 All2[T(w(t), 0)ll2 < aenllw(®)[l2[|All2(nfe)-
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Now since §; = O(ay), aunl|(w(t))T AT (w(t), 6;)||2 = O(a?) and, therefore, this term can
be eliminated.
Therefore, in order to show that the algorithm converges, we need to show that

w(t) " Aw(t)
lw (@113

to have F(t + 1) < E(t). Noting that E(t) = w(t)" Aw(t), we must show that w ' A%w >
(w' Aw)?/||wl||3. Note that the left hand side is || Aw||2. For the right hand side, we have

(w(t)TAQw(t) - E(t)) >0

lw' Awl3 _ [lwl3]| Awl]3

lwlz = w3

= || Awlf3.

The above inequality shows that E(t 4+ 1) < F(t), which implies that for sufficiently large
number of iterations, the algorithm converges to a local minimum w* where E(w*) = 0.
From Lemma 5 we know that ||w*||, > 0. Thus, the only solution for F(w*) = ||[Xw*||3 =0
would be to for w* to be orthogonal to the patterns in the data set. 0

Remark 7. Note that the above theorem only proves that the obtained vector is orthogonal
to the data set and says nothing about its degree of sparsity. The reason is that there is
no guarantee that the dual basis of a subspace is sparse. The introduction of the penalty
function g(w) in problem (5.1) only encourages sparsity by suppressing small entries of w,
i.e., shifting them towards zero if they are really small or leaving them intact if they are rather
large. Our experimental results in section 5.6 show that in fact this strategy works perfectly
and the learning algorithm results in sparse solutions.

Making the Algorithm Parallel

In order to find m constraints, we need to repeat Algorithm 1 several times. Fortunately, we
can repeat this process in parallel, which speeds up the algorithm and is more meaningful
from a biological point of view as each constraint neuron can act independently of other
neighbors. Although performing the algorithm in parallel may result in linearly dependent
constraints once in a while, our experimental results show that starting from different random
initial points, the algorithm converges to different distinct constraints most of the time. In
addition, the chance of obtaining redundant constraints reduces if we start from a sparse
random initial point. Besides, as long as we have "enough" distinct constraints®, the recall

4Usually, the more constraints we learn, the better performance we get. However, as long as we learn a few
constraints such that each pattern neuron is connected to at least a few (3 or more) constraint neurons, and no
two pattern neurons have the same set of neighbors, then the number of constraints are "enough" to correct at
least one error. A special case is the family of expander graphs discussed in Appendix 5.B.
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algorithm in the next section can start eliminating noise and there is no need to learn all the
distinct basis vectors of the null space defined by the training patterns (albeit the performance
improves as we learn more and more linearly independent constraints). Therefore, we will
use the parallel version to have a faster algorithm in the end.

5.4 Recall Phase

In the recall phase, we are going to design an iterative algorithm that corresponds to message
passing on a graph. The algorithm exploits the fact that our learning algorithm resulted in
the connectivity matrix of the neural graph which is sparse and orthogonal to the memorized
patterns. Therefore, given a noisy version of the learned patterns, we can use the feedback
from the constraint neurons in Fig. 5.1 to eliminate noise. More specifically, the linear
input sums to the constraint neurons are given by the elements of the vector W (z# + z) =
Wat + Wz = Wz, with z being the integer-valued input noise. Based on observing the
elements of Iz, each constraint neuron feeds back a message (containing info about z) to
its neighboring pattern neurons. Based on this feedback, and exploiting the fact that IV is
sparse, the pattern neurons update their states in order to reduce the noise z.

It must also be mentioned that we initially assume asymmetric neural weights during the
recall phase. More specifically, we assume the backward weight from constraint neuron 7 to
pattern neuron j, denoted by Wf}, be equal to the sign of the weight from pattern neuron i to
constraint neuron j, i.e., WZI; = sign(IV;;), where sign(x) is equal to +1, 0 or —1 if z > 0,
x = 0 orx < 0, respectively. This assumption simplifies the error correction analysis.
Later in section 5.4, we are going to consider another version of the algorithm which works
with symmetric weights, i.e., W/ = W;;, and compare the performance of all suggested

7
algorithms together in section 5.6.

Noise model

Here, we assume that the noise is integer valued and additive. Biologically speaking, the
noise can be interpreted as a neuron skipping some spikes or firing more spikes than it should.
It must be mentioned that neural states below 0 and above () — 1 will be clipped to 0 and
(@ — 1, respectively. This is biologically justified as well since the firing rate of neurons can
not exceed an upper bound and of course can not be less than zero.

The recall algorithms

The proposed algorithm for the recall phase comprises a series of forward and backward
iterations. Two different methods are suggested here, which slightly differ from each other in
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the way pattern neurons are updated. The first one is based on the Winner-Take-All (WTA)
approach and is given by Algorithm 2. The second approach, given by Algorithm 3, is
simpler and is based on Majority Voting (MV) approach.

In both algorithms, first the pattern neurons send their states to the constraint neurons
in the forward step (see Figure 5.3a). Each constraint neuron then calculates the weighted
input sum over its incoming links and check if the the sum equals 0. Any value other than
0 indicates the presence of noise in at least one of its neighbors. The constraint neuron then
informs its neighboring patten neurons about this incident by sending back the sign of the
calculated input sum during the backward step (see Figure 5.3b).

At this point, each pattern neuron z; computes

mWhy,
g](l) _ zfld' ijY : (56)
J
and
Wty
g](2) _ 'L—lc‘l‘ z]y ‘7 (57)

J

(2

where d; is the degree of pattern neuron j. The quantity g;~’ can be interpreted as the number

of feedback messages received by pattern neuron x; from the constraint neurons. On the

other hand, the sign of g](-l) provides an indication of the sign of the noise that affects x;, and

| g](-l)| indicates the confidence level in the decision regarding the sign of the noise (see Figure
5.3b).

The pattern neurons now update their states based on gj(»l) and g](?). In the Winner-Take-
All version,’ only the pattern that has the maximum gj(-z) updates its state and the others keep
their current values.® In the Majority-Voting method, however, any pattern neuron with gj(?)

larger than a threshold ¢ updates its state. In both cases, the amount of update is equal to

1
g0,

The entire WTA and MV algorithms are given in Algorithms 2 and 3, respectively.

It is worthwhile mentioning that the Majority-Voting decoding algorithm is very similar
to the Bit-Flipping algorithm of Sipser and Spielman to decode LDPC codes [49] and a
similar approach in [50] for compressive sensing methods. Furthermore, both WTA and MV
approaches are also similar to Gallager’s Algorithms A and B for decoding Low Density
Parity Check codes [19].

>The winner-take-all circuitry can be easily added to the neural model shown in Figure 5.1 using any of
the classic WTA methods [13].

5Note that in order to maintain the current value of a neuron in case no input feedback is received, we can
add self-loops to pattern neurons in Figure 5.1. These self-loops are not shown in the figure for clarity.
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(a) Step 1 (forward iteration): Pattern neurons send
their states to the constraint neurons. The hatched
node is contaminated with noise.

2 2
dP =05 ¢P =05 g4

(c) Step 3: Pattern neurons calculate the total (nor-
malized) number of received feedback and the net
value of input feedback.

g2 =1

(@) _
V=05

(b) Step 2 (backward iteration): The constraint
neurons check for violated constraints (dark red
nodes) and send back proper messages to their
neighbors.

(d) Step 4: Pattern neurons with a large amount of
input feedback (i.e., the first one) update their state
and the error is eliminated.

Figure 5.3: The recall process.
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Algorithm 2 Recall Algorithm: Winner-Take-All

Input: Connectivity matrix W, iteration .«
Output: X1,X9,...,Tp
I: fort =1 — t,.x do
2. Forward iteration: Calculate the weighted input sum h; = >0, Wiz, for each
constraint neuron ¥; and set:

1, h; <0
Yi = 0, h; =0
—1, otherwise

3:  Backward iteration: Each neuron z; with degree d; computes

O i Wiy 4 = Sy (Wil
’ dj d;
4:  Find
ko (2)
j* = argmaxg;”.
J

5:  Update the state of winner j*: set z;« = z;« — sign(g](i)).
6: t+t+1
7: end for

Remark 8. 7o give the reader some insight about why the neural graph should be sparse in
order for the above algorithms to work, consider the backward iteration of both algorithms:
it is based on counting the fraction of received input feedback messages from the neighbors
of a pattern neuron. In the extreme case, if the neural graph is complete or dense, then a
single noisy pattern neuron results in the violation of all or many constraint neurons in the
forward iteration, as shown in Figure 5.4. Consequently, in the backward iteration even the
non-corrupted pattern neurons receive feedback from their neighbors to update their state
and it is impossible to tell which of the pattern neurons is the noisy one.

However, if the graph is sparse, a single noisy pattern neuron only makes some of the
constraints unsatisfied. Consequently, in the recall phase only the nodes which share the
neighborhood of the noisy node receive input feedbacks and the fraction of the received
feedbacks would be much larger for the original noisy node. Therefore, by merely looking
at the fraction of received feedback from the constraint neurons, one can identify the noisy
pattern neuron with high probability as long as the graph is sparse and the input noise is
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Algorithm 3 Recall Algorithm: Majority-Voting

Input: Connectivity matrix W, threshold ¢, iteration #,,,x
Olltpllt: T1,X9,...,Tp
I: fort =1 — t,.x do
2: Forward iteration: Calculate the weighted input sum h; = >0, Wiy, for each
neuron y; and set:
1, h; <0
Yi = 0, h; =0
—1, otherwise

3:  Backward iteration: Each neuron x; with degree d; computes

ON it Wy 4 = ity (Wil
J dj ] dj

4:  Update the state of each pattern neuron j according to x; = x; — sign(gj(l)) only if

2
97| > ¢.
5: t—t+1
6: end for

reasonably bounded.

Some Practical Modifications

Although algorithm 3 is fairly simple, each pattern neuron still needs two types of informa-
tion: the number of received feedbacks and the net input sum. Although one can think of
simple neural architectures to obtain the necessary information, we can modify the recall al-
gorithm to make it more practical and simpler. The trick is to replace the degree of each node
x; with the ¢;-norm of the outgoing weights. In other words, instead of using ||w,|lo = d;

we use [|w;|1. Furthermore, we assume symmetric weights, i.e., W} = ;.

Interestingly, in some of our experimental results corresponding to denser graphs, this
approach performs better, as will be illustrated in section 5.6. One possible reason behind this
improvement might be the fact that using the ¢;-norm instead of the /;-norm in Algorithm
3 will result in better differentiation between two vectors that have the same number of
non-zero elements, i.e., have equal /y-norms, but differ from each other in the magnitude
of the element, i.e., their /;-norms differ. Therefore, the network may use this additional
information in order to identify the noisy nodes in each update of the recall algorithm.
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Figure 5.4: Dense neural graphs are not suitable for the proposed recall algorithms. Here,
the hatched pattern neuron is contaminated with noise but all pattern neurons are getting high
amounts of feedback, which makes it impossible to tell which one is the corrupted one.

Another practical modification could be modifying the algorithm to be able to deal with
real-valued patterns. So far, our patterns are assumed to be integer-valued. However, in
many practical situations in dealing with datasets of natural patterns, it might be difficult
to map the patterns to be integer-valued via a quantization process, as some information is
lost during the quantization. In such cases, we could slightly modify the proposed recall
algorithms to cope with the task. Algorithm 4 shows the details of the proposed method.
Basically, the algorithm is the same as Algorithm 3, with the following modifications:

1. The columns of matrix W are normalized to have a norm of 1.
2. In the denominator of g;, ||.||o is replaced by ||.||2.
3. Symmetric weight matrices are used, i.e., W), = W;;.

4. The feedbacks sent by the constraint neurons are real-valued, i.e., y; = h; = Z?Zl mjxj.7

Performance Analysis

In this section, we derive a theoretical upper bound on the recall probability of error for the
algorithms proposed in the previous section. To this end, we assume that the connectivity

"In practice, we only send feedback if |h;| > 1, with 1 being a small positive threshold.
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Algorithm 4 Recall Algorithm: Real-Valued Patterns

Input: Connectivity matrix W with normalized columns, threshold ¢, iteration ?,,,,, small
positive threshold 1
Output: z,,79,...,1,
I: fort =1 — t,. do
2. Forward iteration: Calculate the weighted input sum h; = 377, Wi;z;, for each
neuron y; and set y; = h; if |h;| > 9.
3:  Backward iteration: Each neuron x; with degree d; computes

9 = Z Wiy
=1

4:  Update the state of each pattern neuron j according to z; = z; — sign(g;) only if

lg;| > .
5: t+—t+1
6: end for

graph W is sparse. With respect to this graph, we define the pattern and constraint degree
distributions as follows.

Definition 9. For the bipartite graph W, let \; (X2;) denote the fraction of pattern (con-
straint) nodes of degree i (j). We call {Ay,..., Ay} and {Q,...,Q,} the pattern and
constraint degree distribution form the node perspective, respectively. Furthermore, it is
convenient to define the degree distribution polynomials as

A(z) = ZAizi and Q(z) = Z 02",

The degree distributions are determined after the learning phase is finished and in this
section we assume they are given. Furthermore, we consider an ensemble of random neural
graphs with a given degree distribution and investigate the average performance of the recall
algorithms over this ensemble. Here, the word "ensemble" refers to the fact that we assume
having a number of random neural graphs with the given degree distributions and do the
analysis for the average scenario. As such, the performance we achieve in practice could be
better or worse than the average case analysis here (for more details on this issue, please see
the discussions in Section 5.7 at the end of this chapter).

To simplify analysis, we assume that the noise entries are £1. However, the proposed re-
call algorithms can work with any integer-valued noise and our experimental results suggest
that this assumption is not necessary in practice.
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Finally, we assume that the errors do not cancel each other out in the constraint neurons
(as long as the number of errors is fairly bounded). This is in fact a realistic assumption
because the neural graph is weighted, with weights belonging to the real field, and the noise
values are integers. Thus, the probability that the weighted sum of some integers be equal to
zero is negligible.

We do the analysis only for the Majority-Voting algorithms since if we choose the Majority-
Voting update threshold ¢ = 1, roughly speaking, we will have the winner-take-all algo-
rithm 3

To start the analysis, let m be the total number of constraint neurons and &; denote the
set of erroneous pattern nodes at iteration ¢, and N'(&;) be the set of constraint nodes that
are connected to the nodes in &, i.e., these are the constraint nodes that have at least one
neighbor in &;. In addition, let N¢(&;) denote the (complementary) set of constraint neurons
that do not have any connection to any node in &;. Denote also the average neighborhood
size of & by S; = E(JNV(&)|). Finally, let C, be the set of correct pattern nodes.

Before getting to the upper bound, we need to establish a relationship between the av-
erage number of violated constraints in iteration ¢, Sy, and the number of corrupted pattern
nodes, |&;|. The following lemma provides us with such a relationship.

Lemma 10. The average neighborhood size S; in iteration t is given by:

|Ee]
Sy =m 1—<1—d> (5.8)

m

where d is the average degree for pattern nodes.
Proof. The proof is given in Appendix 5.A. [

Now based on the error correcting algorithm and the above notations, in a given iteration
two types of error events are possible:

1. Type-1 error event: A node x € C; decides to update its value. The probability of this
event is denoted by P, (¢).

2. Type-2 error event: A node x € &; updates its value in the wrong direction. Let P, (t)
denote the probability of an error for this type.

81t must be mentioned that choosing ¢ = 1 does not yield the WTA algorithm exactly because in the
original WTA, only one node is updated in each round. However, in this version with ¢ = 1, all nodes that
receive feedback from all their neighbors are updated. Nevertheless, the performance of the both algorithms
should be rather similar.
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We start the analysis by finding explicit expressions and upper bounds on the average
of P, (t) and FP,,(t) over all nodes as a function S;. The following two lemmas give us the
results we need.

Lemma 11. For ¢ — 1, the probability that a non-corrupted pattern neuron decides to
(mistakenly) update its state is given by

Po(t) = A (f;) |

Proof. To begin with, let P{*(t) be the probability that a node x € C; with degree d,. updates

its state. We have:
Pr(t) = Pr{'N (&) dﬂ Nl 90} (5.9)

where N (x) is the neighborhood of . Assuming random construction of the graph and
relatively large graph sizes, one can approximate Py (t) by

Pi(t) =~ ij (df’“"> (St) (1 - St)dﬁ, (5.10)

i=[eds] \ 0/ AT m

where the approximation is derived calculating the probability that x shares more than [¢d,, |
neighbors with the nodes in AV(&;). In the above equation, S;/m represents the probability
of having one of the d, edges connected to the .S; constraint neurons that are neighbors of
the erroneous pattern neurons.

As aresult of the above equations, we have:

Fe, (t) = Eq, (P{(1)), (5.11)

where E;, denote the expectation over the degree distribution {A4, ..., A, }.
Note that if ¢ = 1, the above equation simplifies to

P (t) = A (Sf> |

m

]

Lemma 12. Let & = &, \ {z} be the neighborhood size of all corrupted pattern neurons
except a particular neuron x and S} = E(|IN(E}")|). Then the probability that a noisy pattern
neuron updates its state in the wrong direction is upper bounded by P.,(t) < Eg, (Ps(t)),
where Py (t) is given by

P % (%) (&)(1—&)61 (5.12)

i=[dg /2] 2 m m
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Proof. A node x € & makes a wrong decision if the net input sum it receives has a different
sign than the sign of noise it experiences. Instead of finding an exact relation, we bound this
probability by the probability that the neuron x shares at least half of its neighbors with other
neurons. Otherwise, since the number of unique neighbors of this noisy neuron is larger than
half of its total neighbors, we are sure that the overall feedback on the direction of update
will be correct.

Thus, we obtain the upper bound P, (t) < Pr{w > 1/2}, where & = &\ .

Letting Py (t) = Pr{%lw(x)' > 1/2|deg(x) = d, }, we will have:

wo- 5, (-0

i=[ds/2]

where S} = E(|N(&)])
Therefore, we will have:
Pe,(t) < Eq, (P5(1)). (5.13)

]

Finally, by combining the results of Lemmas 11 and 12, the following theorem provides
an upper bound on the final recall probability of error, Pg.

Theorem 13. Let P? = £, {PF}, where PP for i = 1,2 is given by equations (5.10) and
(5.12). Furthermore, let || be the initial number of noisy nodes in the input pattern. Then,
the overall recall error probability, Pg, is upper bounded by

n — |&

n

_ Sl - \"
Pp<1- (1 — PP — |°|P§> . (5.14)
n

Proof. Based on the results of lemmas 11 and 12 the bit error probability at iteration ¢ would
be

P(t+1) = Pr{z € C}P., (t)+Pr{z € &}P.,(t)

- I '&'PM (t) + @P@ (8 (5.15)
n n

Therefore, the average block error rate is given by the probability that at least one pattern
node x is in error. Therefore:

P(t)=1— (1= Py(t)" (5.16)

Equation (5.16) gives the probability of making a mistake in iteration ¢. Therefore, we
can bound the overall probability of error, Pg, by setting Pr = lim;_,, P,(t). To this end, we
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5.4 Recall Phase

have to recursively update P,(t) in equation (5.15) and using |&; 11| =~ nP,(t + 1). However,
since we have assumed that the noise values are +1, we can provide an upper bound on the
total probability of error by considering

P < P.[(1). (5.17)

In other words, we assume that the recall algorithms either corrects the input error in the first
iteration or an error is declared.” As the initial number of noisy nodes grow, the above bound
becomes tight. Thus, in summary we have:

&l = 18] =\
PE§1—<1—" |°|Pf—|O|P;>
n

n

where P = E,; {P*} and || is the number of noisy nodes in the input pattern initially. []

Remark 14. One might hope to further simplify the above inequalities by finding closed
form approximation of equations (5.10) and (5.12). However, as one expects, this approach
leads to very loose and trivial bounds in many cases. Therefore, in our experiments shown in

section 5.6 we compare simulation results to the theoretical bound derived using equations
(5.10) and (5.12).

The following corollary derives a lower bound on the probability of correcting a sin-
gle input error, which will become handy in the upcoming chapters to improve the recall
algorithm.

Corollary 15. Let d be the average degree of pattern neurons in the neural graph. Then, if
the neural graph is constructed randomly, Algorithm 3 can correct (at least) a single error
with probability at least (1 —A (%)) when ¢ — 1.

Proof. In the case of a single error, we are sure that the corrupted node will always be
updated towards the correct direction. Thus, Py = 0. Furthermore, since we have only a
single erroneous pattern neuron initially, |€y| = 1. Consequently, from equation (5.14) we
have

Pczl—PEz(1—n;1Pf>n>(1—Pf)n

Now from Lemma 11 we know that when ¢ — 1, we have P = A(Sy/m). On the other
hand, Sy is the average neighborhood size of noisy neurons in the first iteration. Since we

?Obviously, this bound is not tight in practice and one might be able to correct errors in later iterations. In
fact simulation results confirm this expectation. However, this approach provides a nice analytical upper bound
since it only depends on the initial number of noisy nodes.
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only have one noisy pattern neuron initially, we have S, = d. Combining all these together

we obtain .
P> (1—A<d>> ,
m
which proves the corollary. [

Remark 16. The expression in the above lemma can be further simplified to

a2 ()

where dy,y, is the minimum degree of pattern neurons in the neural graph. This shows
the significance of having high-degree pattern neurons. For instance, in the extreme case
of dwin = 0, which would happen if the redundancy is not distributed uniformly among the
pattern neurons (see the discussion in in Section 5.7), then we obtain the trivial bound of
P. > (1 — Ao)", where A is the fraction of pattern neurons with degree equal to 0. On the
limit of large n we get P, > (1—1/n)" — 1/e*™. Thus, even if only a single pattern neuron
has a zero degree, probability of correcting a single error drops significantly.

While Corollary 15 provides a lower bound on the probability of correcting a single error
when the connectivity graph is assumed to be constructed randomly, the following corollary
shows that when some very mild conditions are satisfied, then the recall algorithms will
correct a single input error with probability 1.

Corollary 17. If no two pattern neurons share the exact same neighborhood in the neural
graph, then for ¢ — 1, Algorithms 2 and 3 can correct (at least) a single error.

Proof. We prove the corollary for Algorithm 3. The proof for Algorithm 2 would be very
similar.

Without loss of generality, suppose the first pattern neuron is contaminated by a +1
external error, i.e., z = [1,0,...,0]. As aresult

y = sign (W (z + 2)) = sign (Wx + Wz) = sign (Wz) = sign (W;),

where WW; is the ith

is sign(7). As a result, decision parameters of pattern neuron i, i.e., g

will be . .
@ _ (sign(W).sign(Wa)) _ [ 1, i=1
i~ = d; <1, i>1"
where the inequality follows since no two neurons share the same neighborhood. As a result,
for ¢ — 1, only the first neuron, the noisy one, will update its value towards the correct state,

thus, resulting in the correction of the single error. This proves the corollary. [

column of . Then, the feedback transmitted by the constraint neurons
@) in Algorithm 3

7
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Remark 18. As mentioned earlier, in this chapter we will perform the analysis for general
sparse bipartite graphs. However, restricting ourselves to a particular type of sparse graphs
known as "expanders" allows us to prove stronger results on the recall error probabilities.
More details can be found in Appendix 5.C. Since it is very difficult, if not impossible in
certain cases, to make a graph an expander during an iterative learning method, we have
focused on the more general case of sparse neural graphs.

5.5 Pattern Retrieval Capacity

So far, we have proposed a simple iterative algorithm to memorize the patterns, and a decod-
ing algorithm to deal with noise in the recall phase. It is now time to prove that the whole
model is capable of memorizing an exponential number of patterns.

It is interesting to see that, except for its obvious influence on the learning time, the
number of patterns C' does not have any effect in the learning or recall algorithm. As long
as the patterns belong to a subspace, the learning algorithm will yield a matrix which is
orthogonal to all of the patterns in the training set. Furthermore, in the recall phase, all we
deal with is Wz, with z being the noise which is independent of the patterns.

Therefore, in order to show that the pattern retrieval capacity is exponential in n, all we
need to show is that there exists a "valid" training set X with C' patterns of length n for which
C o a™, for some a > 1 and 0 < r. By valid we mean that the patterns should belong to
a subspace with dimension £ < n and the entries in the patterns should be non-negative
integers. The next theorem proves the desired result.

Theorem 19. Let a > 1 be a real number, and (Q > 2 be an integer. Let n be an integer
and k = |rn] for some 0 < r < 1. Then, there exists a set of C = al™l vectors in
{0,1,...,Q — 1} such that the dimension of the vector space spanned by these vectors is
k. This set can be memorized by the proposed learning algorithm.

Proof. The proof is based on construction: we construct a data set X with the required
properties. To start, consider a matrix G € R**" with rank k and k = |rn|, with 0 < r < 1.
Let the entries of GG be non-negative integers, between 0 and v — 1, with v > 2. Furthermore,
assume G is constructed randomly, i.e., each entry in column j of GG is non-zero with some
probability d;/k, where d; is the average non-zero entries we would like to have in column
jof G.

We start by constructing the patterns in the data set as follows: consider a set of random
vectors u# € R¥, = 1,...,C, with integer-valued entries between 0 and v — 1, where
v > 2. We set the pattern z#* € X to be z# = u” - G, if all the entries of z* are between
0 and () — 1. Obviously, since both u* and G have only non-negative entries, all entries in
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x# are non-negative. Therefore, we just need to ensure that entries of z* are between 0 and
Q — 1.

The ;' entry in 2 is equal to z/ = u” - G;, where Gj is the j* column of G. Suppose
G has d; non-zero elements. Then, we have:

o =u' -Gy < dj(y—1)(v—1).
Therefore, if d* = max; d;, we can choose ~y, v and d* such that
Q-1>d(v—1)(v-1) (5.18)

to ensure that all entries of x* are less than ().

As a result, since there are v* vectors u with integer entries between 0 and v — 1, we
will have v* = v™ patterns forming X'. This means C' = v"™, which is exponential in n if
v > 2. OJ

As an example, if GG can be selected to be a sparse 200 x 400 matrix with 0/1 entries
(i.e., ¥ = 2) and d* = 10, and u is also chosen to be a vector with 0/1 elements (i.e., v = 2),
then it is sufficient to choose () > 11 to have a pattern retrieval capacity of C' = 2™,

Remark 20. Note that inequality (8.5) was obtained for the worst-case scenario and in fact
is very loose. Therefore, even if it does not hold, we may still be able to memorize a very
large number of patterns since a big portion of the generated vectors x" will have entries
less than (). These vectors correspond to the message vectors u* that are "sparse" as well,
i.e., do not have all entries greater than zero. The number of such vectors is polynomial in
n, the degree of which depends on the number of non-zero entries in u*.

5.6 Simulation Results

This section provides experimental results to investigate different aspects of both learning
and recall algorithms.'?

Simulation Scenario

We have simulated the proposed learning and recall algorithms for three different network
sizes n = 200,400, 800, with k& = n/2 for all cases. For each case, we considered a few
different setups with different values for «, 1, and 6 in the learning algorithm 1, and different

10The MATLAB codes that are used in conducting the simulations mentioned in this chapter are available
online at https://github.com/saloot/NeuralAssociativeMemory.
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5.6 Simulation Results

© for the Majority-Voting recall algorithm 3. For brevity, we do not report all the results for
various combinations but present only a selection of them to give insight on the performance
of the proposed algorithms.

In all cases, we generated 50 random training sets using the approach explained in the
proof of Theorem 19, i.e., we generated a generator matrix GG at random with 0/1 entries
and d* = 10. We also used 0/1 generating message words u and put () = 11 to ensure the
validity of the generated training set.

However, since in this setup we will have 2* patterns to memorize, doing a simulation
over all of them would take a long time. Therefore, we have selected a random sample sub-
set X each time with size C' = 10° for each of the 50 generated sets and used these subsets
as the training set.

For each setup, we performed the learning algorithm and then investigated the average
sparsity of the learned constraints over the ensemble of 50 instances. As explained earlier,
all the constraints for each network were learned in parallel, i.e., to obtain m = n — k
constraints, we executed Algorithm 1 from random initial points m time.

As for the recall algorithms, the error correcting performance was assessed for each set-
up, averaged over the ensemble of 50 instances. The empirical results are compared to the
theoretical bounds derived in Section 5.4 as well.

Learning Phase Results

In the learning algorithm, we pick a pattern from the training set each time and adjust the
weights according to Algorithm 1. Once we have gone over all the patterns, we repeat this
operation several times to make sure that update for one pattern does not adversely affect
the other learned patterns. Let ¢ be the iteration number of the learning algorithm, i.e., the
number of times we have gone over the training set so far. Then we set a; x «/t to ensure
that the conditions of Theorem 6 are satisfied. Interestingly, all of the constraints converged
in at most two learning iterations for all different setups. Therefore, the learning is very fast
in this case.

Figure 5.5 illustrates the Mean Square Error (MSE), defined by equation 5.5, per iteration
of the learning algorithm for n = 400, £ = 200 and for different values of oy and 6;. In
all cases we have the sparsity penalty coefficient 7 set to 1. In the figure, we first notice the
effect of increasing the learning rate o in speeding up the learning process. This behavior
is expected. However, it must be noted that increasing oy beyond a certain limit might cause
stability issues and even result in divergence of the algorithm.

The second trend that we observe in Figure 5.5 is that for a fixed value of o, increasing
6, results in faster convergence (the dashed vs. dotted curves), i.e., enforcing higher sparsity
improves the convergence speed. However, as we will see shortly, there is again an upper
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limit on the extent to which we can increase 6 as very high values could also make the whole
algorithm diverge.

104 -y =0.75,0, =0.031 | |
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Figure 5.5: The MSE per iteration in the proposed learning algorithm for n = 400, £ = 200
and different values of o and 6. Note how increasing learning rate o speeds up the learning
process.

Figure 5.6 illustrates the same results but for n = 200, £ = 100. Here, oy = 0.75 and
n = 0.45 for both cases. However, 6, is varied. One clearly sees that once 6, is too high
(the blue curve), the algorithm takes much longer to converge as a lot of entries in w (below
o) are set to zero in each iteration, which as 6, increases is equivalent to larger amounts of
information loss. Therefore, the learning process takes longer to finish in such a case.

Figure 5.7 illustrates the percentage of pattern nodes with the specified sparsity degree
defined as ¢ = k/n, where k is the number of non-zero elements. From the figure we
notice two trends. The first is the effect of sparsity threshold, which as it is increased, the
network becomes sparser. The second one is the effect of network size, which as it grows,
the connections become sparser.
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Figure 5.6: The MSE per iteration in the proposed learning algorithm for n = 200, £ = 100
and different values of 6,. Here, oy = 0.75 and » = 0.45 for both cases. Note how very
large values of sparsity threshold (6,) slows than the learning process.

Recall Phase Results

For the recall phase, in each trial we pick a pattern randomly from the training set, corrupt
a given number of its symbols with 1 noise and use the suggested algorithm to correct
the errors.!! A pattern error is declared if the output does not match the correct pattern.
We compare the performance of the two recall algorithms: Winner-Take-All (WTA) and
Majority-Voting (MV). Table 5.1 shows the simulation parameters in the recall phase for all
scenarios (unless specified otherwise).

Figure 5.8 illustrates the effect of the sparsity threshold ¢ on the performance of the error
correcting algorithm in the recall phase. Here, we have n = 400 and k£ = 200. Two different
sparsity thresholds are compared, namely 6, « 0.031/¢ and 60, o 0.021/t. Clearly, as the
network becomes sparser, i.e., as  increases, the performance of both recall algorithms
improve.

"Note that the £1 noise values are considered for simplicity and the algorithm can work with other integer-
valued noise models as well.
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Figure 5.7: The percentage of variable nodes with the specified sparsity degree and different
values of network sizes and sparsity thresholds. The sparsity degree is defined as o = k/n,
where « is the number of non-zero elements.

Table 5.1: Simulation parameters

Parameter

¥

tmax

€

n

Value

1

20]1zlo

0.001

1/Oét

The effect of the sparsity penalty coefficient 7 is investigated in Figure 5.9. In this case,
we have n = 200 and k£ = 100. We compare the effect of two different values of 7, namely
n = 0.45 and 0.85. The sparsity threshold 6, is the same for the two cases and is equal to
0.3. Note how increasing 7 results in a slightly better performance, which might be due to
the fact that larger n’s is equivalent to higher sparsity, which as we saw earlier translates into
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Figure 5.8: Pattern error rate against the initial number of erroneous nodes for two different
values of 6,. Here, the network size is n = 400 and &£ = 200. The blue and the red curves
correspond to the sparser network (larger ) and clearly show a better performance.

lower recall error rates.

In Figure 5.10 we have investigated the effect of network size on the performance of
recall algorithms by comparing the pattern error rates for two different network size, namely
n = 800 and n = 400 with & = n/2 in both cases. As obvious from the figure, the
performance improves to a great extent when we have a larger network. This is partially
because of the fact that in larger networks, the connections are relatively sparser as well.

Figure 5.11 compares the results obtained in simulation with the upper bound derived
in Section 5.4. Note that as expected, the bound is quite loose since in deriving inequality
(5.16) we only considered the first iteration of the algorithm.

We also investigate the performance of the modified more practical version of the Majority-
Voting algorithm, which was explained in Section 5.4. Figure 5.12 compares the perfor-
mance of the WTA and original MV algorithms with the modified version of MV algorithm
for a network with size n = 200, £ = 100 and learning parameters «; o 0.45/t, n = 0.45
and 0; o 0.015/t. The neural graph of this particular example is rather dense, because of
small n and sparsity threshold 6. Therefore, here the modified version of the Majority-Voting
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Figure 5.9: Pattern error rate against the initial number of erroneous nodes could achieve
vert f 7. Here, the network size is n = 200 and k£ = 100. The sparsity threshold is the same
for the two cases and equals 6y = 0.3.

algorithm performs better because of the extra information provided by the ¢;-norm (rather
than the fy-norm in the original version of the Majority-Voting algorithm). However, note
that we did not observe this trend for the other simulation scenarios where the neural graph
was sparser.

Finally, Figure 5.13 compares the final recall error probability of the proposed method in
this chapter and the multi-state complex-valued neural networks proposed in [38] and [40].!2
To have a fair comparison, we applied the methods of [38] and [40] to a dataset of randomly
generated patterns, which is the setting that these methods are designed for, to see how the
results compare to those returned by our method in its natural setting, i.e., patterns belonging
to a subspace. As seen from Fig. 5.13 the proposed method in this chapter achieves very
small recall errors while having a much larger pattern retrieval capacity at the same time. We
then applied the methods of [38] and [40] to our dataset, where patterns belong to a subspace

12The learning method for the multi-state network proposed in [39], as also mentioned by the authors, is
computationally prohibitive for the rather large network sizes we are interested here. As a result, it couldn’t be
considered for this chapter.
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Figure 5.10: Pattern error rate against the initial number of erroneous nodes for two different
network sizes n = 800 and k& = 400. In both cases k = n/2.

to see how the suggested algorithms perform in situations where there is inherent redundancy
within the patterns. Interestingly, the performance of the method in [38] deteriorates while
that of [40] becomes better in certain cases (e.g., for C' = 2000). However, neither of the
approaches can achieve the small error rates obtained by the method proposed here. Thus,
even though redundancy and structure exists in this particular set of patterns, the mentioned
approaches could not exploit it to achieve better pattern retrieval capacities or smaller recall
error rates.

5.7 Discussions

The proposed algorithms in this chapter show how the subspace assumption can substantially
improve the pattern retrieval capacity. However, there are two important remarks in order.
First of all, note that since we assume patterns form a subspace, any noise pattern that lies
within the subspace can not even be distinguished, let alone be corrected. So how does this
issue relate to the recall performance where we investigate the relationship between the final
pattern error rate and the initial number of errors, irrespective of a particular noise pattern?
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Figure 5.11: Pattern error rate against the initial number of erroneous nodes and comparison
with theoretical upper bounds for n = 800, £ = 400, oy = 0.95 and 6, = 0.029.

To answer this, we should first of all remember that during the recall phase, we start the
algorithm from the vicinity of a given memorized pattern (local minimum), since we assume
that a fairly limited number of entries is corrupted due to noise (otherwise the algorithm
will not succeed). At this point, what we should address is if a noise pattern with a limited
number of non-zero elements could fall into the patterns subspace. In certain cases, this
could obviously happen, as depicted in Figure 5.14. Nevertheless, in other cases where the
subspace is "tilted", changing a few entries in a memorized pattern will not result in a pattern
that lies within the same subspace since the patterns are assumed to be integer-valued. Figure
5.15 illustrates this situation. In such cases, we could safely claim that we could correct any
error patterns with a limited number of non-zero entries. In fact, in the following chapters, we
somewhat relax this limitation by considering schemes where the neural algorithm is required
to be able to deal with only a single input error during the recall phase while ensuring that
the overall recall performance is not only maintained but also improved.

The second remark, which is closely related to the first one, concerns the cases where we
are not interested in remembering all of the patterns in a given subspace, but a select number
of them. Then, the question is if and how we could differentiate between a memorized
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Figure 5.12: Pattern error rate against the initial number of erroneous nodes for different
recall algorithms. Note how Majority-Voting (MV) algorithms performs better than the
Winner-Take-All (WTA) method. Furthermore, the modified MV algorithms achieves better
results than the original one.

pattern and any other pattern that lies within the same subspace during the recall phase.
Once again, the key point in answering this question is to note that in the recall phase we
start from the vicinity of a memorized pattern. Thus, in a tilted subspace we can retrieve the
correct pattern with high probability and, hence, be able to differentiate between the set of
memorized patterns and the other patterns in the same subspace.

Overall, it must be emphasized that the theoretical results derived in this (and subsequent)
chapters show that if the neural connectivity matrix has certain properties, e.g., no two pat-
tern neurons sharing the same neighborhood for the proposed algorithm in this chapter, then
the recall algorithm could correct a number of erroneous symbols in the input pattern during
the recall phase. Please note that these properties do not have any effect on the learning
phase or the number of learned patterns, and they just ensure having a decent performance
in the recall phase. In general, the closer the neural graph is to an expander (see Appendix
5.B), the better the recall performance will be.
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Figure 5.13: Recall error rate against the initial number of erroneous nodes for the method
proposed in this chapter and those of [38] and [40]. Different pattern retrieval capacities are
considered to investigate their effect on the recall error rate.

5.8 Final Remarks

In this chapter, we proposed a neural associative memory which is capable of exploiting
inherent redundancy in input patterns that belong to a subspace to enjoy an exponentially
large pattern retrieval capacity. Furthermore, the proposed method uses simple iterative al-
gorithms for both learning and recall phases which makes gradual learning possible and
maintains rather good recall performance. We also analytically investigated the performance
of the recall algorithm by deriving an upper bound on the probability of recall error as a
function of input noise. Our simulation results confirm the consistency of the theoretical
results with those obtained in practice over synthetic datasets, for different network sizes and
learning/recall parameters.

Improving the error correction capabilities of the proposed network is definitely a subject
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Figure 5.14: Example of a "flat" subspace where even a single error could result in a recall
failure. The blue circle is the memorized pattern and the red circle represents the noisy cue.
The noise vector is indicated by z.

worthy of further studies. We will address this issue in the subsequent chapters.

Extending this method to capture other sorts of redundancy, i.e., other than belonging
to a subspace, will be another topic which we would like to explore in future. One special
case where patterns satisfy nonlinear constraints will be considered in Chapter 9. Other in-
teresting cases include sparse patterns which have been considered in previous art (cf. [6]).
Nevertheless, further investigations in light of recent developments in the field of compres-
sive sensing defenitely seems interesting.

Finally, practical modifications to the learning and recall algorithms is of great interest.
One good example is simultaneous learn and recall capability, i.e., to have a network which
learns a subset of the patterns in the subspace and moves immediately to the recall phase.
During the recall phase, if the network is given a noisy version of the patterns previously
memorized, it eliminates the noise using the algorithms described in this Chapter. However,
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Figure 5.15: Example of a "tilted" subspace where we could correct any error pattern with
a limited number of non-zero entries. The blue circle is the memorized pattern and the red
circle represents the noisy cue. The noise vector is indicated by z.

if it is a new pattern, i.e., one that we have not learned yet, the network adjusts the weights in
order to learn this pattern as well. Such model is of practical interest and closer to real-world
neuronal networks. Therefore, it would be interesting to design a network with this capability
while maintaining good error correcting capabilities and large pattern retrieval capacities.

5.A Proof of Lemma 10

In this appendix, we find an expression for the average neighborhood size for erroneous
nodes, S; = E(JN(&;)]). Our argument is very similar to that of Motwani and Raghavan
[51] to prove that random bipartite graphs are expanders. Towards this end, we assume the
following procedure for constructing a right-irregular bipartite graph:

e In each iteration, we pick a variable node x with a degree randomly determined ac-
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cording to the given degree distribution.

e Based on the given degree d,., we pick d, constraint nodes uniformly at random with
replacement and connect x to the constraint node.

e We repeat this process n times, until all variable nodes are connected.

Note that the assumption that we do the process with replacement is made to simplify the
analysis. This assumption becomes more exact as n grows.

Having the above procedure in mind, we will find an expression for the average number
of constraint nodes in each construction round. More specifically, we will find the average
number of constraint nodes connected to ¢ pattern nodes at round ¢ of construction. This rela-
tionship will in turn yield the average neighborhood size of |£;| erroneous nodes in iteration
t of error correction algorithm described in section 5.4.

With some abuse of notation, let S, denote the number of constraint nodes connected to
pattern nodes in round e of construction procedure mentioned above. We write S, recursively
in terms of e as follows:

sn = w8 (%) ()7 (- 2) 5]

j=0
= Ky {S. +d.(1 —S./m)}
= S, +d(1—S./m), (5.19)

where d = E4 {d,} is the average degree of the pattern nodes. In words, the first line
calculates the average growth of the neighborhood when a new variable node is added to the
graph. The following equalities directly follow from relationships of binomial sums. Noting

that S; = d, one obtains:
( d ]
Si=m 1—(1—) ) (5.20)
m
This concludes the proof. []

In order to verify the correctness of the above analysis, we have performed some simula-
tions for different network sizes and degree distributions obtained from the graphs returned
by the learning algorithm. We generated 100 random graphs and calculated the average
neighborhood size in each iteration over these graphs. Furthermore, two different network
sizes were considered n = 100,200 and m = n/2 in all cases, where n and m are the
number of pattern and constraint nodes, respectively. The result for n = 100, m = 50 is

shown in Figure 5.16a, where the average neighborhood size in each iteration is illustrated
and compared with theoretical estimations given by equation (5.16). Figure 5.16b shows
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Figure 5.16: The theoretical estimation and simulation results for the neighborhood size of
irregular graphs with a given degree-distribution over 2000 random graphs for two different
network sizes.

similar results for n = 200, m = 100. In the figure, the dashed line shows the average
neighborhood size over these graphs. The solid line corresponds to theoretical estimations.
It is obvious that the theoretical value is an exact approximation of the simulation results.

5.B Expander Graphs

This section contains the definitions and the necessary background on expander graphs.

Definition 21. A regular (d,,d.,n,m) bipartite graph W is a bipartite graph between n
pattern nodes of degree d,, and m constraint nodes of degree d..

Definition 22. An (an, 8d,)-expander is a (d,, d.,n, m) bipartite graph such that for any
subset P of pattern nodes with |P| < an we have [N (P)| > Bd,|P| where N (P) is the set

of neighbors of P among the constraint nodes.

The following result from [49] shows the existence of families of expander graphs with
parameter values that are relevant to us.

Theorem 23. [49] Let W be a randomly chosen (d,, d.)—regular bipartite graph between
n d,—regular vertices and m = (d,/d.) d.—regular vertices. Then for all 0 < o < 1, with
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high probability, all sets of an d,—regular vertices in W have at least

d, a0 2d.ah(«)
n(dc(l—(l—a) ) — logze)

neighbors, where h(-) is the binary entropy function.

The following result from [52] shows the existence of families of expander graphs with
parameter values that are relevant to us.

Theorem 24. Let d., d,, m, n be integers, and let 3 < 1 — 1/d,. There exists a small
a > 0 such that if W is a (d,, d.,n, m) bipartite graph chosen uniformly at random from
the ensemble of such bipartite graphs, then W is an (an, $d,)-expander with probability
1 — o(1), where o(1) is a term going to zero as n goes to infinity.

5.C Analysis of the Recall Algorithms for Expander Graphs

Analysis of the Winner-Take-All Algorithm

We prove the error correction capability of the winner-take-all algorithm in two steps: first
we show that in each iteration, only pattern neurons that are corrupted by noise will be chosen
by the winner-take-all strategy to update their state. Then, we prove that the update is in the
right direction, i.e. toward removing noise from the neurons.

Lemma 25. [f the constraint matrix W is an (an, 5d,) expander, with 5 > 1/2, and the
original number of erroneous neurons are less than or equal to 2, then in each iteration of
the winner-take-all algorithm only the corrupted pattern nodes update their value and the
other nodes remain intact. For § = 3/4, the algorithm will always pick the correct node if
we have two or fewer erroneous nodes.

Proof. If we have only one node x; in error, it is obvious that the corresponding node will
always be the winner of the winner-take-all algorithm unless there exists another node that
has the same set of neighbors as x;. However, this is impossible since because of the ex-
pansion properties, the neighborhood of these two nodes must have at least 23d, members
which for 5 > 1/2 is strictly greater than d,,. As a result, no two nodes can have the same
neighborhood and the winner will always be the correct node.

In the case where there are two erroneous nodes, say x; and z;, let £ be the set {z, xj}
and N (&) be the corresponding neighborhood on the constraint nodes side. Furthermore,
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assume x; and x; share d,, of their neighbors so that |N(€)| = 2d, — d,y. Now because of
the expansion properties:

N(E)| =2d, — dy > 2pd, = dy < 2(1 — P)d,.

Now we have to show that there are no nodes other than z; and x; that can be the winner
of the winner-take-all algorithm. To this end, note that only those nodes that are connected
to V(&) will receive some feedback and can hope to be the winner of the process. So let us
consider such a node z, that is connected to d,, of the nodes in N(E). Let £ be £ U {z,}
and N (&') be the corresponding neighborhood. Because of the expansion properties we have
IN(E| =d, —d,, + |N(E)| > 38d,. Thus:

dpe < dp + ‘N(E)] - 35dp = 3dp(1 - 6) - dp“

Now, note that the nodes z; and x; will receive some feedback from 2d,, — d,; edges because
we assume there is no noise cancellation due to the fact that neural weights are real-valued
and noise entries are integers. Since 2d, — d,y > 3d,(1 — ) — d,y for § > 1/2, we conclude
that d, — d,y > d,, which proves that no node outside £ can be picked during the winner-
take-all algorithm as long as |£] < 2 for § > 1/2. O

In the next lemma, we show that the state of erroneous neurons is updated in the direction
of reducing the noise.

Lemma 26. [f the constraint matrix W is an (an, 5d,) expander, with 3 > 3/4, and the
original number of erroneous neurons is less than or equal e.,;, = 2, then in each iteration
of the winner-take-all algorithm the winner is updated toward reducing the noise.

Proof. When there is only one erroneous node, it is obvious that all its neighbors agree on
the direction of update and the node reduces the amount of noise by one unit.

If there are two nodes x; and x; in error, since the number of their shared neighbors is
less than 2(1 — 3)d,, (as we proved in the last lemma), then more than half of their neighbors
would be unique if 3 > 3/4. These unique neighbors agree on the direction of update.
Therefore, whoever the winner is will be updated to reduce the amount of noise by one
unit. [

The following theorem sums up the results of the previous lemmas to show that the
winner-take-all algorithm is guaranteed to perform error correction.

Theorem 27. If the constraint matrix W is an (an, 5d,) expander, with 5 > 3/4, then
the winner-take-all algorithm is guaranteed to correct at least ey;,, = 2 positions in error,
irrespective of the magnitudes of the errors.

Proof. The proof is immediate from Lemmas 25 and 26. 0
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Analysis of the Majority Voting Algorithm

Roughly speaking, one would expect the Majority-Voting algorithm to be sub-optimal in
comparison to the winner-take-all strategy, since the pattern neurons need to make indepen-
dent decisions, and are not allowed to cooperate amongst themselves. In this subsection, we
show that despite this restriction, the Majority-Voting algorithm is capable of error correc-
tion; the sub-optimality in comparison to the winner-take-all algorithm can be quantified in
terms of a larger expansion factor /3 being required for the graph.

Theorem 28. If the constraint matrix W is an (an, 3d,) expander with 3 > %, then the
Majority-Voting algorithm with p = g is guaranteed to correct at least two positions in

error, irrespective of the magnitudes of the errors.

Proof. As in the proof for the winner-take-all case, we will show our result in two steps:
first, by showing that for a suitable choice of the Majority-Voting threshold ¢, that only the
positions in error are updated in each iteration, and that this update is towards reducing the
effect of the noise.

Case 1 First consider the case that only one pattern node z; is in error. Let z; be any other
pattern node, for some j # . Let x; and x; have d,y neighbors in common. As argued in the
proof of Lemma 25, we have that

dy < 2d,(1 - B). (5.21)

Hence for § = %, x; receives non-zero feedback from at least %dp constraint nodes, while
x; receives non-zero feedback from at most Zd, constraint nodes. In this case, it is clear
that setting ¢ = % will guarantee that only the node in error will be updated, and that the
direction of this update is towards reducing the noise.

Case 2 Now suppose that two distinct nodes z; and z; are in error. Let £ = {x;, z,}, and
let z; and x; share d,; common neighbors. If the noise corrupting these two pattern nodes,
denoted by z; and z;, are such that sign(z;) = sign(z;), then both z; and z; receive —sign(z;)
along all d,, edges that they are connected to during the backward iteration. Now suppose that
sign(z;) # sign(z;). Then z; (x;) receives correct feedback from at least the d, — d,y edges
in N ({z;})\E (resp. N ({z;})\E) during the backward iteration. Therefore, if d,; < d,/2,
the direction of update would be also correct and the feedback will reduce noise during the
update. In addition, from equation (5.21) we know that for § = 4/5, d,y < 2d,/5 < d,/2.
Therefore, the two noisy nodes will be updated towards the correct direction.

Let us now examine what happens to a node z, that is different from the two erro-
neous nodes z;,x;. Suppose that z, is connected to d,,, nodes in N'(£). From the proof
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of Lemma 25, we know that

Hence z, receives at most 3d,(1 — /) non-zero messages during the backward iteration.

For 3 > %, we have that d, — 2d,(1 — 8) > 3d,(1 — ). Hence by setting 3 = 7 and
¢ = [d, — 2d,(1 — B)]/d, = 2, it is clear from the above discussions that we have ensured
the following in the case of two erroneous pattern nodes:

e The noisy pattern nodes are updated towards the direction of reducing noise.

e No pattern node other than the erroneous pattern nodes is updated.

Minimum Distance of Patterns

Next, we present a sufficient condition such that the minimum Hamming distance'? between
these exponential number of patterns is not too small. In order to prove such a result, we will
exploit the expansion properties of the bipartite graph WW; our sufficient condition will be in
terms of a lower bound on the parameters of the expander graph.

Theorem 29. Let W be a (d,, d.,n, m)—regular bipartite graph, that is an (an, 3d,) ex-
pander. Let X be the set of patterns corresponding to the expander weight matrix W. If

1 1
B>5+ 1

P

then the minimum distance between the patterns is at least |an| + 1.

Proof. Let d be less than an, and let IV; denote the i*" column of W. If two patterns are at

Hamming distance d from each other, then there exist non-zero integers ci, ca, . . ., Cq such
that

aWiy + Wi, + -+ Wi, =0, (5.22)
where 71, . . ., 74 are distinct integers between 1 and n. Let P denote any set of pattern nodes

of the graph represented by W, with |P| = d. As in [50], we divide N (P) into two disjoint
sets: NMunique(P) is the set of nodes in NV (P) that are connected to only one edge emanating
from P, and Nparea(P) comprises the remaining nodes of A/(P) that are connected to more

3Two (possibly non-binary) vectors x and y are said to be at a Himming distance d from each other if they
are coordinate-wise equal to each other on all but d coordinates.
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than one edge emanating from P. If we show that |[Nypigue(P)| > 0 for all P with |P| = d,
then (5.22) cannot hold, allowing us to conclude that no two patterns with distance d exist.
Using the arguments in [50, Lemma 1], we obtain that

[(Nunigue(P)| > 2d,|P| (5 - ;) '

Hence no two patterns with distance d exist if

| 11
2 ) s - .
dpd(ﬁ 2)> R R

By choosing § > % + ﬁ, we can hence ensure that the minimum distance between patterns
P

is at least [an| + 1. O

Choice of Parameters

In order to put together the results of the previous two subsections and obtain a neural as-
sociative scheme that stores an exponential number of patterns and is capable of error cor-
rection, we need to carefully choose the various relevant parameters. We summarize some
design principles below.

e From Theorems 24 and 29, the choice of 3 depends on d,,, according to % + ﬁ <fB<
1
1— o
e Choose d., (), v,y so that Theorem 37 yields an exponential number of patterns.

e For a fixed a, n has to be chosen large enough so that an (an, 5d,) expander exists
according to Theorem 24, with 5 > 3/4 and so that an/2 > ey, = 2.

Once we choose a judicious set of parameters according to the above requirements, we

have a neural associative memory that is guaranteed to recall an exponential number of pat-
terns even if the input is corrupted by errors in two coordinates.
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Chapter 6

Multi-Level Neural Associative Memories

The idea introduced in the previous chapter, i.e., to memorize patterns that satisfy some
linear constraints (belong to a subspace), certainly increased the pattern retrieval capacity
from polynomial to exponential in terms of network size.

However, a closer look at Figure 5.8 shows that the noise elimination capabilities of
the proposed algorithm is fairly limited. For instance in Figure 5.8, if 10 out of 400 pattern
neurons are corrupted by noise, the recall error rate will be more than 40%. More specifically,
the number of errors such a network can correct is usually a constant and does not scale with
n.

In this chapter (and the next one), we consider one way of working around this problem
by modifying the network architecture. More specifically, we divide the network into several
blocks, each of which will be a smaller example of the network we had in the previous
section. As such, each block is trained according to Algorithm 1 and the recall algorithms
would be the same as Algorithms 2 or 3 (for Winner Take All and Majority Voting methods,
respectively). However, now that we have several blocks that can correct at least one or two
errors each, we can achieve much better performance in the recall phase by combining them
together.

The architecture that is proposed in this chapter is based on dividing the pattern neurons
into non-overlapping clusters (blocks) and then adding a second layer to take into account the
inter-cluster correlations. Evidently, this approach achieves better recall error rates than the
original approach proposed in Chapter 5. However, based on the architecture, it is obvious
that the amount of errors that can be corrected would still be a constant with respect to n (this
problem will be solved in the next chapter, when we introduce a simple but effective trick in
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the architecture that makes all the difference). Thus, and to summarize, in this chapter we
propose a novel architecture to improve the performance of the recall phase.

Before getting into details, there is one point to mention: while dividing the network
into smaller blocks help the error correction performance, it imposes a more restrictive as-
sumptions on the patterns, namely, their sub-patterns should form a subspace. In certain
circumstances, it is possible to just assume the patterns are coming from a subspace and
apply the learning method proposed in the previous chapter and then, once the network is
available, divide it into smaller overlapping clusters. Nevertheless, we are aware of the fact
in general, this assumption is restrictive and later in the thesis, we will discuss ways to work
around this problem by focusing on networks that learn non-linear constraints within the
patterns.

6.1 Related Work

Modification of neural architecture has previously been used to improve the capacity. One
particular work that is closely relevant to our work is that of Venkatesh [53], where the
capacity is increased to © (b”/ b) for semi-random patterns, where b = w(Inn) is the size of
clusters. This significant boost to the capacity is achieved by dividing the neural network into
smaller fully interconnected disjoint blocks. This is a huge improvement but comes at the
price of limited worst-case noise tolerance capabilities, as compared to Hopfield networks
[21]. More specifically, since the network is a set of disjoint Hopfield networks of size b,
the amount of error each block can correct is in the order of eb, for some constant ¢ > 0.
As a result, if the errors in the whole network are spread uniformly among the blocks, one
could correct about the order of ebn /b = en errors, which is the same as the error correction
capabilities of the Hopfield network. However, in case of non-uniform distribution of errors
over the blocks, it can happen that there are more than eb errors in one block, which the
block can not handle. This will lead to a retrieval error in the network. As a result, due to the
non-overlapping structure of the blocks, the error correction is limited by the performance of
individual blocks.

The model proposed in [53] is very similar to the one we will discuss later in this chap-
ter, i.e., both models use disjoint blocks. However, while our focus is on sparse blocks,
Venkatesh considers fully interconnected blocks. Furthermore, we utilize the smaller blocks
to improve the noise tolerance capabilities of the network whereas that of [53] uses this
property to improve the pattern retrieval capacity.

The worst-case error correction capabilities of both networks are limited by the perfor-
mance of each individual block (although it must be mentioned that the recall performance
achieved by [53] is potentially better).

The content of this chapter is joint work with Amin Karbasi. It was published in [48].
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Figure 6.1: A two-level error correcting neural associative memory. Circles and squares
representing pattern and constraint neurons, respectively.

Finally, the pattern retrieval capacity of the model proposed in this chapter is an expo-
nential number in n, while the one proposed in [53] is on the order of In(n)™ (™), The latter
model can memorize any set of semi-random patterns, i.e. patterns that are combinations of
smaller random blocks, while the former is more suitable for structured patterns that form a
subspace.

6.2 Proposed Network Architecture

Figure 6.1 illustrates the proposed architecture. The network comprises two levels: the first
level is divided into non-overlapping clusters. Each cluster is a bipartite graph, with cir-
cles and squares representing pattern and constraint neurons, respectively. Following the
approach we proposed in the previous chapter, the connectivity matrix for each cluster is
orthogonal to the sub-patterns that fall within its domains. The second level is virtually the
same, except for its domain which contains all pattern neurons. Hence, the connectivity
matrix of the second level is orthogonal to the whole patterns.

The learning algorithm for the proposed network is also the same as the algorithm we
proposed in the previous chapter (see Algorithm 1). However, here the algorithm is applied
to the sub-patterns that lie within each cluster. In general, the number of learned constraints
in each cluster is not required to be the same.
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Algorithm S Error Correction

Input: pattern matrix X, connectivity matrix W, threshold ¢, iteration £,

Output: z,,25,...,2,
I: fort =1 — t,.< do
2. Forward iteration: Calculate the weighted input sum h; = 3% Wi;z;, for each
neuron ¥; and set:
1, h; <0
yi=4q 0, h; =0

—1, otherwise

3:  Backward iteration: Each neuron x; computes

g; = 2iz1 Wigyi
’ ?;1 ’VVZJ|

4:  Update the state of each pattern neuron j according to z; = x; — sign(g;) only if

lg;| > -
5: t—t+1
6: end for

6.3 Recall Phase

The recall algorithm is also similar to the one proposed in the previous chapter. Nevertheless,
this time it is applied to the clusters independently, i.e., Algorithm 5, which we discussed
in the previous chapter and copied here for the sake of completeness, is applied to all the
clusters in the first layer. Once finished, the same algorithm is applied to the second level
whose input is now the original corrupted pattern with some entries being corrected as a
result of the recall algorithm in the first level.

More specifically, let L be the total number of clusters and 1) be the connectivity
matrix obtained from the learning algorithm for cluster ¢ (¢ = 1, ..., L) and W, be the con-
nectivity matrix of the second "global" level. Then, Algorithm 6 gives the recall algorithm
for the proposed model. In words, the proposed error correction algorithm first acts upon the
clusters one by one. Each time, it uses Algorithm 5 to eliminate the external errors. Then,
if there were any errors left after the algorithm is done with the clusters in the first level,
Algorithm 5 is applied to the second level to deal with the remaining errors.

The advantage of the proposed architecture to the one discussed in the previous chapter
is obvious: if each cluster is capable of correcting e errors, the overall network could correct
more than e errors on average and if we are very lucky, up to Le errors. In fact, Corollary15
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Algorithm 6 Error Correction for the Multi-Level Architecture

Input: pattern matrix X', Connectivity matrices W, and wo o wE)
Olltpllt: X1,X9,...,Tp

1: for{=1— Ldo

2 Apply Algorithm 5 to cluster ¢ with connectivity matrix W ().

3: end for

4: if Any errors remain then

5:  Apply Algorithm 5 to W,,.

6: end if

shows that each cluster can correct one input error with high probability. However, from
the simulation results of the previous section (see for instance Fig. 5.10), we know that two
or more input errors usually result in high error rates. Thus, by dividing the network into
smaller modules, and thus separating the error instances, we can hope for better error rates.
Furthermore, once we have corrected as many errors as possible in the first level, the second
level comes into play and utilizes the correlation between the clusters to correct even more
errors.

6.4 Pattern Retrieval Capacity

The following theorem will prove that the proposed neural architecture is capable of memo-
rizing an exponential number of patterns. The proof is based on construction and is given in
Appendix 6.A.

Theorem 30. Let a > 1 be a real number, and (Q > 2 be an integer. Let n be an integer
and k, = |rn] for some 0 < r < 1. Then, there exists a set of C = al™ vectors in
{0,1,...,Q — 1}" such that the dimension of the vector space spanned by these vectors is
ky. This dataset can be memorized by the neural network given in Figure 6.1.

6.5 Simulation Results

Since the learning algorithm for this model is virtually the same as the one we introduced
in the previous chapter, we go directly to investigating the performance of the recall phase.
We have simulated the proposed algorithm in the two-level architecture with 4 equally sized
clusters in the first level.!

'The MATLAB code that is used in conducting the simulations mentioned in this chapter is available online
athttps://github.com/saloot/NeuralAssociativeMemory.
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Simulation scenario

We generated a synthetic dataset of C' = 10000 patterns of length n where each block of n/4
belonged to a subspace of dimension k < n/4.? The result of the learning algorithm consists
of four different local connectivity matrices W), ... W® as well as a global weight matrix
W,. The number of constraints in each cluster is m = n/4 — k and the number of global
constraints is m, = n — k,, where k, is the dimension of the subspace for overall pattern.
The learning algorithm stops when 99% of the patterns in the training set are learned.

For the recall phase, in each round we pick a pattern randomly from the training set,
corrupt a given number of its symbols with 1 noise and use Algorithm 6 to correct the
errors. As mentioned earlier, the errors are corrected first at the local and then at the global
level. When finished, we compare the output of the first and the second level with the original
(uncorrupted) pattern x. A pattern error is declared if the output does not match at each stage.
Table 6.1 shows the simulation parameters in the recall phase.

Table 6.1: Simulation parameters

Parameter | ¢ tmax €
Value | 0.8 | 20||z]p | 0.01

Results

Figure 6.2 illustrates the pattern error rates for a network of size n = 400 with two different
values of k;, = 100 and k, = 200. The results are also compared with that of the Majority-
Voting (MV) algorithm in Chapter 5 to show the improved performance of the proposed
algorithm. As one can see, having a larger number of constraints at the global level, i.e.,
having a smaller k,, will result in better pattern error rates at the end of the second stage.
Furthermore, note that since we stop the learning after 99% of the patterns have been learned,
it is natural to see some recall errors even for 1 initial erroneous node.

Table 6.2 shows the gain we obtain by adding an additional second level to the network
architecture. The gain is calculated as the ratio between the pattern error rate at the output of
the first level and the pattern error rate at the output of the second level.

ZNote that C' can be an exponential number in n. However, we selected C' = 10000 as an example to show
the performance of the algorithm because even for small values of k£ an exponential number in k& will become
too large to handle numerically.
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Figure 6.2: Pattern error rate against the initial number of erroneous nodes for a network of
size n = 400 and L = 4 clusters in the first level. The results are compared to the Majority
-Voting (MV) algorithm of Chapter 5 to highlight the improvement in the performance.

Table 6.2: Gain in Pattern Error Rate (PER) for different numbers of initial error in a network
of size n = 400.

Number of initial errors | Gain for k&, = 100 | Gain for k, = 200
2 10.2 2.79
3 6.22 2.17
4 4.58 1.88
5 3.55 1.68

6.6 Final Remarks

In this chapter we proposed a new architecture to improve the performance of the recall phase
for a neural associative memory that learns patterns belonging to a subspace. Nevertheless,
there is still room to improve the performance as the number of errors that can be corrected
in the recall phase is still a constant (with respect to the size of the patterns, n).

In addition, one could consider further developments of the proposed idea in different
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directions. As a case in point, in the two-level model discussed in this chapter we assumed
that the second level enforces constraints in the same "space" as the first one, i.e., the states of
the pattern neurons in the second level was the same as those of the first level. However, it is
possible that the second level imposes a set of constraints in a totally different space. A good
example is the case of written language. The first level could deal with local constraints on
the spelling of the words, while the second level could learn more global constraints enforced
by the grammar or the overall meaning of a sentence. The latter constraints are not on the
space of letters but rather the space of grammar or meaning.

We could combine information from both spaces to achieve better performance in the
recall phase. For instance, in order to correct an error in the word _at, we can replace _
with either h, to get hat, or c to get cat. Without any other clue, we can not find the correct
answer. However, if we have the sentence "The _at ran away", then from the constraints in
the space of meanings we know that the subject must be an animal or a person. Therefore,
we can return cat as the correct answer.

Finding a proper mapping between the two spaces that results in the best overall recall
performance is an interesting topic which is unfortunately out of the scope of this thesis but
could be a subject of future work.

6.A Proof of Theorem 30

The proof is very similar to the one we had in Chapter 5 and is based on construction: we
construct a data set X with the required properties, namely the entries of patterns should be
non-negative, patterns should belong to a subspace of dimension k, < n and each sub-pattern
of length n/ L belongs to a subspace of dimension k& < n/L.

To start, consider a matrix G € R*¥*" with rank k, and k, = |rn], with 0 < r < 1. Let
the entries of G be non-negative integers, between 0 and v — 1, with v > 2. Furthermore,

let Gy, ..., Gy be the L sub-matrices of (G, where G; consists of the columns 1 + (i — 1)L
to ¢L of (G. Finally, assume that in each sub-matrix we have exactly k non-zero rows with
k <n/L.

We start by constructing the patterns in the data set as follows: consider a random vector
u* € RFs with integer-valued-entries between 0 and v — 1, where v > 2. We set the pattern
€ X tobe x* = u* - G, if all the entries of z* are between (0 and () — 1. Obviously, since
both u* and G have only non-negative entries, all entries in z* are non-negative. Therefore,
it is the () — 1 upper bound that we have to worry about.

The j* entry in z* is equal to = = (u”, g;), where g; is the j'* column of G. Suppose
g; has d; non-zero elements. Then, we have:

zf = (u", g;) < dj(y —1)(v—1)
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Therefore, denoting d* = max; d;, we could choose ~y, v and d* such that

Q—-1>d'(yv—1)(v—-1) (6.1)

to ensure all entries of z* are less than ().

As a result, since there are v vectors u with integer entries between 0 and v — 1, we
will have v*s = vl™ patterns forming X. Which means C' = vl™l, which would be an
exponential number in n if v > 2.
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Chapter 7

Convolutional Neural Associative
Memories

In Chapter 5 we introduced an idea to increase the pattern retrieval capacity significantly.
However, as the noise tolerance capability of the proposed method was gravely limited, in
Chapter 6 we modified the proposed neural architecture to not only have exponentially large
pattern retrieval capacities, but also improved error correction and noise tolerance. Neverthe-
less, the error correction ability of the network is still limited as it only can correct a constant
number of external errors (with respect to the length of the patterns, n).

In this chapter, we build upon the architecture proposed in the previous chapter to achieve
linear error correction capabilities, i.e., being able to correct a linear number of input errors
(in terms of n). The new architecture is based on the same idea of breaking down the network
into smaller blocks. However, instead of having disjoint blocks, this time the blocks will
have some overlap with each other. Although having smaller blocks means a stricter set of
constraints on the input data, this simple trick will make the difference in the noise tolerance
properties of the network. We show that the proposed approach could still memorize an
exponential number of patterns (with sub-patterns belonging to a subspace) and provide
theoretical estimations of the recall performance.

Interestingly, the proposed model and the recall algorithm is very similar to codes on
graphs [54] and the Peeling Decoder used in communication systems to deal with erasure
noise [55]. As a result, we adopt methods from coding theory to theoretically analyze the
behavior of the network in dealing with input errors during the recall phase. Later in the

99



Chapter 7: Convolutional Neural Associative Memories

chapter we verify the theoretical analysis by numerical simulations as usual.

7.1 Related Work

With regard to dividing the input pattern to a number of overlapping smaller patches, our
model is extremely similar to the convolutional neural networks and convolutional Deep
Belief Networks in particular. Deep Belief Networks (DBNs) are typically used to ex-
tract/classify features by means of several consecutive stages (e.g., pooling, rectification,
etc). Having multiple stages helps the network to learn more interesting and complex fea-
tures. An important class of DBNs are convolutional DBNs where the input layer (or the
receptive field) is divided into multiple possibly overlapping patches, and the network ex-
tract features from each patch [57].

Since we divide the input patterns into a few overlapping smaller clusters, our model
is similar to that of convolutional DBNs. Furthermore, since we learn (extract) multiple
features' from each block and our feature extraction matrices are not identical over different
patches, our model, for instance, looks very similar to that of [58].

However, in contrast to convolutional DBNs, the focus of this work is not classification
but rather recognition of the exact patterns from their noisy versions. Moreover, in most
DBNs, we not only have to find the proper basis to represent the patterns in the feature
space, but also need to calculate the projection coefficients for each input pattern. As a
result, the complexity of the system is increased in pattern retrieval cases. In contrast, since
our model is based on learning the dual basis of the null space, there is no need to calculate
the projection coefficients in order to retrieve the pattern. We just eliminate the contribution
of noise and retrieve the original pattern. Furthermore, being a single layer architecture,
the proposed model in this chapter will have a faster learning phase as compared to deep
multi-layer structures. In addition, the overlapping nature of the clusters allows the gradual
diffusion of information over the network, which is achieved in DBNs [59] by the help of
having multiple layers.

Another important point that is worth mentioning is that learning a set of input pat-
terns with robustness against noise is not just the focus of neural associative memory. For
instance, [60] proposes an interesting approach to extract robust features in autoencoders.
Their approach is based on artificially introducing noise during the learning phase and let-
ting the network learn the mapping between the corrupted input and the correct version. This
way, they shift the burden from the recall phase to the learning phase. As such, this approach
is quite general in that it can handle any dataset without any particular restriction. We, on the
other hand, consider a more particular form of redundancy and enforce a suitable structure

The content of this chapter is joint work with Amin Karbasi and Amin Shokrollahi. It was published in [56].
IThe features here refer to the dual vectors for each patch.
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which helps us design algorithms that are faster for these particular datasets and guaranteed
to correct a linear fraction of noise, without previously being exposed to noise.

7.2 Problem Formulation and the Model

Learning phase

Each pattern © = (x4, x9, . . ., x,,) is a vector of length n, where z; € Q = {0,...,Q —1} for
i € [n] and some non-negative integer (). In this chapter, our focus is on memorizing patterns
with strong local correlation among the entries. More specifically, we divide the entries of
each pattern z into L overlapping sub-patterns of lengths ny,...,ny, so that > n;, > n.
Note that due to overlaps, a pattern node can be a member of multiple sub-patterns, as shown
in Figure 7.1. We denote the ith sub-pattern by () = (:cgi), a:g), ey xﬁf)) To enforce local
correlations, we assume that the sub-patterns 2 form a subspace of dimension k; < n;. This
is done by imposing linear constraints on each cluster. These linear constraints are captured
in the form of dual vectors as follows. In the learning phase, we would like to memorize
these patterns by finding a set of non-zero vectors wgi), wg), ceey wﬁ,ﬁ) that are orthogonal to
the set of sub-patterns 2, i.e.,

g = @720 =0, Vjem]Vielll], (7.1)
where [¢] denotes the set {1,2,--- , ¢}.
The weight matrix W = [w{"[w§"| ... |w@]T of cluster i is created by putting all the

dual vectors next to each other. Equation (7.1) can be written equivalently as
W@ . @ — (.

One can easily map the local constraints imposed by the W (?’s into a global constraint
by introducing a global weight matrix W of size m x n. The first m; rows of the matrix
W correspond to the constraints in the first cluster, rows m; + 1 to m; + ms correspond to
the constraints in the second cluster, and so forth. Hence, by inserting zero entries at proper
positions, we can construct the global constraint matrix 1. We will use both the local and
global connectivity matrices to eliminate noise in the recall phase.

Recall phase

In the recall phase a noisy version, say y, of an already learned pattern = € X is given. Here,
we assume that the noise is an additive vector of size n, denoted by e, whose entries assume
values independently from {—1, 0, +1} with corresponding probabilities p_1 = p1 = p./2
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Figure 7.1: Bipartite graph G.

and pp = 1 — p. (i.e., each entry in the noise vector is set to 1 with probability p.). We
denote by ¥, the realization of noise on the sub-pattern (). In formula, y = = + e.> Note
that W-y = W-eand W® .4 = W . e Therefore, the goal will be to remove the noise
e and obtain the desired pattern = as the correct states of the pattern neurons. This task will
be accomplished by exploiting the fact that we have chosen the set of patterns X" to satisfy
the set of constraints W) . 2() = (.

Remark 31. In order for the recall algorithm to work effectively, the amount of overlap
between clusters should be in such a way that (almost) all pattern neurons are members of
multiple clusters (more than one). The higher this number is, the better the recall algorithm’s
performance will be. This point will become more clear once we analyze the performance of
the proposed algorithm.

Capacity

The last issue we look at in this work is the retrieval capacity C of our proposed method. By
construction, we show that the retrieval capacity of our network is exponential in the size of
the network.

Note that since entries of y should be between 0 and () — 1, we cap values below 0 and above Q — 1 to 0
and ) — 1, respectively.
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Algorithm 7 Sequential Peeling Algorithm

Input: G,GY. G ... GO,
Output: z,25,...,2,
1: while There is an unsatisfied v'9, for ¢ =1,..., L do
2. for/{=1— Ldo
3 If v is unsatisfied, apply Algorithm 5 to cluster G.
4: If v© remained unsatisfied, revert the state of pattern neurons connected to v® to
their initial state. Otherwise, keep their current states.
5:  end for
6: end while
7. Declare xq, xo, ..., x, if all v®’s are satisfied. Otherwise, declare failure.

7.3 Recall Phase

Since the learning algorithm is the same as before, we directly go to discuss the details of
the recall phase and assume that the connectivity matrix for each cluster ¢ (denoted by W)
has been learned, using Algorithm 1.

The recall phase of the proposed model consists of two parts: intra-module and inter-
module. In the intra-module part, each cluster tries to remove noise from its sub-pattern
by applying Algorithm 5 (explained in Chapter 6). From Corollaries 15 17 in Chapter 5
we know that using Algorithm 5, each cluster could correct at least one error with high
probability, which is sufficient for our purpose in this chapter. To facilitate the analysis
further down, let P, denote this probability of correcting one error averaged over all clusters.
Thus, from now on we assume that if there is a single error in a given cluster, the cluster
corrects it with probability P. and declares a failure, if there is more than one error. In case
of a success, the pattern neurons keep their new states and, otherwise, revert back to their
original states.

During the inter-module decoding, once the correction in cluster ¢ finishes (using Algo-
rithm 5), Algorithm 5 is applied to cluster ¢ + 1 and this process continues several rounds.
Here, and as shown by Figure 7.2, the overlapping structure of the clusters helps them cor-
rect a linear fraction of errors together. The inter-module method is formally given in Algo-
rithm 7.

Interestingly, the inter-module algorithm is very similar to a famous decoding algorithm
in communication systems for erasure channels, called the Peeling Algorithm [55]. To see
the connections more clearly, we have to first define a "contracted" version of the neural
graph in Figure 7.1. In the contracted graph G, we compress all constraint nodes of a cluster
G into a single super constraint node v'¥ (see Figure 7.3). Then, each super constraint
node is capable of correcting any single error among its neighbors (in pattern neurons) or
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(g) Step 7: cluster 1 succeeds. (h) Step 8: Algorithm finishes successfully.
Figure 7.2: How overlap among clusters help the network to achieve better error correction.

In this figure, it is assumed that each cluster could correct one input error and declares a
failure if the number of input errors are higher than one.
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Figure 7.3: Contraction graph G corresponding to graph G in Figure 10.1a.

declare a failure if two or more of its neighbors are corrupted by noise. Once a single error
is corrected by any cluster, this correction removes the number of errors in other clusters as
well, hopefully helping them to eliminate their share of errors.

The similarity to the Peeling Decoder becomes apparent: in the Peeling Decoder, each
constraint (checksum) node is capable of correcting a single erasure in its neighbors, and
otherwise returns an erasure, indicating a decoding failure. Furthermore, once an erasure is
eliminated by a checksum node, it helps other constraint nodes that were connected to the
recently-eliminated erased node as they will have one fewer erasure among their neighbors
to deal with.

Now that the similarity to graph decoding techniques has become apparent, we will use
methods from modern coding theory to obtain a theoretical estimates on the error rate of
the proposed recall algorithm. More specifically, we are going to use the Density Evolution
(DE) method developed by Luby et al. for the erasure channels [55] and generalized by
Richardson and Urbanke [54] later.

For the purpose of the analysis, let i (p;j) denote the fraction of edges that are adja-
cent to pattern (constraint) nodes of degree i (j). We call {5\1, ce XL} and {p1,...,pn}
the pattern and super constraint degree distribution from the edge perspective, respectively.
Furthermore, it is convenient to define the degree distribution polynomials as

Mz) = Z Xzt and p(z) = Z piz L.

We say that the node v(¥) is unsatisfied if it is connected to a noisy pattern node. Further-
more, we will need the following definition on the decision subgraph and the "tree assump-
tion".

Definition 32. Consider a given cluster v¥) and a pattern neuron x connected to v'9). The
decision subgraph of x is a the subgraph rooted at x and branched out from the super con-
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Figure 7.4: The decision subgraph of the third edge (from left) in Figure 7.3 to a depth of 2.

straint nodes, excluding v'9). If the decision subgraph is a tree up to a depth of T, we say the
tree assumption holds for T levels.

An example of the decision subgraph for the third pattern neuron of Figure 7.3 is shown
in Figure 7.4.

If the decision subgraphs for the pattern neurons in graph G are tree-like for a depth of
7L, where 7 is the total number of number of iterations performed by Algorithm 7, then
the following theorem provides us with an estimate on the asymptotic performance of Algo-
rithm 7 and the recall phase.

Theorem 33. Let P. be the average probability of a super constraint node correcting a
single error in its domain. Then under the assumptions that graph G grows large and it
is chosen randomly with degree distributions given by \ and p, Algorithm 7 is successful if

De - /\(1 - Pcﬁ(l - Z)) < ZfOI’Z € (Oupe)'

Proof. The proof is similar to Theorem 3.50 in [54]. Each super constraint node receives an
error message from its neighboring pattern nodes with probability z(¢) in iteration ¢. Now
consider a message transmitted over an edge from a given cluster v(¥) to a given noisy pattern
neuron at iteration ¢ of Algorithm 7. This message will be a failure with probability 7 ()
(indicating that the super constraint node being unable to correct the error) if

106



7.3 Recall Phase

1. the super constraint node v(¥) receives at least one error message from its other neigh-
bors among pattern neurons, i.e., if it is connected to more than one noisy pattern
neuron, of,

2. the super constraint node v“) does not receive an error message from any of its other
neighbors but is unable to correct the single error in the given noisy neuron (which
occurs with probability 1 — F,).

Thus, we have _
7O@) =1— P.(1— 2(t))% (7.2)

As aresult, if 7(¢) shows the average probability that a super constraint node sends a message
declaring the violation of at least one of its constraint neurons, we will have,

n(t) = By {rO()} = X5l - (L — ()" ) =1~ Pl — =(t).  (7.3)

Now consider the message transmitted from a given pattern neuron x; with degree d;
to a given super constraint node, v(¥) in iteration ¢ + 1 of Algorithm 7. This message will
indicate a noisy pattern neuron if the pattern neuron was noisy in the first place and all of
its other neighbors among super constraint nodes has sent a violation message in iteration ¢.
Therefore, the probability of this node being noisy will be z(0)m(¢)%~1. As a result, noting
that 2(0) = p,, the average probability that a pattern neurons remains noisy will be

2+ 1) =pe- Y (1)~ = pe- A(m(t) = po - M1 - Pp(l— =(1)). (7.4)

Therefore, the decoding operation will be successful if z(t 4 1) < z(t), Vt. As aresult,

we must look for the maximum p, such that we will have p, - A(1 — P.p(1 — 2)) < z for
z €10, pe)- O

The condition given in Theorem 33 can be used to calculate the maximal fraction of
errors Algorithm 7 can correct for the given degree distributions. For instance, for the de-
gree distribution pair (A\(z) = 22, p(z) = 2°), the threshold is p. ~ 0.429, below which
Algorithm 7 corrects all the errors with high probability. Note that the predicted threshold
by Theorem 33 is based on the assumption that a cluster can only correct a single error. In
practice, as we noted earlier, a cluster can correct more. Hence, the threshold predicted by
Theorem 33 is a lower bound on the overall recall performance of our neural network (as the

size of the network grows).

Remark 34. Note that when graph G is constructed randomly according to the given degree
distribution, then as the graph size grows, the decision subgraph will become a tree with
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probability close to 1. Furthermore, it can be shown that the recall performance for any
such graph will be concentrated around the average case given by Theorem 33.

However, it must be noted that since the size of the neural graphs in this thesis are fairly
limited, in some cases the decision subgraphs might not be tree-like. In those cases the
performance might deviate from the one predicted by Theorem 33. Our simulation results,
however, show that in many cases the proposed analytical approximation is a good estimate
of the performance in the recall phase.

Overall, it must be emphasized that the theoretical results derived in this chapter show
that if the neural connectivity matrix has certain properties, e.g., no two pattern neurons
sharing the same neighborhood in each cluster, then the recall algorithm could correct a
linear number of erroneous symbols in the input pattern during the recall phase.

7.4 Pattern Retrieval Capacity

Following a similar approach to Chapter 5, it is not hard to show that the proposed convo-
lutional model has also an exponential pattern retrieval capacity. The idea is the same as
before: show that there exist a dataset X’ with the desired requirement which has an expo-
nential number of patterns.

For the sake of brevity, we postpone the formal proof to Chapter 8, where we prove a
more general theorem that explicitly shows a convolutional and a coupled associative mem-
ory both have an exponential capacity (see Section 8.5 for further details).

7.5 Simulation Results

We have performed simulations over synthetic datasets to investigate the performance of the
proposed algorithm and confirm the accuracy of our theoretical analysis. >

Simulation Scenario

There is a systematic way of generating patterns satisfying a set of linear constraints (see the
proof of Theorem 37). In our simulations, we assume that each pattern neuron is connected
to approximately 5 clusters. The number of connections should be neither too small (to
ensure information propagation) nor too big (to adhere to the sparsity requirement).

In the learning phase, Algorithm 1 is performed in parallel for each cluster which results
in the connectivity matrix for each cluster. In the recall phase, at each round, a pattern x is

3The MATLAB codes that are used in conducting the simulations mentioned in this chapter are available
online at https://github.com/saloot/NeuralAssociativeMemory.
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7.5 Simulation Results
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Figure 7.5: Pattern and constraint neuron degree distributions for n = 400, L = 50, and an
average of 20 constraints per cluster. The learning parameters are o, < 0.95/t, 7 = 0.75/cy
and 0; < 0.05/t.

sampled uniformly at random from the training set. Then, each of its entries gets corrupted
independently with probability p.. Afterwards, Algorithm 7 is used to denoise the corrupted
pattern. We repeat this process many times to calculate the error rate, and compare it to the
bound derived in section 7.3.

Learning Results

The left and right panels in Figure 7.5 illustrate the degree distributions of pattern and con-
straint neurons, respectively, over an ensemble of 5 randomly generated networks. The net-
work size is n = 400, which is divided into 50 overlapping clusters, each of size around 40,
ie.,, ny >~ 40 for £ = 1,...,50. Each pattern neuron is connected to 5 clusters, on average.
The horizontal axis shows the normalized degree of pattern (resp., constraint) neurons and
the vertical axis represents the fraction of neurons with the given normalized degree. The
normalization is done with respect to the number of pattern (resp., constrain) neurons in
the cluster. The parameters for the learning algorithm are o, o< 0.95/t, n = 0.75/c, and
0; = 0.05.

Figure 7.6 illustrates the same results but for a network size of n = 960, which is divided
into 60 clusters, each with size 80, on average. The learning parameters are the same as
before, i.e., ay x 0.95/t, 7 = 0.75/cy and 6, = 0.05, and each pattern neuron is connected
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Figure 7.6: Pattern and constraint neuron degree distributions for n = 960, L = 60, and an
average of 40 constraints per cluster. The learning parameters are o, < 0.95/t, 7 = 0.75/cy
and 0; o< 0.05/%.

to 5 clusters on average. Note that the overall normalized degrees are smaller compared to
the case of n = 400, which indicates sparser clusters on average.

In almost all cases, the learning phase converged within two learning iterations, i.e., by
going over the data set only twice.

Recall Results

Figure 7.7 illustrates the performance of the recall algorithm. The horizontal and vertical
axes represent the number of initial erroneous neurons and the final pattern error rate, re-
spectively. The performance is compared with the theoretical bound derived in section 7.3,
as well as the results of the algorithms proposed in Chapters 5 and 6. The parameters used
for this simulation are n = 400, L = 50 and ¢ = 0.82 in the recall Algorithm 5. For the
mode proposed in Chapter 6, the network size is n = 400 with 4 clusters in the first level and
one cluster in the second level.

Note that in the theoretical estimate used in Figure 7.7, we once calculated the probability
of correcting a single error by each cluster, F,, using the lower bound in Corollary 15 in
Chapter 5, and once fixed it to 1. The corresponding graphs in the figure show that the
second estimation is tighter in this case and each cluster could correct a single error with
probability close to 1.
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Figure 7.7: Recall error rate and the theoretical bounds for different architectures of network
with n = 400 pattern neurons and L = 50 clusters.

Figure 7.8 shows the final PER for the network with n = 960 and L = 60 clusters.
Comparing the PER with that of a network with n = 400 neurons and L = 50 clusters,
we witness a worse performance. This might seem surprising at first glance since we have
increased the network size and the number of clusters. However, the key point in determining
the performance of Algorithm 7 is not the number of clusters but the size of the clusters, or
the cluster nodes degree distribution, p(x). In the former case, each cluster has around 40
pattern neurons while in the latter we have around n = 80 neurons in each cluster. If there
are too many neurons in one cluster, the chance of getting more than one error in the cluster
increases, which means Algorithm 7 would struggle. Thus, increasing the number of clusters
will only help when it results in fewer neurons in each cluster.

7.6 Discussion and Final Remarks

In this chapter, we further improved the performance of the recall phase of a neural asso-
ciative memory that memorize patterns belonging to a subspace. The breakthrough is based
on modifying the neural architecture to seek linear constraints among the overlapping sub-
patterns of the given patterns. The result is a network that could memorize an exponential
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Figure 7.8: Recall error rate and the theoretical bounds for different architectures of network
with n = 800 pattern neurons and L = 60 clusters.

number of patterns while being able to correct a linear number of errors in terms of n, the
length of the patterns. Because of the similarities of the new recall algorithm to those used in
modern graph based codes, we were able to analyze the average performance of the proposed
algorithm using theoretical tools from coding theory.

While the proposed architecture achieves better performance in the recall phase, it is still
limited to patterns belonging to a subspace. Extending the model to be able to handle a
more general set of patterns is definitely a topic worthy of further investigations. Especially,
it would be interesting to evaluate the performance of the proposed method in memorizing
natural patterns, e.g., images. In such examples, the patterns in the dataset often do not
belong to a subspace. However, in many cases the minor eigenvalues of their correlation
matrices is very close to zero, suggesting that the patterns are very close to a low-dimensional
embedding. As such, it would be interesting to consider how one could generalize the method
proposed in this chapter to address these close-to-subspace cases as well.
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Chapter 8

Coupled Neural Associative Memories

In this chapter, we extend the proposed architecture in the previous chapter to achieve even
better error correction capabilities. The main idea is to couple several convolutional neural
networks to a larger "coupled" architecture. We show that the proposed architecture could
still memorize an exponential number of patterns and retrieve the correct pattern in the recall
phase if a linear fraction (up to a threshold) of the pattern neurons are corrupted by noise.

Interestingly, the proposed model is very similar to the spatially coupled codes in modern
coding theory. We will utilize a recently developed method to analyze these spatially coupled
codes [61] to theoretically investigate the performance of the proposed model during the
recall phase.

It is also interesting to note that the proposed model shares some similarities with the
architecture of the visual cortex of macaque brain [62].

8.1 Related Work

As mentioned earlier, the proposed model in this chapter is very similar to spatially-coupled
codes on graphs [64]. Specifically, our suggested model is closely related to the spatially-
coupled Generalized LDPC code (GLDPC) with Hard Decision Decoding (HDD) proposed
in [65]. This similarity helps us borrow analytical tools developed for analyzing such codes
[61] and investigate the performance of our proposed neural error correcting algorithm. Sim-
ilar tools might be helpful in analyzing other neural networks with similar structures as well.

The content of this chapter is joint work with Amin Karbasi and Amin Shokrollahi. It was published in [63].
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Figure 8.1: Overlapping receptive fields over a 2D pattern. Each "cone" illustrates one cluster
and the constraints in that cluster are learned over the domain specified by the cone base.

The proposed approach enjoys the simplicity of message passing operations performed
by neurons as compared to the more complex iterative belief propagation decoding procedure
of spatially coupled codes [64]. This simplicity may lead to an inferior performance but
already allows us to outperform prior error resilient methods suggested for neural associative
memories in the literature.

8.2 Problem Formulation and the Model

As before, we will work non-binary neurons in this chapter as well. We are still interested
in designing a neural network that is capable of memorizing the patterns in a dataset X'.
To this end, we break the patterns into smaller pieces/sub-patterns and learn the resulting
sub-patterns separately (and in parallel). Furthermore, as our objective is to memorize those
patterns that are highly correlated, we only consider a dataset in which the sub-patterns
belong to a subspace (or have negligible minor components).

More specifically, and to formalize the problem in a way which is similar to the literature
on spatially coupled codes, we divide each pattern into L sub-patterns of the same size and
refer to them as planes. Within each plane, we further divide the patterns into D overlapping
clusters, i.e.,, an entry in a pattern can lie in the domain of multiple clusters. We also assume
that each element in plane ¢ is connected to at least one cluster in planes ¢ — €2, ... ¢ + ()
(except at the boundaries). Therefore, each entry in a pattern is connected to 22 + 1 planes,
on average.

An alternative way of understanding the model is to consider 2D datasets, i.e.,, images.
In this regard, the overlapping nature of clusters correspond to the overlapping receptive
fields over the image (see Figure 8.1), which is similar to the receptive fields in human visual

114



8.3 Learning Phase

cortex [10]. In addition, rows of the image correspond to planes in our model and clusters
are the overlapping "receptive fields" which cover an area composed of neighboring pixels
in different rows (planes). The model is shown in Figure 8.2. Our assumptions on strong
correlations then translates into assuming strong linear dependencies within each receptive
field for all patterns in the dataset.

8.3 Learning Phase

To memorize the patterns, we utilize Algorithm 1 as before, namely we learn a set of vectors
that are orthogonal to the sub-patterns in each cluster of each plane. The output of the
learning algorithm is an my 4 x 14 matrix W9 for cluster d in plane £. The rows of
this matrix correspond to the dual vectors and the columns correspond to the corresponding
entries in the patterns. Therefore, by letting x(“? denote the sub-pattern corresponding to
the domain of cluster d of plane ¢, we have

Wwed . xbd — ¢, (8.1)

These matrices (i.e.,, W (4?) form the connectivity matrices of our neural graph, in which
we can consider each cluster as a bipartite graph composed of pattern and constraint neu-
rons. The left panel of Figure 8.3 illustrates the model, in which the circles and rectangles
correspond to pattern and constraint neurons, respectively. The details of the first plane are
magnified in the right panel of Figure 8.3.

Cluster d in plane ¢ contains my 4 constraint neurons and is connected to 1,4 pattern
neurons. The constraint neurons do not have any overlaps (i.e., each one belongs only to one
cluster) whereas the pattern neurons can have connections to multiple clusters and planes. To
ensure good error correction capabilities we aim to keep the neural graph sparse (this model
shows significant similarity to some neural architectures in the macaque brain [62]).

Figure 8.2: Planes and clusters for a 2D pattern, i.e., an image. The domains of the planes
are specified in the left figure (i.e., P!l. 1 indicates the domain of Plane 1).
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Ly Constraint neurons
L,
Ls Pattern neurons

Figure 8.3: A coupled neural associative memory.

We also consider the overall connectivity graph of plane ¢, denoted by W®, in which
the constraint nodes in each cluster are compressed into one super constraint node. Any
pattern node that is connected to a given cluster is connected with an (unweighted) edge
to the corresponding super constraint node. Figure 8.4 illustrates this graph for plane 1 in
Figure 8.3.

8.4 Recall Phase

The recall algorithm in this chapter is very similar to that of the previous chapter. The latter
involved a local (or intra-cluster) and a global (or inter-cluster) algorithm, where the global
algorithm repeatedly applies the local algorithm to each cluster in a round robin fashion to
ensure good error correction.

Inspired by this boost in the performance, we can stretch the error correction capabilities
even further by coupling several neural "planes" with many clusters together, as mentioned
earlier. We need to modify the global error correcting algorithm in such a way that it first acts

Figure 8.4: A connectivity graph with neural planes and super constraint nodes. It corre-
sponds to plane 1 of Fig. 8.3.
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Algorithm 8 Error Correction of the Coupled Network

Input: Connectivity matrix (W (&4 V¢, Vd), iteration .y
Output: Correct memorized pattern X = [z1, Zg, . . ., Ty
1: fort =1 — t. do
2. for/=1— Ldo

3: ford=1— Ddo

4: Apply Algorithm 5 to cluster d of neural plane /.

5: Update the value of pattern nodes x(“® only if all the constraints in the clustered
are satisfied.

6: end for

7. end for

8: end for

upon the clusters of a given plane in each round before moving to the next plane. The whole
process is repeated few times until all errors are corrected or a threshold on the number of
iterations is reached (Z,.x). Algorithm 8 summarizes the proposed approach.

We consider two variants of the above error correction algorithm. In the first one, called
constrained coupled neural error correction, we provide the network with some side infor-
mation during the recall phase. This is equivalent to "freezing" a few of the pattern neurons
to known and correct states, similar to spatially-coupled codes [61], [64]. In the case of neu-
ral associative memory, the side information can come from the context. For instance, when
trying to correct the error in the sentence "The cat flies", we can use the side information
(flying) to guess the correct answer among multiple choices. Without this side information,
we cannot tell if the correct answer corresponds to bat or rat.!

In the other variant, called unconstrained coupled neural error correction, we perform
the error correction without providing any side information. This is similar to many standard
recall algorithms in neural networks. In fact, the unconstrained model can be thought of as
a very large convolutional network similar to the model proposed in Chapter 7. Thus, the
unconstrained model serves as a benchmark to evaluate the performance of the proposed
coupled model in this chapter.

Performance Analysis

Let z()(t) denote the average probability of error for pattern nodes across neural plane ¢
in iteration ¢. Thus, a super constraint node in plane ¢ receives noisy messages from its

'The same situation also happens in dealing with erasures, i.e., when trying to fill in the blank in the
sentence "The _at flies".
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neighbors with an average probability z(©):

1 & :

(t=9) ) —

> 2 s.t. 2 =0, vieg{1,...,L}.
20+1 7,

(0 —

Our goal is to derive a recursion for z(“(t 4 1) in terms of z()(t) and z()(¢). To this
end, in the graph WO let )\Z@ and pg.g) be the fraction of edges (normalized by the total
number of edges in graph W®) connected to pattern and super constraint nodes with degree
¢ and j, respectively. We define the degree distribution polynomials in plane ¢ from an edge
perspective as A (z) = ¥, A2~ and p© (z) = > p!?23=1, Furthermore, let ¢ be the
minimum number of errors each cluster can correct with high probability.

Lemma 35. Let us define g(z) = 1 — p(1 — 2) — ¢ 2 dpl-2) gpg f(z,pe) = peA(2),

=1 41 dzt
where e is the number of errors each cluster can correct. Then,

A+1)=f ( 1 i g<2<“>(t)),pe) : (8.2)

20+1,~,

Proof. Without loss of generality, we prove the lemma for the case that each cluster can
correct at least two errors with high probability, i.e., e = 2. Extending the proof to e > 2
will be straightforward.

Let z()(¢) denote the average probability of error for pattern nodes across neural plane
¢ and in iteration ¢. Furthermore, let 7()(¢) be the average probability of a super constraint
node in plane ¢ sending a failure message to its neighbors among pattern neurons. We will
derive recursive expressions for z(“) (t) and 7 (¢).

A super constraint node in plane ¢ receives noisy messages from its neighbors with an
average probability of z(¥), where

(©) 1 & e
0 _ ~
© T 9011 jZ i

=0

with 2@ = 0 fori < Oandi > L.

Let 7ri(é) denote the the probability that a super constraint node with degree ¢ in plane ¢
sends a failure message to one of its neighboring noisy pattern nodes. Then, knowing that
each super constraint node (cluster) is capable of correcting at least e = 2 errors, 7ri(£) is equal
to the probability of receiving two or more noisy messages from other pattern neurons,

7 =1 (1-20)" (i —1)z0 (1-20)"".

2Simulations in the previous chapter show that clusters can potentially correct e > 1 errors with a non-zero
probability where e is still a constant, in terms of n, and very small.
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Now, letting 7()(¢) denote the average probability of sending erroneous nodes by super
constraint nodes in plane ¢ and in iteration ¢, we will have

701 = E{xi}
= Zpﬂz@
- p(1—z0(t)) — 20(t)p' (1 — 29(1)),

where p(z) = 3, piz"~! is the super constraint node degree distribution polynomial and

§(2) = dp(2) /d=.
To simplify notations, let us define the function g(z) = 1 — p(1 — z) — zp/(1 — 2) such

that
() = g(z9(1)).

Now consider a given pattern neuron with degree j in plane /. Let z](-z) (t + 1) denote the
probability of sending an erroneous message by this node in iteration ¢ + 1 over a particular
edge to a particular super constraint node. Then, z (¢ )(t + 1) is equal to the probability of this
node being noisy in the first place (p.) and having all its other super constramt nodes sending

erroneous messages in iteration ¢, the probability of which is ( Ot )) ", where

7}(5)(

Q
2Q+1 _Z_:

is the average probability that a pattern neuron in plane ¢ receives a failure message from its
neighboring super constraint neurons.
Now, since 29 (t + 1) = IE{ZJ(-@ (t+1)}, we get

Ot +1) = p YN (ﬁ(@)j_l
j
— pe)\(—(f))

= P (29+1_Z_ )

Again to simplify the notation, let us define the function f(z,p.) = p.A(z). This way,
we will have the recursion as:

Q
Z(E)(t + 1) = f (2911 Z g(z(g_Z)(t))7pe) .

=0
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The decoding will be successful if () (t + 1) < 2(9(t), V. As a result, we look for the
maximum p, such that

A
f (29 +1 Z g(z(e )(t))ape) < Z(g) for Z(g) € [Oape].
i=—Q

Let p! and p’ be the maximum p,’s that admit successful decoding for the uncoupled and
coupled systems, respectively. To estimate these thresholds, we follow the approach recently
proposed in [61] and define a potential function to track the evolution of Equation (8.2). Let
z={z ... 21} denote the vector of average probabilities of error for pattern neurons in
each plane. Furthermore, let f(z,p.) : RY — RL and g(z) : R* — R’ be two component-
wise vector functions such that [f(z,p.)]; = f(zi,p.) and [g(z)]; = g(z;), where f(z;, p.)
and g(z;) are defined in Lemma 35. Using these definitions, we can rewrite Equation (8.2)
in the vector form as [61]:

z(t + 1) = ATf(Ag(2(t)), pe) (8.3)

where A is the coupling matrix defined as>:

I S i

11---1000 ---00
A 11100 00
— 2041

00 0011 11

00 0001 11

At this point, the potential function of the unconstrained coupled system can be defined
as [61]:

Ulz.p) = [ @(u—ATfAgw).du
= g(z)'z— G(z) — F(Ag(z),p.) (8.4)

where ¢ () = diag([g'(2))), G(2) = o g(u) - du and F(z) = J,-£(u) - du.
A similar quantity can be defined for the uncoupled (scalar) system as Us(z,p.) =
z2g(z) — G(z) — F(g(z),pe) [61], where z is the average probability of error in pattern

SMatrix A corresponds to the unconstrained system. A similar matrix can be defined for the constrained
case.
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neurons. The scalar potential function is defined in the way that U!(z, p.) > 0 for p. < p!.
In other words, it ensures that z(t + 1) = f(g(2(t),p.) < z(t) (successful decoding) for
pe < pl.

Furthermore, let us define p! = sup{p.| min(Us(z,p.) > 0}. Thus, in order to find
pk, it is sufficient to find the maximum p, such that min{Us(z,p.)} > 0 [61]. We will
show that the constrained coupled system achieves successful error correction for p. < p:.
Intuitively, we expect to have p! < p? (side information only helps), and as a result a better
error correction performance for the constrained system. Theorem 36 and our experimental
result will confirm this intuition later in the chapter.

Let AE(p.) = min, U,(z, p.) be the energy gap of the uncoupled system for p. € (pi, 1]
[61]. The next theorem borrows the results of [61] and [64] to show that the constrained
coupled system achieves successful error correction for p. < p?.

Theorem 36. In the constrained system, when p. < p} the potential function decreases in
each iteration. Furthermore, if () > %, the only fixed point of Equation (8.3) is 0.
Proof. The proof of the theorem relies on results from [64] to show that the entries in the
vector z(t) = [21)(t), ..., 2(F)(t)] are non-decreasing, i.e.,,

V) <21 <o < 2B(1).

This can be shown using induction and the fact that the functions f(-, p.) and g(-) are non-
decreasing (see the proof of Lemma 22 in [64] for more details).

Then, one can apply the result of Lemma 3 in [61] to show that the potential function of
the constrained coupled system decreases in each iteration. Finally, when

Q> |[U"(2, pe)lloo/ AE(pe)

one could apply Theorem 1 of [61] to show the convergence of the probability of errors to
Zero. 0

Note that Theorem 36 provides a sufficient condition (on €2) for the coupled system to
ensure it achieves successful error correction for every p. upto p. = p.. However, the
condition provided by Theorem 36 usually requires {2 to be too large, i.e., () is required to
be as large as 1000 to 10000, depending on the degree distributions. Nevertheless, in the
next section we show that the analysis is still quite accurate for moderate values of €2, i.e.,
) ~ 2 3, meaning that a system with small coupling parameters could still achieve very
good error correction in practice.
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8.5 Pattern Retrieval Capacity

The following theorem shows that the number of patterns that can be memorized by the
proposed scheme is exponential in n, the pattern size.

Theorem 37. Let a > 1 be a real number, and () > 2 be an integer. Let n be an integer
and k = |rn] for some 0 < r < 1. Then, there exists a set of C = al™l vectors in
{0,1,...,Q — 1}" such that the dimension of the vector space spanned by these vectors is
k. This set can be memorized by the proposed algorithm.

Proof. Since the learning and recall algorithms are not affected by the number of patterns (as
long as they come from a subspace), we show that there exist a dataset with an exponential
number of patterns that satisfy the requirements of the theorem (i.e. their entries are between
0 and () —1 and the patterns form a subspace). Thus, the proposed algorithm could memorize
this dataset and the pattern retrieval capacity could be exponential.

The proof is based on construction: we construct a data set X with the required properties
such that it can be memorized by the proposed neural network. To simplify the notations, we
assume all the clusters have the same number of pattern and constraint neurons, denote by 7.
and m.. In other words, ny 4 = n.and myq = m.forall{ = {1,..., L} andd = {1, ..., D}.

We start by considering a matrix G € R**", with non-negative integer-valued entries
between 0 and v — 1 for some v > 2. We also assume k = rn, with 0 < r < 1.

To construct the dataset, we first divide the columns of G into L sets, each corresponding
to the neurons in one plain. Furthermore, in order to ensure that all the sub-patterns within
each cluster form a subspace with dimension less than 7., we propose the following structure
for the generator matrix G. This structure ensures that the rank of any sub-matrix of ¢
composed of 1. columns is less than n.. In the matrices below, the shaded blocks represent
parts of the matrix with some non-zero entries. To simplify visualization, let us first define
the sub-matrix G as the building blocks of G-

n/(D - L)

k/(D-L)

o
I

Then, G is structured as
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where each shaded block represents a random realization of G.

Now consider a random vector v € R* with integer-valued-entries between 0 and v — 1,
where v > 2. We construct the dataset by assigning the pattern x € X tobe x = u - G,
if all the entries of x are between 0 and () — 1. Obviously, since both u and G have only
non-negative entries, all entries in x are non-negative. Therefore, we just need to ensure that
entries of x are between 0 and () — 1.

Let g; denote the 5 column of G. Then the 5" entry in x is equal to x; = u- g;. Suppose
0; has d; non-zero elements. Then, we have:

zj=u-0; <dj(y—1)(v—1)
Therefore, letting d* = max; d;, we can choose v, v and d* such that
Q-1>d(y—-1)(v—-1) (8.5)

to ensure all entries of x are less than ().

As a result, since there are v* vectors u with integer entries between 0 and v — 1, we
will have v* = v™ patterns forming X'. Which means C = v"™, which is exponential in n if
v > 2. O]

8.6 Simulation Results

Since coupling mostly affects the performance of the recall algorithm, in this section we
will only investigate the improvement that one can achieve by means of coupling. As such,
and for the ease of presentation, we can simply produce these matrices by generating sparse
random bipartite graphs and assigning random weights to the connections. Given the weight
matrices and the fact that they are orthogonal to the sub-patterns, we can assume w.l.o.g. that
in the recall phase we are interested in recalling the all-zero pattern from its noisy version.*
We treat the patterns in the database as 2D images of size 64 x 64. More precisely, we
have generated a random network with 29 planes and 29 clusters within each plane (i.e.,

“The MATLAB code that is used in conducting the simulations mentioned in this chapter is available online
athttps://github.com/saloot/NeuralAssociativeMemory.
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L = D = 29). Each local cluster is composed of 8 x 8 neurons and each pattern neuron
(pixel) is connected to 2 consecutive planes and 2 clusters within each plane (except at the
boundaries). This is achieved by moving the 8 x 8 rectangular window over the 2D pattern
horizontally and vertically. The degree distribution of this setting is

A = {0.0011,0.0032,0.0043,0.0722,0,0.0054, 0, 0.0841,
0.0032,0,0,0.098,0,0,0,0.7284},

for degrees 1 to 16, and pgs = 1 and p; = O for 1 < j < 63.

We investigated the performance of the recall phase by randomly generating a 2 noise
pattern in which each entry is set to £1 with probability p./2 and 0 with probability 1 — p,.
We then apply Algorithm 8 with ¢,,,,x = 10 to eliminate the noise. Once finished, we declare
failure if the output of the algorithm, X, is not equal to the pattern x (assumed to be the
all-zero vector).

Figure 8.5 illustrates the final error rate of the proposed algorithm, for the constrained
and unconstrained system. For the constrained system, we fixed the state of a patch of neu-
rons of size 3 X 3 at the four corners of the 2D pattern. The results are also compared to the
corresponding algorithms in Chapter 5 and 7 (uncoupled systems). In the graph correspond-
ing to the method developed in Chapter 5 (the dashed-dotted curve), there is no clustering
while in that of Chapter 7, the network is divided into 50 overlapping clusters all lying on
a single plane (the dotted curve). Although clustering improves the performance, it is still
inferior to the coupled system with some side information (the solid curve). Note also that
even though the same recipe (i.e., Algorithm 5) is used in all approaches, the differences in
the architectures has a profound effect on the performance. One also notes the sheer positive
effect of network size on the performance (the dotted vs. dashed curves).

Table 8.1 shows the thresholds p! and p? for different values of e. From Figure 8.5 we
notice that p* ~ 0.39 and p! ~ 0.1 which is close to the thresholds for ¢ = 2 in Table 8.1.
This shows that each cluster can most likely correct e = 2 errors with hight probability.

Furthermore, note that according to Theorem 36, a sufficient condition for these thresh-
olds to be exact is for €2 to be very large. However, the comparison between Table 8.1 and
Figure 8.5 suggests that one can obtain rather exact results even with {2 being rather small.

pt | p
c=11008] 018
c=21012]0.36

Table 8.1: Thresholds for the uncoupled (p}) and coupled (p?) systems.

Figure 8.6 illustrates how the potential function for uncoupled system (U,) behaves as
a function of z and for various values of p.. Note that for p. ~ p?, the minimum value of
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Figure 8.5: The final pattern error probability for the constrained and unconstrained coupled

neural systems.

potential reaches zero, i.e. Ag(p}) = 0, and for p. > p} the potential becomes negative for

large values of z.

8.7 Discussion and Final Remarks

The architecture proposed in this chapter further improves the performance of the recall
phase by expanding the neural graph and exploiting the overlap among neural blocks as
well as some side information provided to the network by outside sources. We were able to
analyze the average performance of the proposed method using recent developments in the
field of spatially coupled codes.

As with the models described in the previous chapters, extending the algorithms to ad-
dress patterns that are "approximately" in a subspace is definitely among our future research

topics.
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Figure 8.6: The scalar potential function U, as function of average pattern neurons error
probability, 2, and different initial symbol error probabilities, p..
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Chapter 9

Nonlinear Neural Associative Memories

In the previous chapters, we considered a neural associative model which was based on the
idea of learning patterns that form a subspace. In other words, our goal was to look for linear
constraints among the patterns. In this chapter we extend this concept to search for nonlinear
constraints within the patterns in order to memorize the given data set. More interestingly,
we show how a simple trick enables us to re-use the networks that were designed to operate in
the linear regime. As a result, we will be able to utilize virtually the same set of learning rules
and recall algorithms to implement a nonlinear neural associative memory, which makes the
proposed approach more versatile in being able to memorize a broader set of patterns.

9.1 Problem Formulation and the Model

Let x4, ..., x, represent the elements of an n-dimensional input pattern x. Our goal so far
has been to find a vector w such that w' -2 = w;z +- - - +w,, = 0 (orin generalw' -z = ¢,
for some constant c). As we have seen, there are neural algorithms capable of achieving this
goal and we could also make them find a w that is sparse.

Now it is a good point to ask if and how we can find a similar algorithm which identi-
fies non-linear polynomial constraints, e.g., w1z} + we129 + wsy/Z3 = 0. Interestingly,
using a simple trick we can easily transform this problem to the linear case and apply the
same learning algorithm we used before to identify non-linear constraints such as the above
example.

To start, let us assume that we have a two layer neural network, as shown in Figure 9.1.
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Chapter 9: Nonlinear Neural Associative Memories

Layer 2

Input layer

Figure 9.1: The neural network for classifying based on a polynomial kernel.

The connectivity matrices for the first and the second layers are given by W and W, re-

spectively. Now, we give In(x) = [In(zy),...,In(z,)] to the input part of the first layer (as

opposed to the usual method of feeding the first layer with z = [z, ..., z,]). Furthermore,

let the activation function of the output neurons of the first layer be f(.) = exp(.).
Therefore, the sate of the output neuron ¢ in the first layer is determined by

2 = F(W In(@)):) = exp(>" Wiy Inay)) = Hlx]w

J=1

Thus, the output of the first layer, which is the input to the second layer, gives us the necessary
polynomial terms. Note that constraints are non-linear in the x;’s but they are linear in the
z;’s! As a result, we can now apply the standard learning algorithm to identify "linear"
constraints in the input of the second layer.

Remark 38. In order to make the model used in this chapter consistent with the previous
chapters, we could consider integer values for x;’s. However, we could slightly generalize
our approach by considering real-valued x;’s and then assume that the activation function
of the first and second layers map the input to the set {0, ..., Q) — 1}, as will be discussed
shortly. In both cases, we assume that the input layer values given by the vector (x1, . .., x;)
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is mapped to the interval |0, 00) so that log(x;) is well-defined. This mapping is not shown
in the model for clarity.

To simplify further developments, let us fix the following notations:

e The elements of the n-dimensional pattern . are shown by the vector z# = [zf, ..., z#].

rn

e The state of the neurons in the input layer are v; = In(x;) fori =1,...,n.

e The state of the neurons in the first and second layers are denoted by the vectors z =
(21, ..., ze) and y = [y1, - .., Y-

e The activation function of the neurons in the first and second layers are indicated by
f(.) and g(.), respectively. Thus, z; = f([Wwv];) and y; = g([Wz2];).

Note that the messages sent by the neurons in each layer is assumed to be integer-valued
as before. As such, the functions f(.) and g(.) are quantized to the range of integers in
Q = {0,...,Q — 1}. However, for the sake of brevity we do not show the quantization
operation in this section, assuming that the number of quantization levels () is large enough
to be closely approximated by real-valued functions f(.) and g(.).

9.2 Learning Phase

To perform the learning algorithm, we formalize the problem in an optimization framework
as before. To this end, we will have

min = Y ||g (I/T/z“) ||? + sparsity penalty, (9.1a)
ww TheEX
subject to
Willo=1,Vi=1,...,k, (9.1b)
and -

In the above equations, W, and Wi are the ith rows of the matrices W and W, respectively,
and 2" = f(WIn(z")). The sparsity penalty is a function that approximates ||.||; (for WV;
and IV;) similar to the one we defined in Chapter 5. Henceforth, we ignore the update term
due to the sparsity penalty for brevity and will include it in the final update rule. -
As usual, we take the derivative of the objective function with respect to IW;; and W;;
to find the update rule for the weights. Furthermore, to deal with the constraints (9.1b)
and (9.1c), we can either follow the same approach as Section 5.3 of Chapter 5, namely,
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Algorithm 9 Iterative Learning

Input: Set of patterns z# € X with p =1, ..., C, stopping point €, Local iteration number,
T-1
Output: IV and W
t=1
while >°, [z" - w(t)[* > ¢ do
W(1) =W(t)
fort{=1— T do
Choose x(f) at random from patterns in X
Compute v(7) = In(x(1)), (1) = f(W (t)v(D)) and y(f) = g(W (D)=(0).
Update W (f + 1) = W(f) — a, (G (u(®)y(f)=(D)T — AE)W (D))
end for
W(t) =W(T)
Update W (t + 1) = W (t) — ay (F'(x(t)W (1) TG (u(t))y(t)z(t) " — AB)W (L)) .
t<t+ 1.
end while

to normalize the rows of the weight matrices in each iteration, or proceed with a simpler
approach to include the constraints as a penalty function in the update terms (and equivalently
in the original objective functions). We opt for the second approach, which results in the
following learning rules:

Wt +1) = W(t) - a (G (u®)yt)=(t) — AB)W(H)), (9.2a)

Wt +1) = W(t) — oy (F'(x(0)W G (u(t)y(t)z(t) — AB)W(H)), (9.2b)

where u(t) = W (t)z(t), G'(.) is a diagonal matrix whose entries are the derivative of the
function g(.), F”(.) is a diagonal matrix whose entries are the derivative of the function f/(.)
and a; and «; are small positive learning rates. In addition, the matrices A(t) and A(t) are
two diagonal matrices whose (7,)-th entries are 1 — ||W;||2 and 1 — ||WW;]|3, respectively.
Note that the Lagrangian term and the sparsity penalty for ensuring the constraints (9.1b)
and (9.1c) are not shown for brevity.

In practice, it is better to update |74 several times before adjusting 1V (t) accordingly.
Letting 7" be the number of local updates for IV, the overall procedure is given in Algorithm
9.

132



9.3 Recall Phase

9.3 Recall Phase

Given that the nonlinear system is very similar to the linear one, we adopt a similar recall
strategy as well. To this end, we will use a convolutional archjtecturel with L clusters,
defined by their weight matrices, W ... W& and WM .. W@, Cluster 7 has n; input
pattern neurons, k; neurons in layer 1 and m,; constraint neurons (see Figure 9.1).

The proposed recall algorithm has two phases as before: intra-cluster and inter-cluster.
The inter-cluster algorithm is the same as Algorithm 7 of Chapter 7, namely, to sequentially
apply the intra-cluster recall algorithm to each cluster and keep the updated neural states
only if all constraint neurons in the cluster are satisfied.

The intra-cluster algorithm is a bit different from the previous approaches since we now
have two separate layers. As a result, in the recall phase we should send the feedback from
constraint neurons in layer 2 to the pattern neurons in the input layer. As before, the con-
straint neurons send proper feedback when receiving a value that is substantially away from
zero. Pattern neurons act upon the received feedback only if the majority of their neighbors
tell them to update their state.

However, here the intermediate neurons in layer 1 could play a filtration role. To see how,
consider two different scenarios:

1. The intermediate neurons do not filter the messages and send the sign of the feedback
they receive as soon as at least one of their neighbors among the constraint neurons
signal a constraint violation.

2. The intermediate neurons filter the messages and only alert the pattern neurons if a
large portion of their neighbors on the constraints side signal a constraint violation.

We focus on the second approach, as it seems more effective and, additionally, the first
one is only a special case of the second method. We first focus on the error correction
algorithm in each cluster and then discuss how one could use overlaps among clusters to
achieve better error correction performance.

Remark 39. Note that due to having two layers in the model, a small number of errors in
the input layer results in a larger number of errors in the intermediate layer, which makes
it difficult for the error correction algorithms to work properly. Nevertheless, if the neural
graph is sparse, this phenomenon is controlled to some extent, specially since the interme-
diate layer has more neurons than the the input layer as well. Thus, in a sparse graph
a reasonably larger number of errors in the intermediate layer result in a roughly similar
fraction of errors in the input and the intermediate layers.

"We could use a coupled architecture as well. However, to simplify the notations and the analysis, we stick
to the convolutional model.
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Error correction within a cluster

Suppose we are interested in correcting errors in a given cluster ¢ with connectivity matrices
of W) in the first layer and W® in the second layer. From the learning phase we know that
for a memorized pattern z, we have y(© = g(W®:(9) = 0, where 2\ = f(W© In(z®))
and z¥ is the realization of pattern x onto the cluster .

Now during the recall phase, we receive a corrupted version of the memorized pattern,
i.e., In(x) + e, where ¢ is the noise vector.> We will use the information y*) = g(WW ()20 =
0 to eliminate the input error e. To start, we will have

y(0) = g(WO20) = g(We),

where é) = W®el® and e® is the realization of the input noise e onto the cluster ¢. Since
the patterns in the second layer form a subspace, we can use a similar approach to the one
proposed in Algorithm 5 in Chapter 5. To this end, we will use sign(y*)) as the feedback
sent by the constraint to the intermediate neurons. Intermediate neurons then decide if they
should update their state according to the input feedback. The decision could be based on
either the Winner-Take-All (WTA) or the Majority-Voting (MV) approach. Algorithm 10
shows the approach based on the majority voting technique.

Once Algorithm 10 finishes, we move to correcting errors in the input only if all the
constraints in the second layer are satisfied. Otherwise, we declare a failure. Let () denote
the state of the intermediate neurons when all the constraints in the second layer of cluster
¢ are satisfied. Now we consider these values as the desired values and compare them with
20 = fWO In(2®)), where In(2) = In(2(?) + €. The difference will provide us with
the necessary information in order to eliminate the input error e(*). More specifically, since
f(.) = exp(.) in our setting, let u = In(2)) — In(2() = W® (ln(x(e)) +el® — ln(x(e))).3
As a result, we face the same situation as that of Chapter 5, where the input patterns formed
a subspace. Thus, we can use the same algorithm to eliminate the input error (). Algorithm
11 summarizes the proposed approach.

In practice, we can perform Algorithms 10 and 11 several times consecutively to achieve
a better error correction performance.

2Note that we have considered the effective noise to simplify the notations, i.e., noise is added to In(z)
instead of . One could also consider a noise model like In(z 4 ¢), where noise is added to . Nevertheless,
the second model could be rewritten as In(z + €) = In(z) + €/, where €’ is the effective noise.

3Here we assume that the probability of converging to another pattern which results in the satisfaction of all
the constraints is negligible if we start from the vicinity of a memorized pattern. Please refer to the arguments
made in the end of Chapter 5 regarding this assumption.
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Algorithm 10 Nonlinear Recall Algorithm: Second Layer

Input: Connectivity matrices wo, W(f), threshold o, iteration £,

Output: 25@7 Zée)y S Z/E;i)

I: fort =1 — t,.« do

2:  Forward iteration: Calculate the weighted input sum hge) = Zfil Wi(f) zj(-g), for each
neuron yz@ and set:
1, hz(»e) <0
¢
=10, =0
—1, otherwise
3:  Backward iteration: Each neuron z]@ computes
my 177£) (£
g(e) o it Wz(])yz( )
Jj my (1170
S W)
4.  Update the state of each intermediate neuron j according to z](-e) = zj(-é) — sign(gj(-g))
only if \gj(-e)| > ©o.
5: t<+t+1
6: end for

Recall phase: Intra-cluster error correction

Algorithms 10 and 11 correct errors that are within a given cluster and declare failure if they
can not eliminate the input noise. However, as we have seen in previous chapters, a cluster
on its own does not have much error correction power. This is where the convolutional model
comes to the rescue and the overlap among clusters will help improving the performance of
the recall phase. To capitalize on the overlapping structure of clusters, we follow a similar
approach to that of Chapter 7, namely, execute Algorithms 10 and 11 consecutively and in
a round-robin fashion over clusters 1 to L. After each run, we will keep the new state of
the pattern neuron in a cluster ¢ if the corresponding constraints are satisfied. Otherwise, the
states are rolled back to their original values (i.e., those before performing the latest iteration
of the algorithm). The details of the proposed approach are shown in Algorithm 12.

Performance Analysis

To analyze the performance of the proposed algorithm, we follow the same approach as the
one in Theorem 33 in Chapter 7. To this end, let A and p be the pattern and constraint de-
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Algorithm 11 Nonlinear Recall Algorithm: Second Layer

Input: Connectivity matrices W® _ threshold 1, iteration .5

Output: 2 2 ... 2

Y ne

1: fort =1 — t. do

2:  Forward iteration: Calculate the weighted input sum hl(e) = > I/Vi(f) ln(ig-é)), for
each neuron zfé) and set:
1, AP <mE")
¢
w =9 0. A =m(z")
-1, otherwise
3:  Backward iteration: Each neuron $§€) computes

k 0 (¢
0 >ict W?f])u’f )

9, = m D -
Y
4:  Update the state of each pattern neuron j according to x;e) = xgé) — sign(gj(é)) only if
¢
|gj(' )‘ > P1.
5: t+t+1
6: end for

Algorithm 12 Sequential Intra-Cluster Algorithm for Nonlinear Networks

Input: WO, ... W& and WO, ... W),

Output: z,25,...,2,

while There is an unsatisfied y*), for ¢ = 1,..., L do

for(=1— Ldo

If 3y¥) is unsatisfied, apply Algorithms 10 and 11 consecutively to cluster /.
If y(© remained unsatisfied, revert the state of pattern neurons connected to cluster
¢ to their initial state. Otherwise, keep their current states.

5:  end for

6: end while

7. Declare x1, zo, . . ., z,, if all y'9’s are satisfied. Otherwise, declare failure.

bl S e
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gree distributions (from the edge perspective) of the contracted graph G, where each cluster
is represented by a super constraint node. The following theorem provides an asymptotic
average-case analysis of the proposed approach, which holds if the decision subgraphs for
the pattern neurons in graph G are tree-like for a depth of 7L, where 7 is the total number of
number of iterations performed by Algorithm 12.

Theorem 40. Let q be the number of errors in the input layer that each cluster can correct
with probability close to 1. Then, under the assumptions that graph G grows large and it is
chosen randomly with degree distributions given by A and p, Algorithm 12 is successful if

. a4 i1 gi-15(] — 4
DeA (1 -y T dpz(i—l >> < (1 =€)z, forze€|0,pe, 9.3)

i=1

where p. is the input noise probability and € > ( is very small constant, independent of t.

Proof. The proof is based on the density evolution technique [54]. We prove the theorem
without loss of generality for ¢ = 2. The extension to ¢ > 2 is straightforward. To start,
and with some abuse of notation, let z(¢) be the average error probability among pattern
neurons in iteration ¢ and I1(¢) be the average probability that a super constraint node sends
a failure message, i.e., that it can not correct external errors lying in its domain. Then, the
probability that a pattern neuron with degree d; send an erroneous message to one of its
neighbors among the super constraint nodes is equal to the probability that none of its other
neighboring clusters can correct the error, 1.e.,

Py(t) = pe(TI(1))" .

Averaging over d; we find the average probability of error in iteration ¢:

~

2(t+ 1) = pA(TI(E)). (9.4)

Now consider a cluster ¢ that contains d, pattern neurons. This cluster will not send a
failure message to a noisy neighboring pattern neuron with probability

1. 1, if it is not connected to more than ¢ — 1 = 1 other noisy pattern neurons (recall that
here ¢ = 2).

2. 0, otherwise.

Thus, we obtain

nOF) = 1—(1—z@0)% ! - (del_ 1>z(t)(1 — 2(t))%2, (9.5)
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Averaging over d, we obtain

o) = By (100) =1-p(1—2(0) 2001 -2, ©6)

where p'(z) is the derivative of the function p(z) with respect to z.

Equations (9.4) and (9.6) will give us the value of z(t + 1) as a function of z(¢). We can
then calculate the final symbol error rate as z(oo). For z(oco) — 0, it is sufficient to have
z(t+1) < (1 — €)z(t), which proves the theorem. O

Note that as in Chapter 7, when graph G is constructed randomly according to the given
degree distribution, then as the graph size grows, the decision subgraph will become a tree
with probability close to 1. Furthermore, and as mentioned in previous chapters, it must be
pointed out that the theoretical results derived in this chapter show that if the neural connec-
tivity matrix has certain properties then the theoretical estimates on the recall performance
will be tighter. In general, the closer the neural graph is to an expander (see Appendix 5.B
in Chapter 5), the better the recall performance will be.

Remark 41. In Chapter 7, we computed a theoretical estimate on q, the number of errors that
each cluster can correct with probability close to 1 in a convolutional neural architecture.
We showed that with high probability, ¢ > 1.

Deriving such a theoretical estimate is more difficult for the nonlinear architecture due
to having the intermediate layer and the quantization operation. In such a circumstance,
we could use numerical approaches to find a tight estimate of q for the nonlinear neural
associative memories.

9.4 Final Remarks

The proposed nonlinear architecture in this chapter is virtually the same as the convolutional
model we introduced in Chapter 7 to learn linear constraints within the patterns. Neverthe-
less, a simple trick enabled us to design a network that looks for nonlinear constraints within
the given patterns. We also introduced simple learning and recall algorithms to perform the
task of neural association. The performance of the proposed recall algorithm can be assessed
using similar techniques as those introduced in the previous chapter.

Nevertheless, in practical situation one must be aware of the role of the number of quan-
tization levels, (), as it might affect the way we calculate the overall recall error rate. In
the nonlinear setting where we have two layers, some of the information about the input
noise might be lost in the intermediate layer due to the quantization process during the recall
process, especially if () is rather low.

More specifically, at the intermediate layer, we have z = f(WW In(z)), where f is a non-
linear function that approximates exp(.). At this point, the output is again quantized to the
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range Q before being passed to the final layer. The quantization might create an issue for
the recall phase though, since the noise in the input layer could be resolved during the quan-
tization in the intermediate layer. For instance, if we have a noise vector e = [1,0,...,0],
then if the first column of W, W7, has relatively small values, then the quantized version of
z = f(W (v + e)) would be the same as the quantized version of f(WWv).

As a result, some of the noise is eliminated during the quantization process, without the
help of the proposed recall algorithm. This phenomenon is good news for the constraint
neurons in the second layer. However, it might make the algorithm unable to obtain the
correct input pattern in the input layer since some of the information about the noise in the
input layer is lost in the quantization process. In such a circumstance, we either have to
increase the number of quantization levels or we could calculate the recall error rate from the
intermediate layer, i.e., how many errors in the intermediate layer can be corrected. In that
case, Theorem 33 in Chapter 7 provides a theoretical estimate on the number of errors that
the second layer could correct.

The latter scenario makes sense in certain cases, since, in effect, the state of the inter-
mediate neurons are the patterns that are eventually memorized by the network. In this case,
one can think of the first layer as a feature extraction layer and the second layer as the ef-
fective neural associative memory which is memorizing features regarding given patterns,
rather than the original patterns themselves.
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Chapter 10

Noise-Enhanced Associative Memories

The model that was developed in the previous chapters allowed us to reliably memorize an
exponential number of structured patterns and being able to tolerate a linear fraction of errors
during the recall phase. Although these designs correct external errors in recall, they assume
neurons that compute noiselessly, in contrast to the highly variable nature of neurons in a
real neuronal network.

In this chapter, we consider neural associative memories with noisy internal computations
and analytically characterize the performance of the recall phase in such conditions. We will
show that in our model, as long as the internal noise level is below a specified threshold, the
error probability in the recall phase can be made exceedingly small. More surprisingly, we
show that internal noise actually improves the performance of the recall phase. Computa-
tional experiments lend additional support to our theoretical analysis. This work suggests a
functional benefit to noisy neurons in biological neuronal networks, as have been also noted
previously in other models as well [6].

The content of this chapter is joint work with Amin Karbasi, Amin Shokrollahi and Lav R. Varshney. It was
published in [66].
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10.1 Problem Formulation and the Model

Notation and definitions

The model considered in this chapter is the same as before, namely, neurons assume integer-
valued states from the set @ = {0,...,Q — 1}. However, here the neurons are noisy. As
such, a neuron updates its state based on those of its neighbors {s;}"; as follows. It first
computes a weighted sum h = >7" | w;s; + ¢, where w; denotes the welght of the input link
from s; and ( is the internal noise. Each neuron updates its state by applying a nonlinear
function f : R — Qto h.

The neural graph and the associative memory model remains the same as before. Since
the focus in this chapter is on recalling patterns with strong local correlation, we consider
the convolutional model we introduced in Chapter 7. To recap, we divide the entries of each
pattern x into L overlapping sub-patterns of lengths n;, ..., ny, as shown in Figure 10.1a.
We denote the ith sub-pattern by () = (xgi), xgi), e ,xfj)) The local correlations are as-
sumed to be in the form of subspaces, i.e., the sub-patterns 2™ form a subspace of dimension
ki < n;. We capture the local correlations by learning the matrix orthogonal to subspace
formed by sub-patterns. Let W) be the matrix that is orthogonal to all the sub-patterns that
lie within the domain of cluster 4, i.e., W@ . () = ( for all patterns x in the dataset X'. For
the forthcoming asymptotic analysis, we also need the contracted graph G the connectivity
matrix of which is denoted W and has size L x n. This is a bipartite graph in which the
constraints in each cluster are represented by a single neuron, called super constraint node.
Thus, if pattern neuron x; is connected to cluster 7, we set VV” = 1. Otherwise, we have
W,] = 0. We also define the degree distribution from an edge perspecnve over GG. To this
end, we define \(z) = >, \;z~! and p(z) = X, p;27~" where \; (resp., j;) equals the
fraction of edges that connect to pattern (resp., cluster) nodes of degree J-

Noise model

There are two types of noise in our model: external and internal. To make a distinction,
we refer to the former type as external errors and to the latter type as internal noise. As
mentioned earlier, a neural network should be able to retrieve a memorized pattern x from
its corrupted version y due to external errors. We assume that the external error is an ad-
ditive vector of size n, denoted by z, satisfying y = = + z, whose entries assume values
independently from {—1,0,+1} with corresponding probabilities p_; = p,; = p./2 and
po = 1 — p..! We denote by z(*), the realization of the external error on the sub-pattern 2.

"'As noted in the previous chpaters, the proposed model can also deal with higher noise values. The +1
noise model has been adopted for its simplicity and the error correction speed.
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1
____________

(a) Bipartite graph G. (b) Contraction graph G.

Figure 10.1: The proposed neural associative memory with overlapping clusters.

Note that due to the subspace assumption, W -y = W -z and W@ .y = W& . 20 for all 4.

Neurons also suffer from internal noise. We consider a bounded noise model, i.e., a
random number uniformly distributed in the intervals [—v, v| and [—v, v] for the pattern and
constraint neurons, respectively (v, v < 1).

The main goal of recall is to remove the external error z and obtain the desired pattern
x as the true states of the pattern neurons. When the computation of neurons is noiseless,
this task can be achieved by exploiting the fact we have chosen the set of patterns x € X
to satisfy the set of constraints W@ . 2() = 0. However, it is not clear how to accomplish
this objective when the neural computations are noisy. Rather surprisingly, we show that
eliminating external errors is not only possible in the presence of internal noise, but that
neural networks with moderate internal noise demonstrate better resilience against external
noise.

Related Work

Reliably storing information in memory systems constructed completely from unreliable
components is a classical problem in fault-tolerant computing [67-69]. Although direct
comparison is difficult since notions of circuit complexity are slightly different, our work also
demonstrates that associative memory architectures can store information reliably despite
being constructed from unreliable components.

The positive effect of internal noise has been witnessed previously in associative memory
models with stochastic update rules (see for instance [6] and [13]). However, the proposed
framework in this thesis differs from previous approaches in three key aspects:

1. First and foremost, the model that we use is different from previous methods (namely,
non-binary neurons and correlated patterns). This makes the extension of previous
analysis nontrivial to our model since they rely on the randomness of the patterns.
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Figure 10.2: The normalized number of memorized patterns as a function of the normalized
noise parameter (temperature), 7' [6]. The normalization is done with respect to the number
of neurons in the graph, n.

2.

Secondly, and maybe most importantly, pattern retrieval capacity of the network in
previous approaches is a decreasing function of the internal noise (see Figure 6.1 in
[6], which is replicated in Figure 10.2 for convenience). More specifically, although
increasing the internal noise helps us correct more external errors, it also reduces the
number of patterns that can be memorized. However, in the proposed framework here,
the amount of internal noise does not have any effect on the pattern retrieval capacity
(up to a threshold of course). Furthermore, a fair amount of internal noise improves
the recall performance, as noticed in previous work as well.

Finally, the noise model that we use in this thesis is different from the mainstream
work in that we use a bounded noise model, rather than the Gaussian model. More
specifically, we consider a particular type of noise that is uniformly distributed in a
bounded interval.> As a result we can show that when the noise is fairly limited, a
network with properly chosen update thresholds can achieve perfect recall, despite the
presence of internal noise.

2We believe that the analysis in this thesis can be extended to any noise model with bounded values.
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10.2 Recall Phase

To efficiently deal with the external errors in the associative memory, we use a combination
of Algorithms 13 and 14, which are the stochastic (noisy) versions of Algorithms 5 and 7.
The role of Algorithm 13 is to correct at least one single external error in each cluster. With-
out overlaps between clusters, the error resilience of the network is limited. Algorithm 14
exploits overlaps: it helps clusters with external errors recover their correct states by using
the reliable information from clusters that do not have external errors. The error resilience
of the resulting combination thereby drastically improves.

Algorithm 13 performs a series of forward and backward iterations in each cluster G*)
to remove (at least) one external error from its input domain. At each iteration, the pattern
neurons locally decide whether to update their current state: if the amount of feedback re-
ceived by a pattern neuron exceeds a threshold, the neuron updates its state, and remains as
is, otherwise. By abuse of notation, let us denote messages transmitted by pattern node ¢ and
constraint node j at round ¢ by x;(t) and y;(t), respectively. In round 0, the pattern nodes are
initialized by a pattern z, sampled from the dataset X', perturbed by external errors z, i.e.,,
2(0) = & + 2. Thus, for cluster £ we have (9 (0) = £ + 2(), where 2 is the realization
of noise on sub-pattern ().

In round ¢, the pattern and constraint neurons update their states based on feedback from
neighbors. However, neural computations are faulty and, therefore, the decisions of the
neurons are not always reliable. To minimize the effect of the internal noise, we opt for the
following update rule for pattern node ¢ in cluster ¢:

() — sign(g; (¢ flg, () > ¢
l’l(g)@ 1) {fE ( ) Slg (gz ( ))7 1 ’gz ( )| -

2 (1), otherwise,

(10.1)

Lt +u;. Here, d; is the degree

i GO
where ¢ is the update threshold and gi@) (t) = (signw)T400)

d;
of pattern node 4, ) () = [yie) (), ...,y (t)] " is the vector of messages transmitted by the

constraint neurons in cluster ¢, and u; is the random noise affecting pattern node 7. Basically,
the term gfz) (t) reflects the (average) belief of constraint nodes connected to pattern neuron
1 about its correct value. If gi(g) (t) is larger than a specified threshold ¢ it means that most of

(0

the connected constraints suggest that the current state x; ’ () is not correct, hence, a change
should be made. Of course, this average belief is diluted by the internal noise of neuron .
As mentioned earlier, u; is uniformly distributed in the interval [—v, v], for some v < 1. On
the constraint side, the update rule we choose is
+1, it h{(t) > ¢
u () = f000,0) =0, it ¢ <A < v (10.2)
—1, otherwise,
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where 1 is the update threshold and hy)(t) = (W(Z) -:L‘(é)(t)) + v;. Here, 20(t) =

[ng) (t),...,29(1)]" is the vector of messages transmitted by the pattern neurons and v;

Ty
is the random noise affecting node ¢. As before, we consider a bounded noise model for v;,

i.e.,, it is uniformly distributed in the interval [—v, v] for some v < 1.

Algorithm 13 Intra-Module Error Correction

Input: Training set X, thresholds ¢, v, iteration ¢,

Output: z\". 2", ... )

I: fort =1 — t,. do

2:  Forward iteration: Calculate the input hz@ =2 Wi(f)xy) + v;, for each neuron y
and set yi(e) = f(h,gé), ).

3:  Backward iteration: Each neuron xy) computes

40 = L sign(w)y”
J S sign(w)

©)

+Ui.

4:  Update the state of each pattern neuron j according to xyz) = :z:y) — sign(gj(é)) only if
¢
1971 > ¢.
5: end for

Algorithm 14 Sequential Inter-Module Error Correction Algorithm

Input: G,GY,.G? ... GD.
Output: z,25,...,2,

1: while there is an unsatisfied v(© do

2. for{=1— Ldo

3 If v is unsatisfied, apply Algorithm 13 to cluster G,

4: If v© remained unsatisfied, revert the state of pattern neurons connected to v® to
their initial state. Otherwise, keep their current states.

5:  end for

6: end while

7. Declare xq, xo, ..., x, if all v®0’s are satisfied. Otherwise, declare failure.

Recall Performance Analysis

Now let us analyze the recall error performance. The following lemma shows that if ¢ and
1 are chosen properly, then in the absence of external errors the constraints remain satisfied
and internal noise cannot result in violation of the constraints. This is a crucial property for
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Algorithm 14 to work as it makes it possible to tell if a cluster has successfully eliminated
external errors (Step 4 of algorithm) by merely checking the satisfaction of all constraint
nodes.

Lemma 42. In the absence of external errors, the probability that a constraint neuron (resp.
pattern neuron) in cluster { makes a wrong decision due to its internal noise is given by
7T(()€) = max (0, #) (resp. Péz) = max (O, %)).

Proof. To calculate the probability that a constraint node makes a mistake when there is no
external noise, consider constraint node 7 whose decision parameter will be

hl(-g) = (W(@ -xw)), +v; = v;.
Therefore, the probability of making a mistake will be

7'('(()@) = Pr{|v;| > ¢}
— max (o, ”;1/’> (10.3)

Thus, to make ﬂ(()e) equal to 0 we will select 1) > 1.3 So from now on, we assume

=¥ =o0. (10.4)

Now knowing that the constraint will not send any non-zero messages in absence of

external noise, we focus on the pattern neurons in the same circumstance. A given pattern
5@ will receive a zero from all its neighbors among the constraint nodes. Therefore,
its decision parameter will be g](-e) = u;. As aresult, a mistake could happen if |u;| > ¢. The
probability of this event is given by

node

P Pr{(u;[ > ¢}
— max (0, v- ‘p> . (10.5)
0

Therefore, to make Po(e) go to zero, we must select p > v. L]

3Note that this might not be possible in all cases since, as we will see later, the minimum absolute value of
network weights should be at least ¢). Therefore, if ¢ is too large we might not be able to find a proper set of
weights.
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In the remainder of the chapter, we assume ¢ > v and 1) > v so that W[(f) = 0 and

Péé) = 0. However, it is still possible that an external error combined with the internal noise
makes the neurons go to a wrong state.

In light of the above lemma and based on our neural architecture, we can prove the fol-
lowing surprising result. We show that in the asymptotic regime (as the number of iterations
of Algorithm 14 goes to infinity), a neural network with internal noise outperforms the one
without. Let us define the fraction of errors corrected by the noiseless and noisy neural net-
work (parametrized by v and v) after T iterations of Algorithm 14 by A(T") and A, ,(T),
respectively. Note that both A(7") < 1 and A,,(7) < 1 are non-decreasing sequences
of T. Hence, their limits as 7" goes to infinity are well defined: limr_,., A(T") = A* and
limy o Ay (T) = A,

Theorem 43. Let us choose v and v so that 7T(()€) = 0 and PO(E) =O0foralll € {1,...,L}.
For the same realization of external errors, we have A;V > A*.

Proof. We first show that the noisy neural network can correct any external error pattern that
the noiseless counterpart can correct in the limit of 7" — oo. The idea is that if the noiseless
decoder succeeds, then there is a non-zero probability P that the noisy decoder succeeds in
a given round as well (corresponding to the case that noise values are rather small). Since
we do not introduce new errors during the application of Algorithm 14, the number of errors
in the new rounds are smaller than or equal to the previous round, hence, the probability of
success is lower bounded by P. If we apply Algorithm 14 7' times, then the probability of
correcting the external errors at the end of round T is P+ P(1 — P)+---+ P(1— P)T~1 =
1 —(1— P)".* Since P > 0, for T — oo this probability tends to 1.

Now, we turn our attention to the cases where the noiseless network fails in eliminating
external errors and show that there exist external error patterns, called stopping sets, for
which the noisy decoder is capable of eliminating them while the noiseless network has
failed. Assuming that each cluster can eliminate ¢ external errors in their domain and in
absence of internal noise>, stopping sets correspond to external noise patterns for which each
cluster has more than 7 errors. Then Algorithm 14 can not proceed any further. However, in
the noisy network, there is a chance that in one of the rounds, the noise acts in our favor and
the cluster could correct more than ¢ errors. This is reflected in Figure 10.4 as well, where
the value of F,,, the probability that each cluster can correct : external errors, is larger when
the network is noisy. In this case, if the probability of getting out of the stopping set in the
noisy network is P in each round, for some P > 0, then a similar argument to the previous

4Note that since the noiseless decoder is assumed to succeed, P depends on the noise values. Since we
have assumed an ¢.7.d. noise model, the probability of success in trials are independent from each other.
SFrom Figure 10.4, 7 = 2 for our case.
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case shows that the overall probability of success tends to 1 when 7" — oo (note that P = 0
for the noiseless network per definition of the stopping sets). This concludes the proof. [

The key idea behind Theorem 43 is that one can try several times to eliminate external
errors (I' — oo) but must be careful not to introduce any new errors during the correction
process (as made sure by Step 4 of Algorithm 14).

Figure 10.3a illustrates an example of a stopping set over the graph G in our empirical
studies. In the figure, only the nodes corrupted with external noise are shown for clarity.
Pattern neurons that are connected to at least one cluster with a single error are colored blue
and other pattern neurons are colored red. Figure 10.3b illustrates the same network but
after a sufficient number of decoding iterations which results in the algorithm to get stuck.
Obviously, we have a stopping set in which no cluster has a single error and the algorithm
can not proceed further since F,, ~ 0 for ¢ > 1 in a noiseless architecture. Thus, the external
error can not get corrected.

Consequently, the above theorem shows that the supposedly harmful internal noise will
help Algorithm 14 to avoid some of such stopping sets. Interestingly, an “unreliable” neural
circuit in which v = 0.6 could easily get out of the stopping set shown in Figure 10.3b and
correct all of the external errors.

In addition, and rather interestingly, our empirical experiments show that in certain sce-
narios, even the running time improves when using a noisy network as the number of itera-
tions of Algorithm 14 required to eliminate the external errors is reduced when the network
has some internal noise.

Theorem 43 only indicates that noisy neural networks (under our model) outperform
noiseless ones. However, it does not specify the level of errors that such networks can correct.
In the following, we derive a theoretical lower bound on the error correction performance of
the recall algorithm. To this end, let P, denote the average probability that a cluster can
correct ¢ external errors in its domain. The following theorem gives a simple condition under
which Algorithm 14 can correct a linear fraction of external errors (in terms of n) with high
probability. The condition involves X and p, the degree distributions of the contracted graph
G. As usual, the theorem holds if the decision subgraphs for the pattern neurons in graph G
are tree-like for a depth of 7L, where 7 is the total number of number of iterations performed
by Algorithm 14.

Theorem 44. Under the assumptions that graph G grows large and it is chosen randomly
with degree distributions given by \ and p, Algorithm 14 is successful if

_ i—1 di—1~ 1 —
PeA (1 — chizﬂ : 5;_1 Z)) < z, for z € [0,pe|. (10.6)

i>1
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Figure 10.3: An external noise pattern that contains a stopping set in a noiseless neural
circuit. Left panel shows the original pattern and the right one illustrates the result of the
decoding algorithm after a sufficient number of iterations where the algorithm gets stuck.
Blue pattern nodes are those that are connected to at least one cluster with a single external
error, and thus, can be corrected during the recall phase. Obviously, the stopping set on the
right does not have any blue nodes.

Proof. The proof is based on the density evolution technique [54]. Without loss of generality,
assume that we have P, > 0, P,, > 0 and ., > 0 (and F,, = 0 for 7 > 3.) but the approach
can easily be extended if we have P, # 0 for i > 3. Let II(¢) be the average probability that
a super constraint node sends a failure message, i.e., that it can not correct external errors
lying in its domain. Then, the probability that a noisy pattern neuron with degree d; sends
an erroneous message to a particular neighbor among super constraint node is equal to the
probability that none of its other neighboring super constraint nodes could have corrected its
error, i.e.,

Py(t) = pe(IL(1))" .
Averaging over d; we find the average probability of error in iteration ¢:

2(t+ 1) = pA(TI(1)). (10.7)

Now consider a cluster ¢ that contains d, pattern neurons. This cluster will not send a
failure message to a noisy neighboring pattern neuron with probability:

1. P, if it is not connected to any other noisy neuron.

2. P, if itis connected to exactly one other constraint neuron.
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10.2 Recall Phase

3. P, if itis connected to exactly two other constraint neurons.
4. 0, if it is connected to more than two other constraint neuron.
Thus, we obtain

100 = 1= P st = Pa ("] 1 )ston - 20

_ B (deg 1)z(t)2(1 (1)),

Averaging over d, we obtain

M(t) = Eq (TY#) =1— Pyp(l = 2(t) — Po2(t)f (1 - 2(t))
— 0.5P,2(t)*p"(1 — 2(t)), (10.8)

where p'(z) and p”(z) are derivatives of the function p(z) with respect to z.

Equations (10.7) and (10.8) will give us the value of z(¢ + 1) as a function of z(t). We
can then calculate the final symbol error rate as z(o0). For z(c0) — 0, it is sufficient to have
z(t + 1) < z(t), which proves the theorem.

O

Remark 45. It must be noted that since the size of the neural graphs in this thesis are fairly
limited, in some cases the decision subgraphs might not be tree-like. In those cases the
performance might deviate from the one predicted by Theorem 44. Our simulation results,
however, show that in many cases the proposed analytical approximation is a good estimate
of the performance in the recall phase.

Overall, it must be emphasized that the theoretical results derived in this chapter show
that if the neural connectivity matrix has certain properties then the recall algorithm could
correct a linear number of erroneous symbols in the input pattern during the recall phase.

Theorem 44 states that for any fraction of errors A,, < A7, that satisfies the above
recursive formula, Algorithm 14 will be successful with probability close to one. Note that
the first fixed point of the above recursive equation dictates the maximum fraction of errors

A}, that our model can correct. For the special case of I, = 1and ., = 0,Vi > 1, we

obtain p.A\(1 — p(1 — 2)) < z, the same condition given in Chapter 7. Theorem 44 takes into
account the contribution of all F,; terms and, as we will shortly see, the maximum value of
P., does not occur when the internal noise is equal to zero, i.e., v = v = 0, but instead when
the neurons are contaminated with internal noise! This also suggests that even individual
clusters are able to correct more errors in the presence of internal noise.
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Figure 10.4: The value of F,, as a function of pattern neurons noise v for¢ = 1,...,4. The
noise at constraint neurons is assumed to be zero (v = 0).

To estimate P,,’s, we use numerical approaches®. More specifically, given a set of clusters
W . W for each cluster we randomly corrupt ¢ pattern neurons with &1 noise. Then,
we let Algorithm 13 run over this cluster and calculate the success rate once finished. We
take the average of this rate over all clusters to end up with F,,. The results of this approach
are shown in Figure 10.4, where the value of F,, is shown fori = 1,...,4 and various noise
amounts at the pattern neurons (specified by parameter v).

A typical trend of P,,’s in terms of v is shown in Figure 10.4 (note that maximum values
are not at v = 0). As mentioned earlier, we see that the maximum of F,; does not occur when
the internal noise is equal to zero, i.e., v = 0 but when the pattern neurons are contaminated
with internal noise! Thus, a fair amount of internal noise actually helps the network.

10.3 Simulations

We now consider the simulation results for a finite system. In order to learn the subspace
constraints for each cluster G) we use the (learning) Algorithm 1, proposed in Chapter 5.

®We also provide an analytical approache to estimate P., in the appendix. However, this technique involves
lots of approximations, which makes the obtained bounds on F,,’s quite loose.
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Henceforth, we assume that the weight matrix I is known and given. Thus, we will use
the same network we learned in Chapter 7. In this setup, we consider a network of size
n = 400 with L = 50 clusters. We have 40 pattern nodes and 20 constraint nodes in each
cluster, on average. The external error is modeled by randomly generated vectors z where
the entries are =1 with probability p. and 0 otherwise. The vector z is added to the correct
patterns that satisfy the orthogonality constraints. For denoising/recall, Algorithm 14 is used
and the results are reported in terms of symbol error rate (SER) as we change the level of
external error (p.) or internal noise (v, v), i.e., counting the positions where the output of
Algorithm 14 differs from the correct (noiseless) patterns.’

Symbol Error Rate as a function of Internal Noise

Figure 10.5 illustrates the final Symbol Error Rate (SER) of our proposed algorithm for
different values of v and v. Recall that v and v quantify the level of noise in pattern and
constraint neurons, respectively. Dashed lines in Figure 10.5 are simulation results whereas
solid lines are theoretical upper bounds provided in this chapter. As evident from this figure,
there is a threshold phenomenon such that SER is negligible for p. < p? and grows beyond
this threshold. As expected, simulation results are better than the theoretical bounds. In
particular, the gap is relatively large as v moves towards one.

A more interesting trend in Figure 10.5 is the fact internal noise helps in achieving better
performance, as predicted by theoretical analysis (Theorem 43). Notice how p] grows as v
increases.

This phenomenon is inspected more closely in Figure 10.6 where p, is fixed to 0.125
while v and v vary. Figures 10.7a and 10.7b display projected versions of the surface plot to
investigate the effect of v and v separately. As we see again, a moderate amount of internal
noise at both pattern and constraint neurons improves performance. There is an optimum
point (v*, v*) for which the SER reaches its minimum. Figure 10.7b indicates for instance
that v* ~ (.25, beyond which SER deteriorates.

Recall Time as a function of Internal Noise

Figure 10.8 illustrates the number of iterations performed by Algorithm 14 for correcting
the external errors when p, is fixed to 0.075. We stop whenever the algorithm corrects all
external errors or declare a recall error if all errors were not corrected in 40 iterations. Thus,
the corresponding areas in the figure where the number of iterations reaches 40 indicates
decoding failure. Figures 10.9a and 10.9b are projected versions of Figure 10.8 and show
the average number of iterations as a function of v and v, respectively.

"The MATLAB code that is used in conducting the simulations mentioned in this chapter is available online
athttps://github.com/saloot/NeuralAssociativeMemory.
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Figure 10.5: The final SER for a network with n = 400, L = 50 cf. Chapter 7. The red
curves correspond to the noiseless neural network.

The amount of internal noise drastically affects the speed of Algorithm 14. First, from
Figure 10.8 and 10.9a observe the running time is more sensitive to noise at pattern neurons
than at constraint neurons. Furthermore, in the low noise regime at pattern neurons, the
algorithms become slower as noise at constraint neurons is increased. Finally, increasing
the noise at the pattern neurons (upto a certain limit) improves the running time, as seen in
Figure 10.9a.

Note that the results presented here are for the case where the noiseless decoder succeeds
as well and its average number of iterations is pretty close to the optimal value (see Fig-
ure 10.8). Figure 10.10 illustrates the number of iterations performed by Algorithm 14 for
correcting the external errors when p, is fixed to 0.125. In this case, the noiseless decoder
encounters stopping sets while the noisy decoder is still capable of correcting external errors.
Here we see that the optimal running time occurs when the neurons have a fair amount of
internal noise. Figures 10.11a and 10.11b are projected versions of Figure 10.10 and show
the average number of iterations as a function of v and v, respectively.
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Figure 10.6: The final symbol error probability when p, = 0.125 as a function of internal
noise parameters at the pattern and constraint neurons, denoted by v and v, respectively.

Larger noise values

So far, we have investigated the performance of the recall algorithm when noise were limited
to +1. Although this choice facilitates the analysis of the algorithm and increases error cor-
rection speed, our analysis is virtually valid for larger noise values. Figure 10.12 illustrates
the Symbol Error Rate (SER) for the same scenario as before but with noise values chosen
from {—3,—2,...,2,3}. We see exactly the same behavior as we witnessed for £1 noise
values.

Effect of internal noise on the performance of the neural network in
absence of external noise

Now we provide results of a study for a slightly modified scenario where there is only internal
noise and no external errors and ¢ < v. Thus, the internal noise can now cause neurons to

make wrong decisions, even in the absence of external errors. By abuse of notation, we
assume the pattern neurons to be corrupted with a -1 noise added to them with probability
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Figure 10.7: The final symbol error probability for as a function of internal noise parameters
at pattern and constraint neurons for p, = 0.125

v. The rest of the scenario is the same as before.

Figure 10.13 illustrates the effect of the internal noise as a function of v and v, the
noise parameters at the pattern and constraint nodes, respectively. This behavior is shown in
Figures 10.14a and 10.14b for better inspection.

Here, we witness the more familiar phenomenon where increasing the amount of internal
noise results in a worse performance. This finding emphasizes the importance of choosing
update threshold ¢ and v properly, according to Lemma 42.

Interestingly, this behavior is very similar to the effect of heat stress on the performance
of wireless telegraphy operators [70, Figure 2]. The two phenomena might be related because
external heat will translate into neurons with more internal thermal noise.

10.4 Final Remarks

We have demonstrated that associative memories still work reliably even when built from
unreliable hardware, addressing a major problem in fault-tolerant computing and further
arguing for the viability of associative memory models for the (noisy) mammalian brain.
After all, brain regions modeled as associative memories, such as the hippocampus and the
olfactory cortex, certainly do display internal noise [71-73]. Further, we found a threshold

158



10.4 Final Remarks

40.00 -

30.00

20.00

10.00 -

Average number of iterations

0.00
0.5

0 05 0.4 "
Figure 10.8: The effect of internal noise on the number of iterations performed by Algo-
rithm 14, for different values of v and v with p, = 0.075.

phenomenon for reliable operation in our model, which manifests the tradeoff between the
amount of internal noise and the amount of external noise that the system can handle.

In fact, we showed that internal noise actually improves the performance of the network
in dealing with external errors, up to some optimal value. This is a manifestation of the
stochastic facilitation [73] or noise enhancement [74] phenomenon that has been observed
in other neuronal and signal processing systems, providing a functional benefit to variability
in the operation of neural systems.

The associative memory design developed herein uses thresholding operations in the
message-passing algorithm for recall; as part of our investigation, we optimized these neural
firing thresholds based on the statistics of the internal noise. As noted by Sarpeshkar in
describing the properties of analog and digital computing circuits, “In a cascade of analog
stages, noise starts to accumulate. Thus, complex systems with many stages are difficult
to build. [In digital systems] Round-off error does not accumulate significantly for many
computations. Thus, complex systems with many stages are easy to build” [75]. One key to
our result is capturing this benefit of digital processing (thresholding to prevent the build up
of errors due to internal noise) as well as a modular architecture which allows us to correct a
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Figure 10.9: The effect of internal noise on the number of iterations performed by Algo-
rithm 14, for different values of v and v with p. = 0.075. The average iteration number of
40 indicate the failure of Algorithm 14.

linear number of external errors (in terms of the patterns length).

This chapter focused on recall, however learning is the other critical stage of associative
memory operation. Indeed, information storage in nervous systems is said to be subject to
storage (or learning) noise, in situ noise, and retrieval (or recall) noise [76, Fig. 1]. It should
be noted, however, that there is no essential loss by combining learning noise and in situ
noise into what we have called external error herein, cf. [69, Fn. 1 and Prop. 1]. Thus our
basic qualitative result extends to the setting where the learning and stored phases are also
performed with noisy hardware.

Going forward, it is of interest to investigate other neural information processing mod-
els that explicitly incorporate internal noise and to see whether they provide insight into
observed empirical phenomena. As an example, we might be able to explain the thresh-
old phenomenon observed in the symbol error rate of human telegraph operators under heat
stress [70, Figure 2], by invoking a thermal internal noise explanation.

10.A  Theoretical Estimation of P,

To bound F,,, consider four event probabilities for a cluster, let us define
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Figure 10.10: The effect of internal noise on the number of iterations performed by Algo-
rithm 14, for different values of v and v with p, = 0.125.

° w(()e) (resp. PO(Z)): The probability that a constraint neuron (resp. pattern neuron) in

cluster / makes a wrong decision due to its internal noise when there is no external
noise introduced to cluster , i.e., |||y = 0.

° 7r¥) (resp. Pl(z)): The probability that a constraint neuron (resp. pattern neuron) in
cluster £ makes a wrong decision due to its internal noise when one input error (external
noise) is introduced, i.e., |29 = |||, = 1.

Notice that Pc(f) =1~ Pl(z).
We derive an upper bound on the probability that a constraint node makes a mistake in
the presence of one external error.

Lemma 46. In the presence of a single external error, the probability that a constraint neuron
in a given cluster { makes a wrong decision due to its internal noise is given by

v—m—¢»7

ﬂl) < max (O, 5
v
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Figure 10.11: The effect of internal noise on the number of iterations performed by Algo-
rithm 14, for different values of v and v with p. = 0.125. The average iteration number of
40 indicate the failure of Algorithm 14.

where 1) = minij w0 (|Wi(f) |) is the minimum absolute value of the non-zero weights in
RAMET
the neural graph and is chosen such that n > 1.8

Proof. Without loss of generality, we assume that it is the first pattern node, xﬁf), that is

corrupted with noise whose value is +1. Now we would like to calculate the probability
that a constraint node makes a mistake in such a circumstance. Furthermore, we will only
consider the constraint neurons that are connected to xge). Because for the other constraint
neurons, the situation is the same as in the previous cases where there was no external noise
(which we addressed in Lemma 42).
For a constraint neuron 5 that is connected to x@, the decision parameter is
Rl — (W(@.(aﬁ(@ + z(e))) 4 v;
J

J

= 0+ (W“).z(@)j + v

J4
— w;l) + 'Uj.

8This condition can be enforced during simulations as long as 1 is not too large, which itself is determined
by the level of constraint neuron internal noise, v, as we must have ¢ > v.
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Figure 10.12: The final SER for a network with n = 400, L = 50 and noise values chosen
from {—3,—2,...,2,3}. The blue curves correspond to the noiseless neural network.

We consider two error events:

1. A constraint node j makes a mistake and does not send a message at all. The proba-
bility of this event is denoted by 7#).

2. A constraint node 7 makes a mistake and sends a message with the opposite sign. The
probability of this event is denoted by Wée).

We first calculate the probability of 7750. Without loss of generality, assume wﬁ)

that the probability of an error of type two is as follows (the case for wl® < 0is exactly the

71
same):

> (0 so

Wée) = Pr{wj(-f) +v; < =9}
_ (0
~ max (0,” (w;wﬂ)). (10.9)
1%

However, since ¢y > v and w](-? > 0, then v — (¢ + wj([)) < 0 and 7r§z) = 0. Therefore,

the constraint neurons will never send a message that has an opposite sign to what it should
have. All that remains to do is to calculate the probability that they remain silent by mistake.
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Figure 10.13: The effect of the internal noise on final PER as a function of v and v in absence
of external noise.

To this end, we will have

= Pr{jw +v;] < ¥}

o ©
~ max (0, v mm(;b Y ’”)) . (10.10)
1%

The above equation can be simplified if we assume that the absolute value of all weights in
the network is bigger than a constant 7 > ). Then, the above equation will simplify to

7#) < max (O, 1/—(7]—1#)) ) (10.11)
2v
Putting the above equations together, we obtain:
() < max <0, ”_07_@) . (10.12)
2v
O]
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Figure 10.14: The effect of the internal noise on final PER as a function of v and v in absence
of external noise.

In the case n — ¢ > v, we can even manage to make this probability equal to zero.
However, we will leave it as is and use (10.12) to calculate Pl(é).

Calculating P;"”
(€

J
mistake, which is to change its state in round 1. Let us denote this probability by q§€

to calculate q@ assume xg.e) has degree d; and it has b common neighbors with ng), the

corrupted pattern node.

makes a
)

We start by first calculating the probability that a non-corrupted pattern node x
. Now

Out of these b common neighbors, b. will send -1 messages and the others will, mis-

takenly, send nothing. Thus, the decision making parameter of pattern node 7, g](-e), will be
bounded by

o (sign(W(E))T : y(f))j )
gj = d. +U]§E+UJ

J J

We will denote (sign(VV(’Z))T . y(‘f))j by o, for brevity from this point on.
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In this circumstance, a mistake happens when | g§e)| > . Thus

¢ = Pr{|g] 91> | deg(2l)) = d; & IN (1) NN (2} = b}
= Pr{— +u; > p} —i—Pr{— +u; < —p}, (10.13)
dj d;

where (xlw) represents the neighborhood of pattern node xlw

By simplifying (10.13) we obtain

among constraint nodes.

1, if o] = (v + ¢)d;,

) B max(0, ==2), if |o;] < v — ¢ld;,
ai (Oj) ) v—(p—o0;/d;) .
— s, 1f|0j—Q0dj| Sl)dj,

2v
v— 0;/d; .
7(“0;}]/ J), if |o; + ¢d;| < vd;.

We now average this equation over o0;, b., b and d;. To start, suppose out of the b, non-

zero messages the node $§£) receives, e of them have the same sign as the link they are being

transmitted over. Thus, we will have 0; = e — (b, — ) = 2e — b.. Assuming the probability
of having the same sign for each message is 1/2, the probability of having e equal signs out

of b, elements will be ( )(1 /2)%. Thus, we will obtain

b
: < (be .
@' = (e) (1/2)"qi" (2¢ = b.). (10.14)
e=0
Now note that the probability of having a — b. mistakes from the constraint side is given
by (bbc) (wiyo=be (1 — 7{9)be With some abuse of notation we obtain:

> (f) (w1 O 3 (be)u/mbc 2e—b).  (1015)

b.=0 e=0

0

Finally, the probability that = ) and x;’ have b common neighbors can be approximated

by ( )(1 —d® Jmy)=b(d® ) mg) , where d(¥) is the average degree of pattern nodes. Thus
(again abusing some notation), we obtain:

Zprpch( >1/2)”c (2 —b), (10.16)

b=0 be=0 e=0
where q%z)(Qe — b,) is given by (10.13), p, is the probability of having b common neighbors
and is estimated by (ng) (1 —d9/my)%=2(d® /m,)?, with d¥) being the average degree of
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pattern nodes in cluster ¢. Furthermore, p;, is the probability of having b — b. out of these
b nodes making mistakes. Hence, p,, = (bb) (wiDyo=be(1 — 7)o We will not simplify the
above equation any further and use it as it is in our numerical analysis in order to obtain the

best parameter .
Now we will turn our attention to the probability that the corrupted node, x¥), makes a

mistake, which is either not to update at all or to update itself in the wrong direction. Recall-
ing that we have assumed the external noise term in a:S“ to be a 41 noise, the wrong direction
would be for node ng) to increase its current value instead of decreasing it. Furthermore, we

assume that out of d; neighbors of :cgf), some j of them have made a mistake and will not

send any messages to xgz). Thus, the decision parameter of mﬁ“ will be gg) =u+(dy—7)/d;.

Denoting the probability of making a mistake at x?) by qéz) we will obtain
qée) = Pr{ gié) < | deg(xge)) = d; and j errors in constraints }
g i
= Pr{~ I fu< ol (10.17)
1
which simplifies to
+1, if |j] > (14 v — @)ds,
() = { max(0,%%), it ]j| < (1 —v — @), (10.18)
U+<p—(f2111}—1)/d17 if [pdy — (d1 — 7)| < vd;.

Noting that the probability of making j mistakes on the constraint side is (‘?) (wie))j (1—

N d-i | we get

di d
(¢ 1 0N Odi—j (0)/ -
WzZ()MWuﬂ#Wwﬂm (10.19)
i=0 \J
where qéz) (7) is given by (10.18).
Putting the above results together, the overall probability of making a mistake on the side
of pattern neurons when we have one bit of external noise is given by
0 _1
w_ 1 o n ()
Pl - n(g) d2 n(g) q; -
Finally, the probability that cluster ¢ could correct one error is that all neurons take the
correct decision, i.€.,

(10.20)

0)\n®
P = (1-P")
and the average probability that clusters could correct one error is simply
P., =E,(PY). (10.21)
We will use this equation in order to find the best update threshold .
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Figure 10.15: The behavior of P, as a function of ¢ for different values of noise parameter,
v. Here, m(;) = 0.01.

10.B  Choosing a proper ¢

We now apply numerical methods to (10.20) to find the best ¢ for different values of noise
parameter v. The following figures show the best choice for the parameter . The update
threshold on the constraint side is chosen such that ¢ > v. In each figure, we have illustrated
the final probability of making a mistake, Pl(g), for comparison.

Figure 10.15 illustrates the behavior of the average probability of correcting a single
error, F,.,, as a function of ¢ for different values of v and for m; = 0.01. The interesting
trend here is that in all cases, *, the update threshold that gives the best result, is chosen
such that it is quite large. This actually is in line with our expectation because a small ¢ will
result in non-corrupted nodes to update their states more frequently. On the other hand, a
very large ¢ will prevent the corrupted nodes to correct their states, especially if there are
some mistakes made on the constraint side, i.e., 7T§€) > (. Therefore, since we have much
more non-corrupted nodes than corrupted nodes, it is best to choose a rather high ¢ but not
too high. Please also note that when 7#) is very high, there are no values of v for which
error-free storage is possible.

Figure 10.16 illustrates the exact behavior of ¢* against v for the case where ¢; = 0. As

can be seen from the figure, ¢ should be quite large.

168



10.B Choosing a proper ¢

1.00
— =0
ceem = 0.01
0.90 - -
. %: 0.50 | -
0.80 - -
070 T T T T OOO T
0.00 0.20 040 0.60 0.80 1.00 0.00 0.50 1.00
()

Figure 10.16: The behavior of ¢* as a func-

) Figure 10.17: The optimum £, as a function
tion of v for m; = 0.01.

of v for different values 7.

Figure 10.17 illustrates P,, = 1 — P, for the best chosen threshold, ¢*, as a function of
v for various choices of ;.
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Chapter 11

Concluding Remarks and Open
Problems

In this thesis our main goal was to show how one could combine ideas from coding theory
with neural algorithms performing similar tasks in order to achieve much better efficiency
in memorizing structured patterns. The proposed algorithms were designed to be simple
enough to be implemented by a network of neurons and, yet, powerful to be able to handle
partial information loss when recalling previously memorized patterns. We also showed how
one could find a theoretical estimate on the performance of the proposed algorithms.

Nevertheless, there is still much to be done. Improving the performance of the suggested
methods in practical situations aside, the most important issue that must be addressed in
future is to use the proposed algorithms in memorizing datasets of natural patterns. The
patterns in these datasets, despite being strongly correlated, often do not belong to a sub-
space. Consequently, one might not be able to directly apply the methods proposed to learn
subspaces to such datasets. Although, the nonlinear neural associative memory proposed in
Chapter 9 might provide some consolation to this limitation, it may turn out to be a bit too
complex for many datasets of natural patterns.

More specifically, although the patterns in such datasets do not form a subspace, they
come very close as they are strongly correlated and the correlation matrix of the patterns
has a few large eigenvalues and the rest are very small (but not equal to zero). A good
case in point is dataset of natural images. Figure 11.1 illustrates the eigenvalues for the
correlation matrix of a dataset of 10000 images, uniformly sampled from 10 classes of the
CIFAR-10 dataset [77]. As can be seen from the figure, there are few dominant principal
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Figure 11.1: The eigenvalues of a dataset of 1000 32 x 32 gray-scale images, uniformly
sampled from the 10 classes of the CIFAR-10 dataset [77].

components that can describe the patterns with a rather high accuracy, but there are non-zero
minor components as well that prevent the patterns to form a subspace.

In this and similar cases, we might be able to slightly modify the previously proposed
approaches in favor of practicality, i.e., instead of designing a method that can perfectly learn
patterns that form a subspace, we focus on an approach that learns an approximate version
of the given patterns, where the important aspects are preserved and only small details are
sacrificed in order to accomplish the learning and the recall phases of neural associative
memories. Think about it: if you are asked to describe how the sky looked like yesterday
morning, you could easily describe it qualitatively, i.e., whether it was sunny or cloudy, blue
or grey, and so on. However, remembering the exact details regarding the shape of the clouds
might turn out to be an issue.

As a result, now what becomes important is to find a suitable feature extraction method
that keep important details about the given patterns and focus on memorizing these features.
A simple example could be to apply the Principal Components Analysis (PCA) and project
the data onto its dominant principal components. We could then memorize the projected
patterns without losing too much detail. Figure 11.2 illustrates some examples randomly
drawn from the 10 classes of the CIFAR-10 dataset [77] and how they compare to their
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(a) Original Figure (b) SNR = 14.88 (c) SNR =10.95 (d) SNR = 10.63

(a) Original Figure (b) SNR = 14.23 (c) SNR = 8.46 (d) SNR =8.77

(a) Original Figure (b) SNR = 11.37 () SNR = 6.95 (d SNR=17.29

Figure 11.2: Panel (a) illustrates the original image. Panel (b) and (c) show the projected
image over the 500 and 200 dominant Principal Components (PCs), respectively. Finally,
panel (d) is the quantized version of images in panel (b) with 10 quantization levels. The
noise in the SN R is calculated as the norm-2 of the difference between the original image
and the image shown in the corresponding panel.

projected versions for different choices of dominant eigenvalues.

Currently, we are pursuing another direction with promising early results [78]. In the
considered approach, we employ, for instance, the convolutional architecture to memorize
gray-scale quantized images that are sampled from the CIFAR-10 dataset. However, al-
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(a) Original image (b) Quantized image (c) Learned image

Figure 11.3: Original vs. learned images

though the images are close to forming a subspace, they do not exactly belong to one, as
illustrated earlier in Figure 11.1. As such, we know that subspace learning algorithm will
not work. More specifically, by the time the learning algorithm stops, we end up with a set
of learned weights that are not orthogonal to the images but have minimal projections over
the projection of the patterns (images).

At this point, it would be interesting to see what are the fixed points of the convolutional
architecture with the neural graph determined by the learned vectors, i.e., the patterns that
are close to the images in the dataset and orthogonal to the set of neural weights. These
fixed points correspond to the patterns that are actually learned by the proposed architecture.
Figure 11.3 illustrate two examples. Here, we see a very interesting trend: in many cases,
the patterns learned by the network are very much similar to the actual image but with fewer
details. It seems as if the network is focusing more on the important points within the images
than the not as much important minute details.

Inspired by the results of Figure 11.3, if we replace the dataset of original images with
those similar to the right column of Figure 11.3, the proposed architecture could learn all
the images in this new dataset while being able to correct some errors during the recall
phase as well. Based on these findings, it seems safe to suggest that in real life situations, in
addition to the method used in designing associative memories, it is also as much important to
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think of suitable feature extraction algorithms, tailored for that particular associative memory
scheme.

Extending this line of thought, and in light of recent developments in deep feature ex-
tracting architectures [57, 58, 60,79, 80], it would be very interesting to think of multi-layer
neural architectures that combine deep feature extraction and associative memory blocks.
Such architectures could offer a complete neural associative memory package that works
well for real patterns as well.

In addition, it would be worth mentioning that the convolutional model proposed in Chap-
ter 7 is fairly general in the sense that as long as the small neural blocks correct a single error
during the recall phase, all the theoretical and empirical investigations hold, even if the pat-
terns do not belong to a subspace. In that regard, designing recall algorithms that could
ensure correction of a single error within the (sub)patterns during the recall phase will also
result in more general neural associative memories.
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