794 research outputs found

    Unsupervised learning with contrastive latent variable models

    Full text link
    In unsupervised learning, dimensionality reduction is an important tool for data exploration and visualization. Because these aims are typically open-ended, it can be useful to frame the problem as looking for patterns that are enriched in one dataset relative to another. These pairs of datasets occur commonly, for instance a population of interest vs. control or signal vs. signal free recordings.However, there are few methods that work on sets of data as opposed to data points or sequences. Here, we present a probabilistic model for dimensionality reduction to discover signal that is enriched in the target dataset relative to the background dataset. The data in these sets do not need to be paired or grouped beyond set membership. By using a probabilistic model where some structure is shared amongst the two datasets and some is unique to the target dataset, we are able to recover interesting structure in the latent space of the target dataset. The method also has the advantages of a probabilistic model, namely that it allows for the incorporation of prior information, handles missing data, and can be generalized to different distributional assumptions. We describe several possible variations of the model and demonstrate the application of the technique to de-noising, feature selection, and subgroup discovery settings

    Uncertainty Estimation, Explanation and Reduction with Insufficient Data

    Full text link
    Human beings have been juggling making smart decisions under uncertainties, where we manage to trade off between swift actions and collecting sufficient evidence. It is naturally expected that a generalized artificial intelligence (GAI) to navigate through uncertainties meanwhile predicting precisely. In this thesis, we aim to propose strategies that underpin machine learning with uncertainties from three perspectives: uncertainty estimation, explanation and reduction. Estimation quantifies the variability in the model inputs and outputs. It can endow us to evaluate the model predictive confidence. Explanation provides a tool to interpret the mechanism of uncertainties and to pinpoint the potentials for uncertainty reduction, which focuses on stabilizing model training, especially when the data is insufficient. We hope that this thesis can motivate related studies on quantifying predictive uncertainties in deep learning. It also aims to raise awareness for other stakeholders in the fields of smart transportation and automated medical diagnosis where data insufficiency induces high uncertainty. The thesis is dissected into the following sections: Introduction. we justify the necessity to investigate AI uncertainties and clarify the challenges existed in the latest studies, followed by our research objective. Literature review. We break down the the review of the state-of-the-art methods into uncertainty estimation, explanation and reduction. We make comparisons with the related fields encompassing meta learning, anomaly detection, continual learning as well. Uncertainty estimation. We introduce a variational framework, neural process that approximates Gaussian processes to handle uncertainty estimation. Two variants from the neural process families are proposed to enhance neural processes with scalability and continual learning. Uncertainty explanation. We inspect the functional distribution of neural processes to discover the global and local factors that affect the degree of predictive uncertainties. Uncertainty reduction. We validate the proposed uncertainty framework on two scenarios: urban irregular behaviour detection and neurological disorder diagnosis, where the intrinsic data insufficiency undermines the performance of existing deep learning models. Conclusion. We provide promising directions for future works and conclude the thesis
    • …
    corecore