5,207 research outputs found

    Signals on Graphs: Uncertainty Principle and Sampling

    Full text link
    In many applications, the observations can be represented as a signal defined over the vertices of a graph. The analysis of such signals requires the extension of standard signal processing tools. In this work, first, we provide a class of graph signals that are maximally concentrated on the graph domain and on its dual. Then, building on this framework, we derive an uncertainty principle for graph signals and illustrate the conditions for the recovery of band-limited signals from a subset of samples. We show an interesting link between uncertainty principle and sampling and propose alternative signal recovery algorithms, including a generalization to frame-based reconstruction methods. After showing that the performance of signal recovery algorithms is significantly affected by the location of samples, we suggest and compare a few alternative sampling strategies. Finally, we provide the conditions for perfect recovery of a useful signal corrupted by sparse noise, showing that this problem is also intrinsically related to vertex-frequency localization properties.Comment: This article is the revised version submitted to the IEEE Transactions on Signal Processing on May, 2016; first revision was submitted on January, 2016; original manuscript was submitted on July, 2015. The work includes 16 pages, 8 figure

    Generative Model with Coordinate Metric Learning for Object Recognition Based on 3D Models

    Full text link
    Given large amount of real photos for training, Convolutional neural network shows excellent performance on object recognition tasks. However, the process of collecting data is so tedious and the background are also limited which makes it hard to establish a perfect database. In this paper, our generative model trained with synthetic images rendered from 3D models reduces the workload of data collection and limitation of conditions. Our structure is composed of two sub-networks: semantic foreground object reconstruction network based on Bayesian inference and classification network based on multi-triplet cost function for avoiding over-fitting problem on monotone surface and fully utilizing pose information by establishing sphere-like distribution of descriptors in each category which is helpful for recognition on regular photos according to poses, lighting condition, background and category information of rendered images. Firstly, our conjugate structure called generative model with metric learning utilizing additional foreground object channels generated from Bayesian rendering as the joint of two sub-networks. Multi-triplet cost function based on poses for object recognition are used for metric learning which makes it possible training a category classifier purely based on synthetic data. Secondly, we design a coordinate training strategy with the help of adaptive noises acting as corruption on input images to help both sub-networks benefit from each other and avoid inharmonious parameter tuning due to different convergence speed of two sub-networks. Our structure achieves the state of the art accuracy of over 50\% on ShapeNet database with data migration obstacle from synthetic images to real photos. This pipeline makes it applicable to do recognition on real images only based on 3D models.Comment: 14 page

    Approches tomographiques structurelles pour l'analyse du milieu urbain par tomographie SAR THR : TomoSAR

    No full text
    SAR tomography consists in exploiting multiple images from the same area acquired from a slightly different angle to retrieve the 3-D distribution of the complex reflectivity on the ground. As the transmitted waves are coherent, the desired spatial information (along with the vertical axis) is coded in the phase of the pixels. Many methods have been proposed to retrieve this information in the past years. However, the natural redundancies of the scene are generally not exploited to improve the tomographic estimation step. This Ph.D. presents new approaches to regularize the estimated reflectivity density obtained through SAR tomography by exploiting the urban geometrical structures.La tomographie SAR exploite plusieurs acquisitions d'une même zone acquises d'un point de vue légerement différent pour reconstruire la densité complexe de réflectivité au sol. Cette technique d'imagerie s'appuyant sur l'émission et la réception d'ondes électromagnétiques cohérentes, les données analysées sont complexes et l'information spatiale manquante (selon la verticale) est codée dans la phase. De nombreuse méthodes ont pu être proposées pour retrouver cette information. L'utilisation des redondances naturelles à certains milieux n'est toutefois généralement pas exploitée pour améliorer l'estimation tomographique. Cette thèse propose d'utiliser l'information structurelle propre aux structures urbaines pour régulariser les densités de réflecteurs obtenues par cette technique

    A FLEXIBLE METHODOLOGY FOR OUTDOOR/INDOOR BUILDING RECONSTRUCTION FROM OCCLUDED POINT CLOUDS

    Get PDF
    Terrestrial Laser Scanning data are increasingly used in building survey not only in cultural heritage domain but also for as-built modelling of large and medium size civil structures. However, raw point clouds derived from laser scanning generally not directly ready for the generation of such models. A time-consuming manual modelling phase has to be taken into account. In addition the large presence of occlusion and clutter may turn out in low-quality building models when state-of-the-art automatic modelling procedures are applied. This paper presents an automated procedure to convert raw point clouds into semantically-enriched building models. The developed method mainly focuses on a geometrical complexity typical of modern buildings with clear prevalence of planar features A characteristic of this methodology is the possibility to work with outdoor and indoor building environments. In order to operate under severe occlusions and clutter a couple of completion algorithms were designed to generate a plausible and reliable model. Finally, some examples of the developed modelling procedure are presented and discussed

    State of research in automatic as-built modelling

    Get PDF
    This is the final version of the article. It first appeared from Elsevier via http://dx.doi.org/10.1016/j.aei.2015.01.001Building Information Models (BIMs) are becoming the official standard in the construction industry for encoding, reusing, and exchanging information about structural assets. Automatically generating such representations for existing assets stirs up the interest of various industrial, academic, and governmental parties, as it is expected to have a high economic impact. The purpose of this paper is to provide a general overview of the as-built modelling process, with focus on the geometric modelling side. Relevant works from the Computer Vision, Geometry Processing, and Civil Engineering communities are presented and compared in terms of their potential to lead to automatic as-built modelling.We acknowledge the support of EPSRC Grant NMZJ/114,DARPA UPSIDE Grant A13–0895-S002, NSF CAREER Grant N. 1054127, European Grant Agreements No. 247586 and 334241. We would also like to thank NSERC Canada, Aecon, and SNC-Lavalin for financially supporting some parts of this research

    Man-made Surface Structures from Triangulated Point Clouds

    Get PDF
    Photogrammetry aims at reconstructing shape and dimensions of objects captured with cameras, 3D laser scanners or other spatial acquisition systems. While many acquisition techniques deliver triangulated point clouds with millions of vertices within seconds, the interpretation is usually left to the user. Especially when reconstructing man-made objects, one is interested in the underlying surface structure, which is not inherently present in the data. This includes the geometric shape of the object, e.g. cubical or cylindrical, as well as corresponding surface parameters, e.g. width, height and radius. Applications are manifold and range from industrial production control to architectural on-site measurements to large-scale city models. The goal of this thesis is to automatically derive such surface structures from triangulated 3D point clouds of man-made objects. They are defined as a compound of planar or curved geometric primitives. Model knowledge about typical primitives and relations between adjacent pairs of them should affect the reconstruction positively. After formulating a parametrized model for man-made surface structures, we develop a reconstruction framework with three processing steps: During a fast pre-segmentation exploiting local surface properties we divide the given surface mesh into planar regions. Making use of a model selection scheme based on minimizing the description length, this surface segmentation is free of control parameters and automatically yields an optimal number of segments. A subsequent refinement introduces a set of planar or curved geometric primitives and hierarchically merges adjacent regions based on their joint description length. A global classification and constraint parameter estimation combines the data-driven segmentation with high-level model knowledge. Therefore, we represent the surface structure with a graphical model and formulate factors based on likelihood as well as prior knowledge about parameter distributions and class probabilities. We infer the most probable setting of surface and relation classes with belief propagation and estimate an optimal surface parametrization with constraints induced by inter-regional relations. The process is specifically designed to work on noisy data with outliers and a few exceptional freeform regions not describable with geometric primitives. It yields full 3D surface structures with watertightly connected surface primitives of different types. The performance of the proposed framework is experimentally evaluated on various data sets. On small synthetically generated meshes we analyze the accuracy of the estimated surface parameters, the sensitivity w.r.t. various properties of the input data and w.r.t. model assumptions as well as the computational complexity. Additionally we demonstrate the flexibility w.r.t. different acquisition techniques on real data sets. The proposed method turns out to be accurate, reasonably fast and little sensitive to defects in the data or imprecise model assumptions.Künstliche Oberflächenstrukturen aus triangulierten Punktwolken Ein Ziel der Photogrammetrie ist die Rekonstruktion der Form und Größe von Objekten, die mit Kameras, 3D-Laserscannern und anderern räumlichen Erfassungssystemen aufgenommen wurden. Während viele Aufnahmetechniken innerhalb von Sekunden triangulierte Punktwolken mit Millionen von Punkten liefern, ist deren Interpretation gewöhnlicherweise dem Nutzer überlassen. Besonders bei der Rekonstruktion künstlicher Objekte (i.S.v. engl. man-made = „von Menschenhand gemacht“ ist man an der zugrunde liegenden Oberflächenstruktur interessiert, welche nicht inhärent in den Daten enthalten ist. Diese umfasst die geometrische Form des Objekts, z.B. quaderförmig oder zylindrisch, als auch die zugehörigen Oberflächenparameter, z.B. Breite, Höhe oder Radius. Die Anwendungen sind vielfältig und reichen von industriellen Fertigungskontrollen über architektonische Raumaufmaße bis hin zu großmaßstäbigen Stadtmodellen. Das Ziel dieser Arbeit ist es, solche Oberflächenstrukturen automatisch aus triangulierten Punktwolken von künstlichen Objekten abzuleiten. Sie sind definiert als ein Verbund ebener und gekrümmter geometrischer Primitive. Modellwissen über typische Primitive und Relationen zwischen Paaren von ihnen soll die Rekonstruktion positiv beeinflussen. Nachdem wir ein parametrisiertes Modell für künstliche Oberflächenstrukturen formuliert haben, entwickeln wir ein Rekonstruktionsverfahren mit drei Verarbeitungsschritten: Im Rahmen einer schnellen Vorsegmentierung, die lokale Oberflächeneigenschaften berücksichtigt, teilen wir die gegebene vermaschte Oberfläche in ebene Regionen. Unter Verwendung eines Schemas zur Modellauswahl, das auf der Minimierung der Beschreibungslänge beruht, ist diese Oberflächensegmentierung unabhängig von Kontrollparametern und liefert automatisch eine optimale Anzahl an Regionen. Eine anschließende Verbesserung führt eine Menge von ebenen und gekrümmten geometrischen Primitiven ein und fusioniert benachbarte Regionen hierarchisch basierend auf ihrer gemeinsamen Beschreibungslänge. Eine globale Klassifikation und bedingte Parameterschätzung verbindet die datengetriebene Segmentierung mit hochrangigem Modellwissen. Dazu stellen wir die Oberflächenstruktur in Form eines graphischen Modells dar und formulieren Faktoren basierend auf der Likelihood sowie auf apriori Wissen über die Parameterverteilungen und Klassenwahrscheinlichkeiten. Wir leiten die wahrscheinlichste Konfiguration von Flächen- und Relationsklassen mit Hilfe von Belief-Propagation ab und schätzen eine optimale Oberflächenparametrisierung mit Bedingungen, die durch die Relationen zwischen benachbarten Primitiven induziert werden. Der Prozess ist eigens für verrauschte Daten mit Ausreißern und wenigen Ausnahmeregionen konzipiert, die nicht durch geometrische Primitive beschreibbar sind. Er liefert wasserdichte 3D-Oberflächenstrukturen mit Oberflächenprimitiven verschiedener Art. Die Leistungsfähigkeit des vorgestellten Verfahrens wird an verschiedenen Datensätzen experimentell evaluiert. Auf kleinen, synthetisch generierten Oberflächen untersuchen wir die Genauigkeit der geschätzten Oberflächenparameter, die Sensitivität bzgl. verschiedener Eigenschaften der Eingangsdaten und bzgl. Modellannahmen sowie die Rechenkomplexität. Außerdem demonstrieren wir die Flexibilität bzgl. verschiedener Aufnahmetechniken anhand realer Datensätze. Das vorgestellte Rekonstruktionsverfahren erweist sich als genau, hinreichend schnell und wenig anfällig für Defekte in den Daten oder falsche Modellannahmen

    Skeletonization and segmentation of binary voxel shapes

    Get PDF
    Preface. This dissertation is the result of research that I conducted between January 2005 and December 2008 in the Visualization research group of the Technische Universiteit Eindhoven. I am pleased to have the opportunity to thank a number of people that made this work possible. I owe my sincere gratitude to Alexandru Telea, my supervisor and first promotor. I did not consider pursuing a PhD until my Master’s project, which he also supervised. Due to our pleasant collaboration from which I learned quite a lot, I became convinced that becoming a doctoral student would be the right thing to do for me. Indeed, I can say it has greatly increased my knowledge and professional skills. Alex, thank you for our interesting discussions and the freedom you gave me in conducting my research. You made these four years a pleasant experience. I am further grateful to Jack vanWijk, my second promotor. Our monthly discussions were insightful, and he continuously encouraged me to take a more formal and scientific stance. I would also like to thank Prof. Jan de Graaf from the department of mathematics for our discussions on some of my conjectures. His mathematical rigor was inspiring. I am greatly indebted to the Netherlands Organisation for Scientific Research (NWO) for funding my PhD project (grant number 612.065.414). I thank Prof. Kaleem Siddiqi, Prof. Mark de Berg, and Dr. Remco Veltkamp for taking part in the core doctoral committee and Prof. Deborah Silver and Prof. Jos Roerdink for participating in the extended committee. Our Visualization group provides a great atmosphere to do research in. In particular, I would like to thank my fellow doctoral students Frank van Ham, Hannes Pretorius, Lucian Voinea, Danny Holten, Koray Duhbaci, Yedendra Shrinivasan, Jing Li, NielsWillems, and Romain Bourqui. They enabled me to take my mind of research from time to time, by discussing political and economical affairs, and more trivial topics. Furthermore, I would like to thank the senior researchers of our group, Huub van de Wetering, Kees Huizing, and Michel Westenberg. In particular, I thank Andrei Jalba for our fruitful collaboration in the last part of my work. On a personal level, I would like to thank my parents and sister for their love and support over the years, my friends for providing distractions outside of the office, and Michelle for her unconditional love and ability to light up my mood when needed
    corecore