126,337 research outputs found

    Mobile Jammers for Secrecy Rate Maximization in Cooperative Networks

    Full text link
    We consider a source (Alice) trying to communicate with a destination (Bob), in a way that an unauthorized node (Eve) cannot infer, based on her observations, the information that is being transmitted. The communication is assisted by multiple multi-antenna cooperating nodes (helpers) who have the ability to move. While Alice transmits, the helpers transmit noise that is designed to affect the entire space except Bob. We consider the problem of selecting the helper weights and positions that maximize the system secrecy rate. It turns out that this optimization problem can be efficiently solved, leading to a novel decentralized helper motion control scheme. Simulations indicate that introducing helper mobility leads to considerable savings in terms of helper transmit power, as well as total number of helpers required for secrecy communications.Comment: ICASSP 201

    Model structure selection using an integrated forward orthogonal search algorithm assisted by squared correlation and mutual information

    No full text
    Model structure selection plays a key role in non-linear system identification. The first step in non-linear system identification is to determine which model terms should be included in the model. Once significant model terms have been determined, a model selection criterion can then be applied to select a suitable model subset. The well known Orthogonal Least Squares (OLS) type algorithms are one of the most efficient and commonly used techniques for model structure selection. However, it has been observed that the OLS type algorithms may occasionally select incorrect model terms or yield a redundant model subset in the presence of particular noise structures or input signals. A very efficient Integrated Forward Orthogonal Search (IFOS) algorithm, which is assisted by the squared correlation and mutual information, and which incorporates a Generalised Cross-Validation (GCV) criterion and hypothesis tests, is introduced to overcome these limitations in model structure selection

    Peer-to-Peer Cooperative Positioning Part I: GNSS Aided Acquisition

    Get PDF
    To improve the performance of GNSS receivers in hostile environments, we consider a Cooperative Positioning approach, where receivers exchange data and information with their neighbors. We focus on unstructured P2P networks, without a control or fusion center. We show that a significant reduction of the acquisition time can indeed by achieved when GNSS aiding quantities like Doppler, satellite Carrierto-Noise ratio and secondary code delay are provided by some aiding peers. The approach is clearly similar to that of Assisted GNSS, but does not require a fixed infrastructure and may better take into account the local environment. Since, in the near future, multi-standard devices will be more and more inter-connected, GNSS Cooperative Positioning may soon become an alternative or a complement to fixed augmentation system

    Wireless Communications in the Era of Big Data

    Full text link
    The rapidly growing wave of wireless data service is pushing against the boundary of our communication network's processing power. The pervasive and exponentially increasing data traffic present imminent challenges to all the aspects of the wireless system design, such as spectrum efficiency, computing capabilities and fronthaul/backhaul link capacity. In this article, we discuss the challenges and opportunities in the design of scalable wireless systems to embrace such a "bigdata" era. On one hand, we review the state-of-the-art networking architectures and signal processing techniques adaptable for managing the bigdata traffic in wireless networks. On the other hand, instead of viewing mobile bigdata as a unwanted burden, we introduce methods to capitalize from the vast data traffic, for building a bigdata-aware wireless network with better wireless service quality and new mobile applications. We highlight several promising future research directions for wireless communications in the mobile bigdata era.Comment: This article is accepted and to appear in IEEE Communications Magazin
    • …
    corecore