5 research outputs found

    Quantized Overcomplete Expansions in R^N: Analysis, Synthesis, and Algorithms

    Get PDF
    Coefficient quantization has peculiar qualitative effects on representations of vectors in IR with respect to overcomplete sets of vectors. These effects are investigated in two settings: frame expansions (representations obtained by forming inner products with each element of the set) and matching pursuit expansions (approximations obtained by greedily forming linear combinations). In both cases, based on the concept of consistency, it is shown that traditional linear reconstruction methods are suboptimal, and better consistent reconstruction algorithms are given. The proposed consistent reconstruction algorithms were in each case implemented, and experimental results are included. For frame expansions, results are proven to bound distortion as a function of frame redundancy r and quantization step size for linear, consistent, and optimal reconstruction methods. Taken together, these suggest that optimal reconstruction methods will yield O(1=r ) mean-squared error (MSE), and that consistency is sufficient to insure this asymptotic behavior. A result on the asymptotic tightness of random frames is also proven. Applicability of quantized matching pursuit to lossy vector compression is explored. Experiments demonstrate the likelihood that a linear reconstruction is inconsistent, the MSE reduction obtained with a nonlinear (consistent) reconstruction algorithm, and generally competitive performance at low bit rates

    Introduction to frames

    Get PDF
    This survey gives an introduction to redundant signal representations called frames. These representations have recently emerged as yet another powerful tool in the signal processing toolbox and have become popular through use in numerous applications. Our aim is to familiarize a general audience with the area, while at the same time giving a snapshot of the current state-of-the-art

    Multidimensional Wavelets and Computer Vision

    Get PDF
    This report deals with the construction and the mathematical analysis of multidimensional nonseparable wavelets and their efficient application in computer vision. In the first part, the fundamental principles and ideas of multidimensional wavelet filter design such as the question for the existence of good scaling matrices and sensible design criteria are presented and extended in various directions. Afterwards, the analytical properties of these wavelets are investigated in some detail. It will turn out that they are especially well-suited to represent (discretized) data as well as large classes of operators in a sparse form - a property that directly yields efficient numerical algorithms. The final part of this work is dedicated to the application of the developed methods to the typical computer vision problems of nonlinear image regularization and the computation of optical flow in image sequences. It is demonstrated how the wavelet framework leads to stable and reliable results for these problems of generally ill-posed nature. Furthermore, all the algorithms are of order O(n) leading to fast processing
    corecore