Uncertainty Estimation, Explanation and Reduction with Insufficient Data

Abstract

Human beings have been juggling making smart decisions under uncertainties, where we manage to trade off between swift actions and collecting sufficient evidence. It is naturally expected that a generalized artificial intelligence (GAI) to navigate through uncertainties meanwhile predicting precisely. In this thesis, we aim to propose strategies that underpin machine learning with uncertainties from three perspectives: uncertainty estimation, explanation and reduction. Estimation quantifies the variability in the model inputs and outputs. It can endow us to evaluate the model predictive confidence. Explanation provides a tool to interpret the mechanism of uncertainties and to pinpoint the potentials for uncertainty reduction, which focuses on stabilizing model training, especially when the data is insufficient. We hope that this thesis can motivate related studies on quantifying predictive uncertainties in deep learning. It also aims to raise awareness for other stakeholders in the fields of smart transportation and automated medical diagnosis where data insufficiency induces high uncertainty. The thesis is dissected into the following sections: Introduction. we justify the necessity to investigate AI uncertainties and clarify the challenges existed in the latest studies, followed by our research objective. Literature review. We break down the the review of the state-of-the-art methods into uncertainty estimation, explanation and reduction. We make comparisons with the related fields encompassing meta learning, anomaly detection, continual learning as well. Uncertainty estimation. We introduce a variational framework, neural process that approximates Gaussian processes to handle uncertainty estimation. Two variants from the neural process families are proposed to enhance neural processes with scalability and continual learning. Uncertainty explanation. We inspect the functional distribution of neural processes to discover the global and local factors that affect the degree of predictive uncertainties. Uncertainty reduction. We validate the proposed uncertainty framework on two scenarios: urban irregular behaviour detection and neurological disorder diagnosis, where the intrinsic data insufficiency undermines the performance of existing deep learning models. Conclusion. We provide promising directions for future works and conclude the thesis

    Similar works

    Full text

    thumbnail-image

    Available Versions