6 research outputs found

    A precise bare simulation approach to the minimization of some distances. Foundations

    Full text link
    In information theory -- as well as in the adjacent fields of statistics, machine learning, artificial intelligence, signal processing and pattern recognition -- many flexibilizations of the omnipresent Kullback-Leibler information distance (relative entropy) and of the closely related Shannon entropy have become frequently used tools. To tackle corresponding constrained minimization (respectively maximization) problems by a newly developed dimension-free bare (pure) simulation method, is the main goal of this paper. Almost no assumptions (like convexity) on the set of constraints are needed, within our discrete setup of arbitrary dimension, and our method is precise (i.e., converges in the limit). As a side effect, we also derive an innovative way of constructing new useful distances/divergences. To illustrate the core of our approach, we present numerous examples. The potential for widespread applicability is indicated, too; in particular, we deliver many recent references for uses of the involved distances/divergences and entropies in various different research fields (which may also serve as an interdisciplinary interface)

    Noise Adaptation Generative Adversarial Network for Medical Image Analysis

    No full text
    Machine learning has been widely used in medical image analysis under an assumption that the training and test data are under the same feature distributions. However, medical images from difference devices or the same device with different parameter settings are often contaminated with different amount and types of noises, which violate the above assumption. Therefore, the models trained using data from one device or setting often fail to work for that from another. Moreover, it is very expensive and tedious to label data and re-train models for all different devices or settings. To overcome this noise adaptation issue, it is necessary to leverage on the models trained with data from one device or setting for new data. In this paper, we reformulate this noise adaptation task as an image-to-image translation task such that the noise patterns from the test data are modified to be similar to those from the training data while the contents of the data are unchanged. In this paper, we propose a novel Noise Adaptation Generative Adversarial Network (NAGAN), which contains a generator and two discriminators. The generator aims to map the data from source domain to target domain. Among the two discriminators, one discriminator enforces the generated images to have the same noise patterns as those from the target domain, and the second discriminator enforces the content to be preserved in the generated images. We apply the proposed NAGAN on both optical coherence tomography (OCT) images and ultrasound images. Results show that the method is able to translate the noise style. In addition, we also evaluate our proposed method with segmentation task in OCT and classification task in ultrasound. The experimental results show that the proposed NAGAN improves the analysis outcome

    Generative Adversarial Network (GAN) for Medical Image Synthesis and Augmentation

    Get PDF
    Medical image processing aided by artificial intelligence (AI) and machine learning (ML) significantly improves medical diagnosis and decision making. However, the difficulty to access well-annotated medical images becomes one of the main constraints on further improving this technology. Generative adversarial network (GAN) is a DNN framework for data synthetization, which provides a practical solution for medical image augmentation and translation. In this study, we first perform a quantitative survey on the published studies on GAN for medical image processing since 2017. Then a novel adaptive cycle-consistent adversarial network (Ad CycleGAN) is proposed. We respectively use a malaria blood cell dataset (19,578 images) and a COVID-19 chest X-ray dataset (2,347 images) to test the new Ad CycleGAN. The quantitative metrics include mean squared error (MSE), root mean squared error (RMSE), peak signal-to-noise ratio (PSNR), universal image quality index (UIQI), spatial correlation coefficient (SCC), spectral angle mapper (SAM), visual information fidelity (VIF), Frechet inception distance (FID), and the classification accuracy of the synthetic images. The CycleGAN and variant autoencoder (VAE) are also implemented and evaluated as comparison. The experiment results on malaria blood cell images indicate that the Ad CycleGAN generates more valid images compared to CycleGAN or VAE. The synthetic images by Ad CycleGAN or CycleGAN have better quality than those by VAE. The synthetic images by Ad CycleGAN have the highest accuracy of 99.61%. In the experiment on COVID-19 chest X-ray, the synthetic images by Ad CycleGAN or CycleGAN have higher quality than those generated by variant autoencoder (VAE). However, the synthetic images generated through the homogenous image augmentation process have better quality than those synthesized through the image translation process. The synthetic images by Ad CycleGAN have higher accuracy of 95.31% compared to the accuracy of the images by CycleGAN of 93.75%. In conclusion, the proposed Ad CycleGAN provides a new path to synthesize medical images with desired diagnostic or pathological patterns. It is considered a new approach of conditional GAN with effective control power upon the synthetic image domain. The findings offer a new path to improve the deep neural network performance in medical image processing

    Noise Adaptation Generative Adversarial Network for Medical Image Analysis (vol 39, pg 1149, 2020)

    No full text
    In the above article [1], Tables II, III, and V and Fig. 6 are incorrect. The correct images are provided below
    corecore