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Abstract 

Medical image processing aided by artificial intelligence (AI) and machine learning (ML) 

significantly improves medical diagnosis and decision making. However, the difficulty to 

access well-annotated medical images becomes one of the main constraints on further 

improving this technology.  

Generative adversarial network (GAN) is a DNN framework for data synthetization, which 

provides a practical solution for medical image augmentation and translation. In this study, 

we first perform a quantitative survey on the published studies on GAN for medical image 

processing since 2017. Then a novel adaptive cycle-consistent adversarial network (Ad 

CycleGAN) is proposed. We respectively use a malaria blood cell dataset (19,578 images) 

and a COVID-19 chest X-ray dataset (2,347 images) to test the new Ad CycleGAN. The 

quantitative metrics include mean squared error (MSE), root mean squared error (RMSE), 

peak signal-to-noise ratio (PSNR), universal image quality index (UIQI), spatial 

correlation coefficient (SCC), spectral angle mapper (SAM), visual information fidelity 

(VIF), Frechet inception distance (FID), and the classification accuracy of the synthetic 

images. The CycleGAN and variant autoencoder (VAE) are also implemented and 

evaluated as comparison. 

The experiment results on malaria blood cell images indicate that the Ad CycleGAN 

generates more valid images compared to CycleGAN or VAE. The synthetic images by Ad 

CycleGAN or CycleGAN have better quality than those by VAE. The synthetic images by 

Ad CycleGAN have the highest accuracy of 99.61%. In the experiment on COVID-19 chest 

X-ray, the synthetic images by Ad CycleGAN or CycleGAN have higher quality than those 

generated by variant autoencoder (VAE). However, the synthetic images generated through 

the homogenous image augmentation process have better quality than those synthesized 

through the image translation process. The synthetic images by Ad CycleGAN have higher 

accuracy of 95.31% compared to the accuracy of the images by CycleGAN of 93.75%. 
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In conclusion, the proposed Ad CycleGAN provides a new path to synthesize medical 

images with desired diagnostic or pathological patterns. It is considered a new approach of 

conditional GAN with effective control power upon the synthetic image domain.  The 

findings offer a new path to improve the deep neural network performance in medical 

image processing. 
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Chapter 1 Introduction and Motivation 

1.1 Motivation 

Computer vision is one of the most promising fields of applying the deep learning 

AI technologies to biomedical and health informatics in the last decade.  The technologies 

of machine learning (ML) and AI is playing an increasing role on medical image analysis 

because of their powerful image processing capacity in many applications such as image-

based diagnosis, image interpretation, pathological pattern segmentation, image-guided 

surgery, and image retrieval and analysis, etc. This technology facilitates and improve the 

working efficiency of the whole healthcare delivery from diagnosis, prognosis prediction 

and disease prevention.  In medical research, the genome sequencing technology highly 

relies on the accurate recognition of the light patterns from the fluorescent immunoassay 

reaction to detect the variations of the gene or peptide sequence, which is the basis of the 

current genomic analytic technology. These ML technologies range from the conventional 

algorithms such as linear regression, k-nearest neighbors (KNN), Bayes classifier, support 

vector machine (SVM), to the state-of-the-art deep neural networks (DNNs), or deep 

learning methods, such as convolutional neural network (CNN), recurrent neural network 

(RNN), and deep belief network (DBN), etc. The conventional models are usually 

restricted by some drawbacks such as the dependency of the expertise for data pre-

processing, which requires more time and effort to tune the feature to be learnable by the 

ML models. The new advance of deep learning algorithms effectively reduces the cost of 

data pre-processing. The deep learning algorithms has been applied to medical informatics 

for multiple domains such as image processing, electric health record (EHR) entity 

recognition, computer-aided diagnosis, medical genomics, and drug discovery, etc. 

Deep learning is a branch of machine learning algorithms where a trained model will 

automatically yield a decision given the experience from the seen training data. Deep 

learning is a machine learning model based on an artificial neural network with multiple 
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hidden layers. Compared to the conventional machine learning methods, deep learning has 

four significant strengths. 

i. Automatic feature extraction: The conventional machine learning algorithms that 

are limited in processing data in the raw form. If the raw data cannot provide 

learnable and distinguishable patterns, the trained model will have poor 

performance. Therefore, the conventional machine learning technology requires a 

complex feature extraction procedure that involves the collaboration of the 

expertise of a domain and computer science on developing a proper feature 

representation and extraction paradigm to maximize the system performance. In 

comparison, the deep learning methods apply a hierarchic architecture to the data 

patterns through multiple levels of data representations captured by the deep hidden 

layer model connected with “simple but non-linear modules” to form a complex 

but learnable function. By the deep architecture, the data patterns are effectively 

separated and amplified through the deep architecture. When trained adequately, 

different neurons in the deep neural network are optimized to be capable of 

capturing some specific pattern passed through the whole network and the 

corresponding weights are tuned to perform the due response. [1] 

ii. End-to-end models: the deep learning model is composed of neural network with 

multiple layers of neurons with different functionality given a particular task. The 

functions between layers are different from each other by their tasks. The layers are 

connected by the weights produced by the activation functions attached to each 

neuron. The whole architecture of a deep learning model is demonstrated by a 

directed graph, where the nodes represent the neurons holding the optimized 

weights and the edges represent the output by the activation functions of the 

neurons to the next layers. Therefore, to generate a deep learning network, we 

simply define the architecture of the whole graph composed of the pre-configured 

layers given the tasks. There is no need to embed multiple algorithms into the whole 

model therefore the overall solution will be robust. 
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iii. Superior performance: deep learning usually has better performance compared to 

other algorithms given sufficient training. In another word, deep learning is a data 

greedy algorithm become of the complexity of its network architecture. On the 

other hand, the highly complex hierarchic structure of the deep network provides 

powerful modeling capacity to memorize almost all possible mappings from the 

large training set after sufficient training, and the trained deep learning model 

usually gives robust and intelligent prediction by making proper interpolation or 

extrapolation to new or unseen instances. 

iv. General-purpose method: the deep learning models have the capacity to extend 

the applications to various tasks by fine-tuning the weights at different layers of the 

network. The common way is called transfer learning.  The basic idea of transfer 

learning is to use a pre-trained network to solve a different problem. However, 

transfer learning is feasible giving the patterns learning from the pre-trained dataset 

can be generalize to the new dataset [2], which is impractical in medical images so 

far. For example, we cannot transfer a pre-trained model trained by an X-ray image 

dataset to an MRI (magnetic resonance imaging) image set, or the patterns learned 

from a histological image set cannot applied to another ultrasound image set. In 

general, the transfer learning strategy is an optimal solution for implementing deep 

learning models (e.g., convolutional neural network, CNN) to medical image 

analysis, but we are still at the stage of data congregation or the formation of the 

big data platform that can provide sufficient pre-trained model to extend deep 

learning to all fields of medical images. 

Besides the above strengths, DNNs have two common drawbacks. First, all the 

DNNs are considered as data greedy algorithms. The final performance of DNNs mainly 

relies on the abundance of training examples, or the accessibility of big data samples that 

fully represent the characteristics of the entire data domain. However, big image datasets 

with good annotations are difficult to acquire. This problem is even worse for the 

acquisition of medical image datasets because high quality annotation must be performed 
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by medical experts. The cost for such datasets is more expensive than general-purposed 

datasets. If the medical images are annotated by non-medical persons, the quality of the 

image data is suspicious due to the lack of expertise. Thus, if the technology of artificial 

intelligence (AI) such as DNNs can provide a method to automatically annotate the medial 

images, the cost not only for the medical image processing but also for the relevant medical 

service will be significantly reduced. This becomes the first motivation of this research. 

Second, the specific medical image patterns are different from general-purposed 

images such as those in the ImageNet dataset [2]. When using transfer learning with DNN 

models trained by the ImageNet to fine tune a new model for the medical images, the 

pretrained feature extractors usually cannot effectively capture the medical significant 

patterns through the complex architecture but simply develop meaningless combinations 

for the final decision. In our previous work on CNN for the malaria blood cell image 

classification, the transfer learning approach has lower accuracy (91.99%) than the 

randomly initialized CNN (97.37%) [3]. In addition, a new study reveals that the seemly 

high-performance DNN models for COVID-19 chest X-Ray image detection are 

vulnerable from network attacks [4]. The common strategy to improve DNN performance 

is to enhance the diversity of training data by multiple augmentation techniques such as 

random rotation, flipping, and jittering. However, the conventional augmentation methods 

are unsuitable for most medical images like images of histological cells and tissues, or X-

Ray photography. The image-based medical diagnosis usually requires structure 

completeness and correct image alignment because the diagnosis is usually based on the 

comparison between normal and abnormal structure. The random augmentation techniques 

are likely to break the structure completeness or position alignment. As a result, the trained 

DNNs are likely to capture wrong combination of patterns or artifacts instead of the correct 

ones meeting the human knowledge. Therefore, our second motivation is to explore a new 

method to synthesize homogenous images to preserve the meaningful patterns and 

meanwhile to reduce the DNN vulnerability for medical image processing. 
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1.2 Main Contributions 

This thesis proposes a new generative adversarial network (GAN) architecture, 

namely adaptive generative adversarial network (Ad CycleGAN) based on the state-of-the-

art cycle-consistent adversarial network (CycleGAN). In addition to the two generator-

discriminator pairs of the original CycleGAN, a pertained classifier is added to the Ad 

CycleGAN architecture as an internal criterion to further control the output synthetic 

images not only belong to the target domain, but also to the due image class. Medical 

images are mainly for diagnostic and disease prognosis purposes. The diagnostically or 

pathologically significant patterns in the medical images are likely to be considered as the 

acceptable diversity of the small image domain. Therefore, it is necessary to enhance the 

current Cycle GAN architecture by adding external criterion to ensure that the generated 

synthetic images belong to both the correct image domain and the correct diagnosis class. 

This design will be easy to extend to other medical or non-medical data synthetization 

applications. 

Another contribution of the thesis is that we propose a new term loss term, namely 

classification loss to the GAN composite loss objective function during model 

optimization. Unlike the original loss objective design, the new loss term needs to 

periodically inject extra loss weight to the total generator loss term, and decays as the 

optimization epoch increases to prevent from generating unnecessary artifacts to the 

synthetic images.  

To evaluate the performance of the new Ad CycleGAN, we implemented the original 

Cycle and the convolutional variational autoencoder (CVA) for comparison. Multiple 

quantitative measurements are applied to measure the similarity of the real medical images 

and the corresponding synthetic images, including Mean Squared Error (MSE), Root Mean 

Squared Error (RMSE), Peak Signal-to-Noise Ratio (PSNR), Universal Image Quality 

Index (UIQI), Spatial Correlation Coefficient (SCC), Spectral Angle Mapper (SAM), and 

Visual Information Fidelity (VIF). Furthermore, the Frechet Inception Distance (FID) is 
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applied to quantitatively measure the generated images by different generative models. The 

details of these measurements will be discussed in the following chapters. 

1.3 Outline 

This thesis has eight chapters in total. They are organized as follows. In chapter 1, 

the general idea is computer vision, and the relevant technologies are introduced. Then the 

main challenges for improving the current deep learning performance in biomedical 

research is presented with our proposed solution. The novel Ad CycleGAN architecture is 

also introduced in Chapter 1 with the corresponding evaluation metrics. Chapter 2 covers 

the related work of artificial neural network, its basic components and architecture, the 

classical DNNs, the typical applications of DNNs, the advanced technique of DNN and the 

typical application of DNN in biomedical research and practice, the basic knowledge of 

GAN and typical GAN models. Chapter 3 is a quantitative survey of GAN for biomedical 

applications. Chapter 4 introduces the basic knowledge and components of the novel 

Adaptive Cycle-Consistent Adversarial Network (Ad CycleGAN). Chapter 5 and Chapter 

6 respectively describe the Application of Ad CycleGAN for histology and radiology 

image synthesis, as well as the relevant experiments and result interpretation. Chapter 7 

summarizes the experiments and concludes the findings of this thesis. Chapter 8 concludes 

this thesis and explores the possibilities of future work. 
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Chapter 2 Related Work 

2.1 Artificial Neural Network and Deep Learning 

The tasks of machine learning (ML) are general divided into two categories: 

supervised learning and unsupervised learning. Supervised learning is to infer a mapping 

function 𝑦𝑦 = 𝑓𝑓(𝑥𝑥)  from the input 𝑥𝑥  to the output 𝑦𝑦 . The tasks of classification and 

regression are examples of supervised learning. In contrast, unsupervised learning is to 

learn the patterns from the distribution of the data 𝑥𝑥  without pre-defined assumptions. 

Typical examples of unsupervised learning are clustering and density estimation.  

On the other hand, all ML methods have one fundamental goal to extract the latent 

feature for the training data as the representation of the inputs to establish the optimized 

mapping from the input to the output. Unlike the conventional ML models requiring 

additional feature extractors for a complex ML pipeline, the deep learning ML models 

usually accommodate an automatic data-oriented feature extractor inside the deep learning 

model architecture.  Therefore, the deep learning ML models can learn optimal patterns 

directly from the training data without the human expertise intervention. This capacity of 

automatic pattern discovery lets the deep learning techniques unveil the unknown or hidden 

feature possibly neglected by human. The complex data representation in deep learning 

consists of simple representations captured by the deep learning architecture during 

training. For example, the recognition of a medical pattern such as a malignant tumor 

involves the finding of multiple visual feature such as the edges, contours, and corners in 

a specific special composition, which can be learned in an unsupervised manner and later 

pipelined to a supervised learning task by the following layers of the deep learning model.  

The major deep learning algorithms are built upon the framework of the artificial 

neural network. Artificial Neural Networks, or ANN is a computational model for machine 

learning. The structure of an ANN is to simulate the functions of the signal transmitting 

mechanism of the neural system in biology.  Unlike other machine learning algorithm like 

support vector machine (SVM) that seeks a unique optimized solution, an ANN is a 
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nonlinear statistical model with complex functional mapping relations between the inputs 

and outputs throughout the multiple hidden layers in the middle. And this complexity 

makes the ANN model become deep learning and acquire the learning capacity as a mimic 

of a biological neuron.  

 

Figure 1: Comparison of Biological Neuron and Computational Neuron [5]. 

An ANN model is composed of multiple computational neurons or nodes, which are 

arranged as layers from the input to the output of the model.  The layers of nodes that do 

not belong to the input or the output layers are called hidden layers. The nodes in the hidden 

layers have a set of weights that will be updated during training. And the weights of the 

whole ANN model are optimized by minimizing the loss function. For example, if a 

negative logarithm function is used as the loss function, the update will be presented as: 

           ℒ(𝜃𝜃,𝐷𝐷) = −∑ [𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙(𝑌𝑌 = 𝑦𝑦𝑖𝑖|𝑥𝑥𝑖𝑖,𝜃𝜃)] + 𝜆𝜆‖𝜃𝜃‖𝑝𝑝𝐷𝐷
𝑖𝑖=0                                      (2.1) 

where 𝐷𝐷  is the entire training set, 𝜃𝜃  is the set of the model parameters that are 

updated by minimizing the p-norm loss function ℒ, and 𝜆𝜆 is the regularization term to 

prevent overfitting and to improve the model ability to generalize to new unseen data. Deep 

learning mainly uses the backpropagation method to minimize the loss from the last layer 

reversely throughout the network model [7]. 

There are many open-source implementation of the deep learning algorithms in 

multiple programming languages, including TensorFlow, Theano, PyTorch, Caffe, 

MXNet, Deeplearning4J, and ML.Net.  The current deep learning models used in medical 

informatics is illustrated in Figure 2. 



 

9 

 

Figure 2: Current Deep Learning Models for Medical Informatics [5]. 

2.1.1 Artificial Neural Network and Deep Learning 

In mathematics, a computational neuron is the basic unit of an ANN that receives a 

vector of weights 𝑤𝑤 = (𝑤𝑤1, … ,𝑤𝑤𝑛𝑛) and a bias 𝑤𝑤0as the parameters 𝜃𝜃 = (𝑤𝑤0,𝑤𝑤1, … ,𝑤𝑤𝑛𝑛) to 

seek for a model decision by the mapping function: 

                                            𝑓𝑓(𝑥𝑥) = ℎ(𝑤𝑤𝑇𝑇𝑥𝑥 + 𝑤𝑤0)                                                    (2.2) 

By a certain non-linear function called activation ℎ(𝑥𝑥) . Therefore, a single 

computational neuron can be used as a classifier if the function of the activation is 

monotonic, bounded, and continuous [5]. Therefore, different types of activations may be 

chosen for different tasks. For example,  Rosenblatt respectively used the sigmoid function 

𝑠𝑠𝑠𝑠𝑙𝑙𝑠𝑠(𝑥𝑥) , the sigmoid function 𝜎𝜎(𝑥𝑥) = 1
1+𝑒𝑒−𝑥𝑥

, or the hyperbolic tangent function 

tanh(𝑥𝑥) = 𝑒𝑒𝑥𝑥−𝑒𝑒−𝑥𝑥

𝑒𝑒𝑥𝑥+𝑒𝑒−𝑥𝑥
 for the primitive ANN models, the perceptron algorithms in the 1950’s. 

the main demerit of using a single computational neuron for ML problems is that it cannot 

solve XOR problem because on the linearity of its decision boundary (Figure 3). 
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Figure 3: Limitation of Linearity of the Decision Boundary [5]. 

To overcome the demerit of the single perceptron, the idea is extended to the 

multilayer perceptron (MLP) algorithm. An MLP is an ANN composed of multiple hidden 

layers where the nodes (or neurons) in layer 𝑠𝑠 are fully connected to the nodes in the next 

layer 𝑠𝑠 + 1 (Figure 4).  Given an MLP has 𝑠𝑠 hidden layers and each layer has 𝑗𝑗 nodes, the 

predicted output, or the hypothesis of the MLP is presented as: 

 

 

Figure 4: Multilayer Perceptron (MLP) [16]. 

                           𝑓𝑓𝚤𝚤�(𝑥𝑥𝑖𝑖) = ℎ𝑖𝑖 = 𝜎𝜎�∑ 𝑥𝑥𝑗𝑗𝑤𝑤𝑖𝑖𝑗𝑗 + 𝑏𝑏𝑖𝑖𝑗𝑗𝑑𝑑
𝑗𝑗=1 �                                                 (2.3) 

where ℎ𝑖𝑖is the output (hypothesis) computed by each node which is the mapping of the 

weighted sum of the outputs from the previous layer 𝑠𝑠 − 1, by a nonlinear activation σ. The 

conventional activation functions are the sigmoid or the hyperbolic tangent (tanh), but the 

modern ANN model prefers to choose simple functions such as rectified linear units 

(ReLU) to reduce the computing cost. The MLP algorithm is considered as a primitive 

model for deep learning with its extensible hidden layer architecture. When adequate 
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hidden layers are added to the MLP model, the weights are optimized by the training data 

and yield a reasonable mapping between the input and the output.   

From the MLP model, deep learning advances by introducing new layers to improve 

its capacity of data-driven feature learning and extraction when the dataset goes through 

its deep architecture during training. The significant change of the current deep learning 

algorithms compared to the conventional MLP model is the data representation driven by 

training. The traditional machine learning methods highly relies on the hand-crafted 

training data, which means the learnable patterns from the raw data must be extracted by 

expertise. This feature extraction procedure is usually laborious and time consuming thus 

it is considered as the “black art” of machine learning [8], and partly makes the 

performance of machine learning unreliable.  In contrast, deep learning uses a part of its 

architecture (e.g., the convolutional layers for image pattern learning) to learn optimal 

features directly from the raw data with minimum processing and without human 

intervention. By this automatic latent data pattern discovery capacity, deep learning 

techniques provider the state-of-the-art pattern extraction method to build the high-level 

complex data representation from for basic, simple representations. For example, medical 

image recognition needs to extract the representation of edges, contours, and corners of the 

interested pixel patterns from the raw image, and these basic features can be eventually 

combined in the complex representation to let the machine to discriminate the significant 

medical patterns in a certain use case. 

2.1.2 Optimization of Deep Neural Network 

Based on the topology of the artificial neural network (ANN) and the perceptron 

algorithm, a trained single layer network with N neurons can predict an output by the linear 

combination of the neurons: 

                  𝑓𝑓(𝑥𝑥) = 𝑣𝑣𝑖𝑖𝜎𝜎�∑ �𝑤𝑤𝑖𝑖
𝑇𝑇𝑥𝑥 + 𝑤𝑤0,𝑖𝑖�𝑁𝑁−1

𝑖𝑖=1 � = ∑ 𝑣𝑣𝑖𝑖𝜎𝜎�𝑤𝑤𝑖𝑖
𝑇𝑇𝑥𝑥 + 𝑤𝑤0,𝑖𝑖�𝑁𝑁−1

𝑖𝑖=1                      (2.4) 

where 𝑣𝑣𝑖𝑖 represents the weights of N neurons. And all trainable parameters of the whole 

network can be summarized as: 

                                           𝜃𝜃 = �𝑣𝑣0,𝑤𝑤0,0,𝑤𝑤0, … , 𝑣𝑣𝑁𝑁 ,𝑤𝑤0,𝑁𝑁,𝑤𝑤𝑁𝑁�
𝑇𝑇

                                     (2.5) 
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where 𝜃𝜃 represents all trainable parameters in the network. The training goal of the network 

is to is to find the optimal 𝜃𝜃 to minimize the difference of the predicted value  𝑓𝑓(𝑥𝑥) and 

the ground true value 𝑓𝑓(𝑥𝑥) bounded by �𝑓𝑓(𝑥𝑥) − 𝑓𝑓(𝑥𝑥)� < 𝜖𝜖. The optimization method for 

deep learning is gradient descent. To compute the gradient, we define a loss function 

ℒ(𝜃𝜃) to optimizing the parameter set 𝜃𝜃  by minimizing ℒ(𝜃𝜃)~�𝑓𝑓(𝑥𝑥) − 𝑓𝑓(𝑥𝑥)� with the 

back-propagation algorithm.  

Given a layer with a linear activation  𝑦𝑦� = 𝑓𝑓(𝑥𝑥) = 𝑊𝑊𝑥𝑥 as a matrix multiplication 

where 𝑦𝑦 ∈ ℝ𝑚𝑚, we use a L2 loss function presented as: 

                      ℒ(𝜃𝜃) = 1
2
�𝑓𝑓(𝑥𝑥) − 𝑦𝑦�

2
2

= 1
2
‖𝑊𝑊𝑥𝑥 − 𝑦𝑦‖22                                      (2.6) 

To update the parameter set 𝜃𝜃 = 𝑊𝑊, we take the partial derivative ℒ over 𝑊𝑊: 

                                𝜕𝜕ℒ
𝜕𝜕𝜕𝜕

= 𝜕𝜕ℒ
𝜕𝜕�̂�𝑓

 𝜕𝜕�̂�𝑓
𝜕𝜕𝜕𝜕

= (𝑊𝑊𝑥𝑥 − 𝑦𝑦)(𝑥𝑥𝑇𝑇)                                                     (2.7) 

using the chain rule. Then the final weight update is obtained as: 

                                 𝑊𝑊𝑗𝑗+1 = 𝑊𝑊𝑗𝑗 + 𝜂𝜂(𝑊𝑊𝑗𝑗𝑥𝑥 − 𝑦𝑦)𝑥𝑥𝑇𝑇                                                        (2.8) 

where 𝜂𝜂 is the learning rate to determine how much the update will be, j is the index of 

the iteration when the update of the weights occur. 

If we extend the network structure from one layer to three layers, and we still use 

the linear activations in each layer, the predicted output is presented as: 

                                𝑦𝑦� = 𝑓𝑓3 �𝑓𝑓2 �𝑓𝑓1(𝑥𝑥)�� = 𝑊𝑊3𝑊𝑊2𝑊𝑊1𝑥𝑥                                                   (2.9) 

and the corresponding loss function is revised as: 

                             ℒ(𝜃𝜃) = 1
2
�𝑓𝑓3 �𝑓𝑓2 �𝑓𝑓1(𝑥𝑥)�� − 𝑦𝑦�

2

2
= 1

2
‖𝑊𝑊3𝑊𝑊2𝑊𝑊1𝑥𝑥 − 𝑦𝑦‖22           (2.10) 

We collapse the weights of all three layers into a single notation 𝜃𝜃 representing all trainable 

parameters 𝜃𝜃 = {𝑊𝑊1,𝑊𝑊2,𝑊𝑊3} . When the network is trained, the 𝜃𝜃  can be updated by 

gradient descent using backpropagation, i.e., to compute the gradient from the output layer 

towards the input layer. At first, we compute the gradient of the last layer W3: 

                 𝜕𝜕ℒ
𝜕𝜕𝜕𝜕3

= 𝜕𝜕ℒ
𝜕𝜕�̂�𝑓3

 𝜕𝜕�̂�𝑓3
𝜕𝜕𝜕𝜕3

= (𝑊𝑊3𝑊𝑊2𝑊𝑊1𝑥𝑥 − 𝑦𝑦)(𝑊𝑊2𝑊𝑊1𝑥𝑥)𝑇𝑇                                         (2.11) 



 

13 

then we compute the gradient of the second layer 𝑊𝑊2 by applying the chain rule twice: 

                𝜕𝜕ℒ
𝜕𝜕𝜕𝜕2

= 𝜕𝜕ℒ
𝜕𝜕�̂�𝑓3

 𝜕𝜕�̂�𝑓3
𝜕𝜕𝜕𝜕2

= 𝜕𝜕ℒ
𝜕𝜕�̂�𝑓3

 𝜕𝜕�̂�𝑓3
𝜕𝜕�̂�𝑓2

 𝜕𝜕�̂�𝑓2
𝜕𝜕𝜕𝜕2

= 𝑊𝑊3
𝑇𝑇(𝑊𝑊3𝑊𝑊2𝑊𝑊1𝑥𝑥 − 𝑦𝑦)(𝑊𝑊1𝑥𝑥)𝑇𝑇                  (2.12) 

finally, we compute the gradient of the first layer W1 by applying the chain rule three 

times:  

  𝜕𝜕ℒ
𝜕𝜕𝜕𝜕1

= 𝜕𝜕ℒ
𝜕𝜕�̂�𝑓3

 𝜕𝜕�̂�𝑓3
𝜕𝜕𝜕𝜕1

= 𝜕𝜕ℒ
𝜕𝜕�̂�𝑓3

 𝜕𝜕�̂�𝑓3
𝜕𝜕�̂�𝑓2

 𝜕𝜕�̂�𝑓2
𝜕𝜕𝜕𝜕1

= 𝜕𝜕ℒ
𝜕𝜕�̂�𝑓3

 𝜕𝜕�̂�𝑓3
𝜕𝜕�̂�𝑓2

 𝜕𝜕�̂�𝑓2
𝜕𝜕𝑓𝑓1�

 𝜕𝜕𝑓𝑓1
�

𝜕𝜕𝜕𝜕1
= 𝑊𝑊2

𝑇𝑇𝑊𝑊3
𝑇𝑇(𝑊𝑊3𝑊𝑊2𝑊𝑊1𝑥𝑥 − 𝑦𝑦)(𝑥𝑥)𝑇𝑇   (2.13) 

Note that the above back-propagation procedure for computing the gradients of each layer 

is also applicable to non-linear activation functions, which is illustrated in Figure 5. 

 

Figure 5: Graphical Overview of a DNN. 

A neural network can be trained by the feedforward and back-propagation procedure 

illustrated in Figure 4. However, a deep neural network (i.e., a neural network with many 

hidden layers) cannot be effective trained unless some technical issues are solved. One 

important factor is the selection of activation functions. In deep learning, unlike the 

classical bounded activations such as the sigmoid function (σ(x)), the hyperbolic tangent 

function (tanh (x)), and the sign function, the typical examples of the activations for deep 

learning are the rectified linear unit function (ReLU) and Leaky ReLU [5]. 

 

 

                                 ReLU(x) = � 𝑥𝑥  𝑠𝑠𝑓𝑓 𝑥𝑥 ≥ 0
0          𝑒𝑒𝑙𝑙𝑠𝑠𝑒𝑒

 

                                 LReLU(x) = � 𝑥𝑥 𝑠𝑠𝑓𝑓 𝑥𝑥 ≥ 0
𝛼𝛼𝑥𝑥    𝑒𝑒𝑙𝑙𝑠𝑠𝑒𝑒

                                                       （2.14） 
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The ranges and boundaries of these activation functions are illustrated in Figure 6. 

 

Figure 6: Comparison of Different Activations [5]. 

As shown in Figure 6, the new activations for deep learning (e.g., ReLU and LReLU) 

are convex and have a large range with non-zero derivatives for the convenience to 

compute the gradients through the deep hidden layers during back-propagation. This design 

provides a feasible solution for the gradient descent optimization by repeatedly applying 

the chain rule of many multiplications of partial derivatives (Figure 2.5) through a deep 

network architecture. One typical problem of gradient descent optimization is that if the 

gradients at several layers are less than 1, it will cause a cascade effect on the entire gradient 

decays dramatically, or gradient vanishing. If too many gradients from the neuron become 

zero, the corresponding neurons will lose the capacity as a classifier if the decision 

boundary is set to zero. This numeric computation issue used to be a main obstacle for deep 

neural network optimization until the non-saturating derivatives are introduced. Note that 

the universal approximation theorem still holds for a single hidden layer with ReLU as the 

activation [9]. 

A defect of using ReLU as the activation is that the function output is not 

differentiable throughout the entire domain. When 𝑥𝑥 = 0, the function does not have a 

unique gradient. For the gradient descent optimization, an important property of the 

gradient is that it will point towards the direction of the steepest ascent. In other words, the 

optimization algorithm will follow the opposite direction to minimize the function. If the 
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function is differentiable, this direction is θ unique. However, if the constraint is released, 

i.e., we allow multiple directions leading to the extremum, we can apply the sub-gradient 

theory [10] (i.e., at least one sub-gradient towards the optimum) that the gradient descent 

algorithms are still applicable to the optimizing of the deep networks. Furthermore, the 

sub-gradient theory provides the basis of many gradient descent algorithms such as 

stochastic gradient descent (SGD), Nesterov accelerated gradient (NAG), RMSprop, 

Adagrad, and Adam [11]. 

 

• Stochastic gradient descent: stochastic gradient descent or SGD is the basic 

optimization algorithm for deep learning. It is derived from the batch gradient 

descent or Vanilla gradient descent algorithm to improve computation efficiency. 

Let θ be all the trainable parameters or the weights, batch gradient descent uses the 

entire training set to a single update of the weights:                                                    

                                  θ = θ − η ∙ ∇𝜃𝜃𝐽𝐽(𝜃𝜃)                                                      (2.15) 

where η is the learning rate, and ∇𝜃𝜃𝐽𝐽(𝜃𝜃) is the inverse of the objective function to 

compute the gradient using backpropagation. It is obvious that this algorithm is 

inefficient and expensive given the training set is big. In comparison, stochastic 

gradient descent uses a sample from the entire training set to perform update each 

time. Given the training set is divided into 𝑠𝑠 samples, the weights are update by 

sample 𝑠𝑠 is presented as: 

                                                θ = θ − η ∙ ∇𝜃𝜃𝐽𝐽(𝜃𝜃; 𝑥𝑥(𝑖𝑖);𝑦𝑦(𝑖𝑖))                                     (2.16)  

Compared with the batch gradient descent, SGD just uses a small portion of 

the training data to update the weights. It performs frequent updates with much 

higher variance during the update with a heavily fluctuating way. SGD allows the 

function to jump to a new and better local minimum with the risk to complicate the 

convergence to the exact minima. Therefore, choosing the proper learning rate η is 

important to SGD but given a complex, non-convex function, it is likely to miss the 
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true minima value by such a fluctuating process. An improvement called mini-batch 

gradient descent is introduce: 

                                      θ = θ − η ∙ ∇𝜃𝜃𝐽𝐽(𝜃𝜃; 𝑥𝑥(𝑖𝑖:𝑖𝑖+𝑛𝑛);𝑦𝑦(𝑖𝑖:𝑖𝑖+𝑛𝑛))                        (2.17)  

where the update is performed by n training example from a mini batch. The mini-

batch gradient descent algorithm reduces the variance of each update and makes 

the convergence smooth and efficient. 

In general, the SGD algorithms face many challenges. First, it is difficult to 

find the proper learning rate. Deep neural networks are not convex function. The 

objective function is to find the optimal local minima instead of the global 

minimum. A too small learning rate will lead to slow convergence, while a too large 

learning rate will let the function miss the minimum or even let the function diverge. 

Second, the learning rate cannot be a constant value given different stage of the 

training. The deep learning loss function is non-convex therefore it is vulnerable to 

some suboptimal local minima. The research by Dauphin et al. argues that it is more 

difficult to let the function to walk out from saddle points than from local minima 

when it reaches a point surrounded by a plateau of the same loss [12]. As a fixed 

learning rate is notorious to SGD, a learning schedule with a series of values is set 

before the optimization for different stage of learning when a threshold is triggered. 

However, a pre-defined set of values is unable to adapt to all new dataset 

characteristics. 

 

• Nesterov accelerated gradient (NAG): Since SGD is vulnerable to walk out from 

ravines where the surface curves in a particular direction than others. This is the 

typical situation on a function surface where the curve decreases more rapidly in 

one dimension than the others [13]. To solve this problem, we can add the 

momentum method to let the gradient partly keep its previous direction. Thus, the 

optimization algorithm can be speeded up in the proper directions with a gentle but 

consistent gradient. The gradient descent with momentum can be present as: 

                                     𝑣𝑣𝑡𝑡+1 = μ𝜈𝜈𝑡𝑡 − η∆ℓ(𝜃𝜃)                                               (2.18)  



 

17 

The effect of the gradient (the last term on the right) is to increment the 

previous velocity. In a standard SGD, the optimization yields a very large gradient 

at the beginning, so the momentum is small. Once the gradient becomes very small 

or disappears, the learning parameters or weights are likely to be stuck in a ravine 

and the momentum can be smoothly raised to a large value (e.g., 0.9 or more). The 

SGD with momentum can help the learning continue to converge by crossing the 

ravine which can cause divergent oscillations with a standard SGD. However, the 

standard momentum method first computes the gradient at the current location and 

then takes a big jump in the direction of the updated accumulated gradient. To 

improve the SGD momentum method, a new method called gradient descent with 

Nesterov momentum is proposed to further correct the gradient vector direction. 

                                                𝑣𝑣𝑡𝑡+1 =  μ𝜈𝜈𝑡𝑡 − η∇ℓ(𝜃𝜃 + 𝜇𝜇𝑣𝑣𝑡𝑡) 

                                                  𝜃𝜃𝑡𝑡+1 = 𝜃𝜃𝑡𝑡 + 𝜈𝜈𝑡𝑡+1                                                          (2.19) 

where the gradient is not only determined by the current parameter 𝜃𝜃𝑡𝑡, but is also 

adjusted by a correction term. The NAG method helps to keep the gradient term in 

the right direction. 

 

• Adaptive gradient algorithm (AdaGrad): Adaptive gradient algorithm or AdaGrad 

is a modified stochastic gradient descent algorithm that can adaptively change the 

learning rate for each parameter [14]. In general, the AdaGrad algorithm follows 

two principles: to increase the learning rate if the parameters are sparser, and to 

decrease the learning rate if the parameters are less sparse. By adapting the learning 

rate with this strategy, AdaGrad improves the learning convergence compared to 

standard SGD particularly when the data is sparse, and the sparse parameters 

contain more information. The AdaGrad algorithm sets a base learning rate η, and 

η is multiplied with the elements of a vector {𝐺𝐺𝑗𝑗,𝑗𝑗}. And {𝐺𝐺𝑗𝑗,𝑗𝑗} is the diagonal of the 

outer produce matrix G = ∑ 𝑙𝑙𝜏𝜏𝑙𝑙𝜏𝜏𝑇𝑇𝑡𝑡
𝜏𝜏=1 , where 𝑙𝑙𝜏𝜏 = ∇𝑄𝑄𝑖𝑖(𝑤𝑤) is the gradient at the 
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iteration τ. The diagonal is given by 𝐺𝐺𝑗𝑗,𝑗𝑗 = ∑ 𝑙𝑙𝜏𝜏,𝑗𝑗
2𝑡𝑡

𝜏𝜏=1 . The weight is updated after 

each iteration based on both the gradient and the diagonal vector.                                                 

                                       w ≔ w − ηdiag(G)−
1
2 ∘ 𝑙𝑙                                                (2.20) 

and the update of each weight is written as: 

                                       w𝑗𝑗 ≔ w𝑗𝑗 −
𝜂𝜂

�𝐺𝐺𝑗𝑗,𝑗𝑗
𝑙𝑙𝑗𝑗                                                            (2.21) 

From the above formula, each {𝐺𝐺𝑗𝑗,𝑗𝑗} yields a scaling factor for the learning rate 

that applies to a single weight 𝑤𝑤𝑖𝑖, �𝐺𝐺𝑖𝑖 = �∑ 𝑙𝑙𝜏𝜏2𝑡𝑡
𝜏𝜏=1  is the ℓ2 norm of the previous 

gradients, so extreme weight updates will be suppressed, while small weight 

updates will be assigned to a higher learning rate. 

 

• Root mean square propagation (RMSProp): Root Mean Square Propagation or 

RMSProp is another method to adaptively change the magnitude of the gradient 

during learning. If we optimize the neural network by the full batch learning form, 

we can measure the sign of the gradient by the resilient backpropagation or RProp 

algorithm, where the learning rate can be adjusted by observing the sign of the 

gradient, so that the learning can escapes from the plateaus with tiny gradients 

quickly. The drawback is that the weights are updated with the same magnitude. 

The learning is likely to diverge too early thus it results in underfitting. To 

overcome this limitation, we can adapt the learning rate by the root mean square 

propagation or RMSProp. RMSProp divides the learning rate for each of the 

parameters by evaluating the weight of each parameter by comparing with the root 

mean square (RMS) of the magnitudes of recent gradients. The parameters of the 

current step (t) are determined by the weights of last step and a forgetting factor:  

                                     𝑣𝑣(𝑤𝑤, 𝑡𝑡) ≔ 𝛾𝛾𝑣𝑣(𝑤𝑤, 𝑡𝑡 − 1) + (1 − 𝛾𝛾)(∇𝑄𝑄𝑖𝑖(𝑤𝑤))2                        (2.22) 

and the parameters are updated as: 

                               𝑤𝑤 ≔ 𝑤𝑤 − 𝜂𝜂
�𝑣𝑣(𝑤𝑤,𝑡𝑡)

                                                                        (2.23) 
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Therefore, RMSProp can effectively adapt the learning rate for both full-batch 

learning or mini-batch learning as it overcomes the limit of resilient 

backpropagation (or RProp) only by the sign of the gradient. 

 

• Adaptive Moment Estimation (Adam): Adaptive moment estimation, or Adam, is 

an improved optimization method based on RMSProp proposed by Diederik 

Kingma and Jimmy Ba [15].  Adam uses both the averages of the gradients and the 

second moments of the gradients to estimate the learning rate for the next iteration. 

Given the learning weights 𝑤𝑤(𝑡𝑡) and the loss function 𝐿𝐿(𝑡𝑡)  at the t iteration, the 

weight update by Adam is given by: 

                                       𝑚𝑚𝑤𝑤
(𝑡𝑡+1) ≔ 𝛽𝛽1𝑚𝑚𝑤𝑤

(𝑡𝑡) + (1 − 𝛽𝛽1)∇𝑤𝑤𝐿𝐿(𝑡𝑡) 

                                         𝑣𝑣𝑤𝑤
(𝑡𝑡+1): = 𝛽𝛽2v𝑤𝑤

(𝑡𝑡) + (1 − 𝛽𝛽2)�∇𝑤𝑤𝐿𝐿(𝑡𝑡)�
2
                                 (2.24) 

where the estimate of gradient and the second moment is given by: 

                                                𝑚𝑚�𝑤𝑤 = 𝑚𝑚𝑤𝑤
(𝑡𝑡+1)

1−𝛽𝛽1
𝑡𝑡+1  and 𝑣𝑣�𝑤𝑤 = 𝑣𝑣𝑤𝑤

(𝑡𝑡+1)

1−𝛽𝛽2
𝑡𝑡+1                               (2.25) 

And the update of the weight in the next iteration (t+1) is given by: 

                                                𝑤𝑤(𝑡𝑡+1) ≔ 𝑤𝑤(𝑡𝑡) − 𝜇𝜇 𝑚𝑚�𝑤𝑤
�𝑣𝑣�𝑤𝑤+𝜖𝜖

                                         (2.26) 

where 𝜖𝜖 is a small scalar to prevent the denominator from becoming 0, and 𝛽𝛽1 and 

𝛽𝛽2 are the forgetting factors respectively for the gradient vector and for the gradient 

vector of the second moments. The Adam optimizer is widely used for multiple 

learning tasks such as image learning and natural language learning. 

 

Other optimization algorithms include natural gradient descent, Kalman-based 

stochastic gradient descent (kSGD) and second-order methods, etc. [9, 16], but they are 

mainly used for research purposes. 
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2.1.3 Convolutional Neural Network 

Convolutional neural networks (CNN) are the deep learning architecture of image 

processing. The most important structure of CNN includes the convolutional layer and the 

pooling layer. A convolutional layer is the basic component of the CNN that mainly 

performs feature extraction by combining the linear operation (convolution) and nonlinear 

operation (activation function). A CNN can have one or many convolutional layers given 

different needs of the task. It uses local connectivity on the raw data to reduce the storage 

memory by decreasing the number of parameters [6]. For example, the 50 X 50 image has 

2,500 pixels. When we apply the convolutional kernels (or filters) on the raw image, only 

the meaningful features are extracted as a collection of local pixel patches. In additional, 

the convolution operation can be applied to one-dimensional time series data as a collection 

of local signal segments. The one-dimensional convolution is presented below, where x is 

the input signal and w are the convolutional kernel. 

                                            𝐶𝐶1𝑑𝑑 = ∑ 𝑥𝑥(𝑎𝑎)𝑤𝑤(𝑡𝑡 − 𝑎𝑎)∞
𝑎𝑎=−∞                                              (2.27) 

For image processing, we use the two-dimensional convolution. The input X is a 2-

D grid recording the value of pixels of the image and K as the convolutional kernel (or 

filter). Then we use one or more filters as smaller grids to scan the entire input to extract 

feature maps. 

                                            𝐶𝐶2𝑑𝑑 = ∑ ∑ 𝑋𝑋(𝑚𝑚,𝑠𝑠)𝐾𝐾(𝑠𝑠 − 𝑚𝑚, 𝑗𝑗 − 𝑠𝑠)𝑛𝑛𝑚𝑚                              (2.28) 

Note that the convolution operation also improves parameter sharing because all 

filters slide across the whole input with the same strike. The output of each convolution 

operation is the summation of the element-wise product of the filter and the sub-matrix of 

the input scanned by the filter. By repeating this procedure with different convolutional 

filter, the image patterns such as edges, contours, and corners are extracted by different 

filters to form the feature representation and to skip the irrelevant spatial noise such as 

the background image and the location of the relevant patterns. 

A CNN usually connects the output of one or several convolution layers to a 

pooling layer.  A pooling layer performs subsampling to aggregate the extracted features 

to reduce the network parameters. Figure 6 illustrates the classical CNN architecture 
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originated from AlexNet, the breakthrough of CNN-based architecture for image 

recognition in 2012 [17]. 

 

Figure 7: Convolutional Operation by a 3 X 3 Filter [5]. 

When comparing the CNN architecture in Figure 6 with the MLP in Figure 2.3, it is 

easy to find that the fully connected layers in a CNN have MLPs. On the top of the fully 

connected layers, CNN applies the convolution layer + pooling layer structure for 

automatic feature capturing. This CNN architecture lets the deep learning model capable 

of go through the whole machine learning pipeline from feature extraction to prediction / 

classification. In medical image, this full-stack deep learning model provide the 

“expertise-free” solution by saving the time and effort to hire medical specialist to extract 

learnable features for the downstream machine learning. Hence after CNN, many 

researchers believe the “hand-crafting” feature extraction step have become unnecessary 

and the machine learning process has turned to a totally data-driven manner in the age of 

deep learning. 

 

• Convolutional layers in CNN: In image processing, convolutional layers are the 

main component for a convolutional neural network, or CNN. A convolution layer 

applies a series of filters to perform the summation of the products of the element-

wise multiplication between a filter and the corresponding image patch over the 

image. Though the convolution technique is designed for two-dimensional input 

data, it can easily extend to the multi-dimensional data.  If the convolution filter is 

designed to detect a particular type of image patterns such as edges and angles, the 

systematically use a serial of convolutional filters can effectively collect the 

common features of a special image patterns and then pipeline these features to 
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fully connected neural layers for multiple machine learning tasks such as 

classification, labeling, object detection, and image pattern segmentation, etc. Note 

that the convolutional layers are not only applied to the input data (e.g., two-

dimensional gray scale image, or three-dimensional RGB color image), but they 

can also be applied to the activation output of the lower layers. The stacking of the 

convolutional layers helps to build a model for the hierarchical decomposition of 

the input image. The convolutional filters on the input raw pixels extract the low-

level features, such as lines and edges, then the convolutional filters in the deep 

layers may extract and combine the lower-level features such as features that 

comprise multiple lines to express shapes. This cascading process continues until 

the complex image patterns are captured. The abstraction of features to high and 

higher orders as the depth of the CNN network is increased.  In a particular 

convolutional layer l, the parameters include the convolutional filter size f, the 

padding p, and stride s that determines how far the convolutional filter should move, 

can the channel of the filter nc. Given both the input and output are square matrices, 

the output dimension of is given by: 

                                                   𝑠𝑠(𝑙𝑙) = �𝑛𝑛
(𝑙𝑙−1)+2𝑝𝑝(𝑙𝑙)−𝑓𝑓(𝑙𝑙)

𝑠𝑠(𝑙𝑙) + 1�                                         (2.29) 

An example of the convolutional layer operation by a 3x3 convolutional filter 

on a 9x9 image in a patch of the image is shown in Figure 2.9. Note that the there 

are two types of convolutions for image processing: valid convolution and same 

convolution. The valid convolution allows the first two dimensions of the matrices 

to reduce as the data passed through the convolutional layers. On the contrary, the 

same convolutional applied padding to keep the first two dimensions unchanged. 

The advantage of using same convolution is that it can simplify the computation 

and improve the effect of learning for a very deep CNN architecture. 
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Figure 8: Convolution Operation on an Image Patch. 

Figure 9 demonstrates the use of a 3-by-3 convolutional filter 

�
1 1 1
0 0 0
−1 −1 −1

� to extract the vertical edges from a gray scale image, and another 

3-by-3 convolutional filter �
1 0 −1
1 0 −1
1 0 −1

� to extract the horizontal edges. 

 

Figure 9: Extract Edges by Convolutional Layers. 

• Pooling layers in CNN: The main function of using pooling layers is to perform a 

merging operation to condense the learnable features in a smaller region of the 
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matrices. There are two common pooling methods: maximum pooling and average 

pooling. Maximum pooling is used more frequently because it simplifies find the 

maximum value among the patch to same runtime. The hyperparameters of the 

pooling operation includes the filter size f and the stride s, and given the input is a 

square matrix, the dimension of the output can be computed by  �𝑛𝑛
(𝑙𝑙−1)−𝑓𝑓(𝑙𝑙)

𝑠𝑠(𝑙𝑙) + 1�  ×

 �𝑛𝑛
(𝑙𝑙−1)−𝑓𝑓(𝑙𝑙)

𝑠𝑠(𝑙𝑙) + 1�  × 𝑠𝑠𝑐𝑐. 

Starting from the LeNet by Yann LeCun [18], the combination of the 

convolutional layers and pooling layers forms the basic structure to reduce the 

dimension of the feature maps that eventually leads to the desired dimension for 

different machine learning tasks. We will discuss further in the following section 

when different types of convolutional networks are introduced. Figure 10 illustrates 

the output from different convolutional layers of a CNN trained by eight epochs. 

The model is trained for classify the images of horses. By permutating the 

convolution layer + pooling layers blocks to form a CNN model, the output from 

the lower layers highlights the edges as visual patterns, and these patterns are 

decomposed and abstracted by the higher-level layers to form the discriminative 

features for the fully connected layers, then are pipelined to the final output for 

classification or regression. 

 

Figure 10: Outputs of Convolutional Layers. 
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• Activation functions in CNN: The activation function is a component of the 

artificial neural networks to define the output of a node, or a layer of the network 

given a set of inputs to the layer. For deep learning, we need to use nonlinear 

functions as activations for the outputs of deep neural networks, because given a 

linear function ϕ(𝑣𝑣𝑖𝑖) = μ𝑣𝑣𝑖𝑖, where μ is the slope, the node or layer attached by 

ϕ(𝑣𝑣𝑖𝑖) is very difficult to fire if μ is negative. The common activation functions for 

classical neural networks are the sign function (sign(x)), the logistic function 

(sigmoid(x)), and the hyperbolic tangent function (tanh(x)). Their expressions and 

the corresponding derivative functions are listed below: 

             sign(x) = f(x) ≔ �
−1, 𝑠𝑠𝑓𝑓 𝑥𝑥 < 0
0, 𝑠𝑠𝑓𝑓 𝑥𝑥 = 0
1, 𝑠𝑠𝑓𝑓 𝑥𝑥 > 0

,𝑙𝑙𝑜𝑜 𝑠𝑠𝑠𝑠𝑙𝑙𝑠𝑠(𝑥𝑥) = 𝑓𝑓(𝑥𝑥) = |𝑥𝑥|
𝑥𝑥

  (𝑥𝑥 ≠ 0),𝑓𝑓′(𝑥𝑥) = 𝑓𝑓(𝑥𝑥)    (2.30) 

            sigmoid(x) = 𝑓𝑓(𝑥𝑥) = 1
1+𝑒𝑒−𝑥𝑥

 , 𝑓𝑓′(𝑥𝑥) = 𝑓𝑓(𝑥𝑥)(1 − 𝑓𝑓(𝑥𝑥))                                        (2.31) 

            tanh(x) = f(x) = (𝑒𝑒𝑥𝑥−𝑒𝑒−𝑥𝑥)
𝑒𝑒𝑥𝑥+𝑒𝑒−𝑥𝑥

 ,   𝑓𝑓′(𝑥𝑥) = 1 − 𝑓𝑓(𝑥𝑥)2                                                   (2.32) 

In addition, the CNNs for image processing often uses new activation 

functions such as Rectified Linear Unit (ReLU) and Leaky ReLU, which are given 

by: 

            ReLU(x) = f(x) = �0, 𝑓𝑓𝑙𝑙𝑜𝑜 𝑥𝑥 ≤ 0
𝑥𝑥,𝑓𝑓𝑙𝑙𝑜𝑜 𝑥𝑥 > 0 , 𝑓𝑓′(𝑥𝑥) = �0, 𝑓𝑓𝑙𝑙𝑜𝑜 𝑥𝑥 ≤ 0

1, 𝑓𝑓𝑙𝑙𝑜𝑜 𝑥𝑥 > 0                             (2.33) 

            Leaky ReLU(x) = f(x) = �0.01𝑥𝑥,𝑓𝑓𝑙𝑙𝑜𝑜 𝑥𝑥 < 0
𝑥𝑥,𝑓𝑓𝑙𝑙𝑜𝑜 𝑥𝑥 ≥ 0 ,𝑓𝑓′(𝑥𝑥) = �0.01, 𝑓𝑓𝑙𝑙𝑜𝑜 𝑥𝑥 < 0

1,𝑓𝑓𝑙𝑙𝑜𝑜 𝑥𝑥 ≥ 0       (2.34) 

Compared to the classical activation functions (i.e., sign, sigmoid, tanh, etc.), 

the ReLU and LeakyReLU are convex functions with large ranges with non-zero 

derivatives, which are suitable for using the gradient based optimization algorithms. 

The computation of the gradient of the layers in a deep neural network using the 

chain rule needs serial of multiplications of partial derivatives. If the operation 

along the chain has many values smaller than one, the final gradient will decay 

rapidly when it goes down to the following layers. Therefore, the non-saturating 

derivatives play an important role in solving the numerical issues such as vanishing 
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gradients in very deep network architectures. Furthermore, the neurons in the 

middle of the network do not loose their interpretation as a classifier if zero is 

considered as the decision boundary. The universal approximation theorem still 

holds even for a single-layer network using ReLU as the activation function [9]. On 

the other hand, using ReLU as the activation has some disadvantages. The ReLU 

function is not differentiable over its entire domain. When the input x=0, a broken 

point is found where the gradient cannot yield a unique value. When the network is 

optimized, one important property of the function gradient is that it points to the 

direction of the steepest ascent, thus the function value can be minimized by 

following the opposite direction of the gradient. When the function is differentiable, 

the direction is unique. If we relax this constraint and allow the gradient point to 

multiple directions leading to an extremum, we need to apply the sub-gradient 

theory [10]. The sub-gradient theory allows us to continue using the gradient 

descent algorithms to optimize the network as far as we can determine a sub-

gradient or find at least one instance pointing to the optimum. The ReLU function 

converts any value between 0 and -1, and x=0 to 0 as the function output for the 

descent operation, therefore the convergence is guaranteed for convex problems by 

using specific optimization programs like a fixed step size in the gradient descent 

[16]. This setting enables the running of the backpropagation for optimization with 

the non-differentiable functions as activations.  The above activation functions are 

plotted on Figure 11. 

 

Figure 11: Activation Functions for Neural Network. 
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• One-by-one convolution: The pooling operation is the main method to down-

sample the content of the feature maps for the CNN model architecture and to 

reduce the computation cost. Another problem for deep convolutional operations is 

to adjust the number of the feature maps by changing the depth of the network to 

reduce the runtime for the network computing. The one-by-one convolution is an 

ideal choice for channel-wise pooling, which decreases the number of feature maps 

whilst keeping their salient feature by manipulating the number of convolutional 

layers. For example, when a 9-by-9-by-256 feature map tensor is convolved with 

64 1-by-1 convolutional filter, by the formula: 

                                               𝑠𝑠(𝑙𝑙) = �𝑛𝑛
(𝑙𝑙−1)+2𝑝𝑝(𝑙𝑙)−𝑓𝑓(𝑙𝑙)

𝑠𝑠(𝑙𝑙) + 1�                                            (2.35) 

We can calculate the output tensor dimension is 9-by-9-by-64, thus the 

channels of the feature map are reduced from 256 to 64, and the number of 

parameters is reduced from 9 × 9 × 256 = 20,736 to (9 + 9 + 1) × 64 = 5,248. 

(Figure 12) 

 

Figure 12: One-by-one Convolution. 

The above one-by-one convolutional effectively reduces the computation 

complexity of the deep neural network, which is a common challenge to fine tune 

a CNN from high performance on prediction [19]. To learning complex features for 

sophisticated real-world problems, we need a CNN with high architecture. The 

depth of the input or the number of filters in the convolutional layers often increases 

the depth of the neural network thus leads to a dramatical growth of the number of 
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feature maps at the higher layers of the network. As the neural network becomes 

deeper, the deep feature channels make it difficult to optimize. Furthermore, the 

advanced network architectures such as the inception network [20] and the residual 

network [21] uses the one-by-one convolutional operation to concatenate the output 

feature maps from multiple convolutional layers, which will be discussed in the 

coming section. 

2.1.4 Classical Architecture of Convolutional Neural Network 

• LeNet: There are many classic architectures for building deep convolutional neural 

network architecture (CNN). CNN for image pattern learning can be traced back to 

the LeNet proposed by LeCun, Yann [22] for hand-written digit recognition. The 

LeNet is composed of five hidden layers with two convolutional + pooling modules 

and two fully connected layer respectively with 120 nodes and 84 nodes for abstract 

patterns learning. The LeNet uses a softmax layer to predict the probability of each 

possible digit by the activation output from the fully connected layer. The LeNet 

architecture is shown in Figure 13. 

 

Figure 13: Architecture of LeNet [23]. 

• Alex Net: The breakthrough of CNN for image pattern classification started from 

Alex Net by Alex Krizhevsky et al. in the 2012 ImageNet Large Scale Visual 

Recognition Challenge (LSVRC-2012) [17]. ImageNet is an image dataset 
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containing 14 million images [23]. The images have been hand-annotated with 

labels regarding the classes of the objects in the images and the corresponding 

bounding boxes to the relevant pixels of the objects. It contains more than 20,000 

classes of image. Each class has several hundred images. The ImageNet Large Scale 

Visual Recognition Challenge began in 2010. And in 2012, the Alex Net proposed 

by Alex Krizhevsky from University of Toronto achieved the top-5 classification 

accuracy of 84.7% (or top-5 error of 15.3%) compared to the accuracy of 73.8% 

achieved by the second-best entry [17]. The high classification accuracy makes the 

CNN-based network become the-state-of-the-art artificial intelligence technology 

for computer image processing. 

The architecture of Alex Net follows the convolutional layer design pattern 

of LeNet, where a convolutional layer is followed by a maximum pooling layer to 

from a block to build the feature maps. In addition, Alex Net also uses the same 

convolution technique, where zero paddings are added to the outputs of the 

convolution to maintain the original height and width of the tensor. The same 

convolution simplifies the CNN network computation. In the forward propagation, 

we keep the first two dimension unchanged and simply add more channels to the 

output tensor, which helps to expedite the computation for both forward and back 

propagation. The architecture of AlexNet is shown in Figure 14. 

 

Figure 14: Architecture of Alex Net [17]. 

Besides AlexNet, a similar CNN architecture call VGG (Visual Geometry 

Group) Net is also proposed by Karen Simonyan and Andrew Zisserman from 
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Oxford University in England in 2015 [24]. The VGG Net applies similar design 

strategy as Alex Net, and it also unifies the configuration for all convolutional 

layers and pooling layers. For the convolutional filters, VGG Net uses 3-by-3 

convolutional filters with stride=1 and same padding. For the pooling, it uses 2-by-

2 filters with stride=2. (Figure 15) The advantage of the VGG Net architecture is 

that it further simplified the CNN design by filters with the same size. According 

to the report, the performance of VGG Net on the ImageNet dataset is superior to 

Alex Net with the top-5 error of 7.5% ~ 7.3% [24]. The success of VGG Net let the 

CNN become better with less learning parameters leading to lower computation 

cost. Another improvement in VGG Net is that it uses the one-by-one convolutional 

filters to reduce the depth of the tensor such that the network computation can be 

simplified (Figure 15). 

 

Figure 15: Architecture of VGG-16 [24]. 

• Inception Network: From LeNet to Alex Net then to VGG Net, the performance of 

the CNN network improves as the network architecture becomes deeper, i.e., the 

more convolutional layers with more filters are attached to the CNN, the higher 

performance will be expected. On the other hand, with the support from parallel 

computing and GPU, the hardware improvement makes the computing for very 

deep neural network less expensive and convenient both in the view of economy 

and technology. Under this background, Christian Szegedy et al. proposed the 

Google Net architecture in 2015 based on the inception network architecture [20]. 
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The inception network uses a special inception block that is composed of 

convolutional layers with different filter sizes by the same convolution format with 

paddings to maintain the identical first two dimensions (i.e., height and width) of 

tensors going through the network. In addition, the inception block also uses the 

one-by-one convolution to manipulate the channels of the tensor so that not only 

can the shape of the tensors in different layers be effectively controlled, but also the 

computation cost of the network can be constrained in the acceptable scale. The 

inception block ends with a special channel concatenating layer, which 

concatenates the activation outputs of all convolutional layers in various sizes and 

passes the output to the next inception block. Another advantage of the inception 

architecture is that it can be attached with multiple Softmax layers to yield the CNN 

classification outputs given different tasks. This feature gives the inception network 

the flexibility to perform multiple labeling for the images of more than one 

interested pattern for various tasks such as object detection, motion detection, 

image segmentation, etc. The general inception network architecture is illustrated 

in Figure 16. 

 

Figure 16: Architecture of Inception Network [20]. 
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• Residual Network: The residual network is proposed by He K. et al. in 2015 to 

enable to train the very deep neural network [21]. As the neural network becomes 

very deep (e.g., more than 30 to 50 layers), the gradient flow across the layers 

becomes numerically unstable. Therefore, the training of a very deep neural 

networking is easy to diverge, which results in under-fitting. To alleviate the rapid 

decay of the gradient flow, the residual network adds a residual block to add extract 

input from more than one previous layer (Figure 17). Given the current layer l, the 

activation output a[l+1] of sequential network is presented as: 

                            𝑎𝑎[𝑙𝑙+1] = 𝑙𝑙(𝑧𝑧[𝑙𝑙+1]) = 𝑙𝑙(𝑊𝑊[𝑙𝑙+1]𝑎𝑎[𝑙𝑙] + 𝑏𝑏[𝑙𝑙+1])                              (2.36) 

where W is the model parameters, a[l] is the activation output of the previous layer 

(l-1), and b is the training bias. In a residual block, the output contains not only the 

output from the previous layer l-1, but also contains the output from the two 

previous layers, i.e., l-1 and l-2. So, the activation output a[l+1] for a residual block 

is revised as: 

            𝑎𝑎[𝑙𝑙+1] = 𝑙𝑙(𝑧𝑧[𝑙𝑙+1] + 𝑎𝑎𝑙𝑙−1) = 𝑙𝑙(𝑊𝑊[𝑙𝑙+1]𝑎𝑎[𝑙𝑙] + 𝑏𝑏[𝑙𝑙+1]) + 𝑙𝑙�𝑊𝑊𝑙𝑙𝑎𝑎[𝑙𝑙−1] + 𝑏𝑏[𝑙𝑙]�   (2.37) 

The advantage of the residual architecture is that it parallelizes the outputs of 

two previous layers to improve the gradient flow for optimizing the whole network 

when running backpropagation. According to the research by He K. et. al, they 

improved the top-5 error from 7.89% by Google Net to 4.49% by a 152-layer 

ResNet [21]. The drawback of the deep residual network is that it enormously 

increases the computation cost of network optimization, which makes the use of 

GPU and cluster computing necessary to a neural network from scratch. However, 

the ResNet can accommodate a huge number of convolutional filters throughout its 

deep structure, thus it provides a handy solution for transfer learning. (Figure 17) 
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Figure 17: Architecture of Residual Network [21]. 

• Autoencoder: Autoencoder uses a semi-supervised learning method to find the 

representations of the input from a lower dimensionality [25]. The autoencoder 

model first learns the features from the raw data input. By this strategy, it does not 

need to annotation of the training dataset, but to use the unsupervised learning (e.g., 

clustering) to add labels to the training data. Then the network is trained to make 

the prediction based on the result of unsupervised learning by optimizing the loss 

function such as ℒ(θ) = �𝑓𝑓(𝑥𝑥) − 𝑥𝑥�
2
2
. The ideal of autoencoder is successfully 

applied to CNN for motion detection [25-27]. 

• Generative Adversarial Network: Generative adversarial network, or GAN, is 

introduced by Ian Goodfellow et al. in 2014 [7]. It applies two neural networks to 

learn a representative distribution from the training dataset in competition with each 

other. The first network is called generative network or the generator (G) to 

generate the new data from a noise input. Given a training set X (e.g., images, 

documents, etc.), the generator G(X) takes the random noise input to produce fake 

data similar to those in the training set (real data) and pipeline the fake data to the 

second network, the discriminator (D). The task of the discriminator is to distinguish 
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the real data X against the fake data G(X) by the generator. In an ideal situation, the 

discriminator needs to learn the patterns from the real dataset X and not to be 

cheated by the generator, while the generator attempts to learn the true distribution 

of the training set X to provide similar fake data close to the true distribution. The 

two networks follow the game theory to compete and gradually improve their own 

capacity (Figure 18). 

 

Figure 18: Architecture of GAN. 

The well-trained GANs can render plausible and real-looking images, which 

is a potential approach to improve deep learning for medical images which the 

sample images are usually inaccessible [28].  In addition, a conditional GAN allows 

to encode particular patterns in the training process such that the images with 

desired properties can be generated [29].  Cycle GANs improve the GAN data 

generation to a particular domain, so that the newly generated data G(X) does not 

need to correspond to the images in the training set [30]. 

• Recurrent Neural Network: Recurrent neural network, or RNN, is the neural 

network to process data sequences with long term dependencies [31]. The recurrent 

networks introduce state variables that allow the cells to carry memory and 

essentially model any finite state machine. RNN is a multilayer perceptron (MLP) 

network connected by many recurrent loops to add feedback and memory to the 
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networks over time. It learns and generalizes across sequences of inputs rather than 

individual patterns. The recurrent loops hold the memory and allow an RNN to 

learn and generalize across sequences of inputs rather than individual patterns. An 

RNN uses the same set of weights at all time steps. In a specific hidden layer at step 

t, the hypothesis value is estimated by: 

                                    ℎ𝑡𝑡 = 𝜎𝜎(𝑊𝑊(ℎℎ)ℎ𝑡𝑡−1 + 𝑊𝑊(ℎ𝑥𝑥)𝑥𝑥|𝑡𝑡|)                                               (2.38) 

where 𝑊𝑊(ℎℎ) is the weight at the previous stage and 𝑊𝑊(ℎ𝑥𝑥) is the weight at the 

current stage, and the probability of the next stage is estimated by: 

                                  𝑙𝑙��𝑥𝑥𝑡𝑡+1 = 𝑣𝑣𝑗𝑗�𝑥𝑥𝑡𝑡, … , 𝑥𝑥1� = 𝑦𝑦�𝑡𝑡,𝑗𝑗                                                     (2.39) 

The extensions of RNN include long-short-term memory (LSTM) networks 

[32] and gated recurrent units (GRU) [33], which can model the explicit memory 

reading and writing memory transactions like a computer. 

• U-Net: U-net is a DNN architecture proposed by Olaf Ronneberger et al. for 

biomedical image segmentation in 2015 [34], and it currently becomes the common 

architecture for semantic segmentation. U-net is an enhanced fully convolutional 

network (or FCN) for semantic segmentation by J Long et al. in 2014 [35]. Unlike 

the conventional DNN using a sequential structure, U-net uses a U-shape 

architecture with an encoder network on one side and a decoder network on the 

other side, which are connected by a bridge component (Figure 19). In addition, the 

corresponding components of encoder side and the decoder side with the same 

output dimension have the skip connections. The skip connections provide extra 

information to the decoder to generate better semantic outputs. They also act as 

shortcuts to produce indirect flow of gradients to the lower layers in the 

backpropagation for network optimization thus help the whole architecture to learn 

better feature representation. The U-net architecture can be easily adjusted to fit 

different input and output requirements. Therefore, U-net becomes the common 

architecture for generative models like GAN. In our study, we mainly use the U-

net architecture to implement the generator of the proposed Ad Cycle GAN model.  
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Figure 19: Architecture of U-net [36]. 

• PatchGAN: PatchGAN is a DNN model introduced as a discriminator component 

for the Pix-2-Pix image translation GAN model 2016 [36]. Instead of computing a 

scalar as the output of the DNN, PatchGAN computes a 2D matrix as the output. 

The advantage of using PatchGAN as the discriminator is that this model produces 

the prediction on the local image patches instead of a single prediction for the whole 

images. Therefore, when it is optimized as the discriminator adversarially with 

generators, the more local details of multiple image patches improve the learning 

procedure leading to better results. Note the PatchGAN is usually combined with 

the residual network [21], thus the outputs of the features from the patches provide 

more gradients for backpropagation optimization. In our study, the PatchGAN 

consisting of residual modules is used as the basic structure of the discriminator. 

2.1.5 Advanced Techniques of Neural Networks 

In addition to the network architecture, there are some useful concepts and techniques 

to improve the robustness and performance of deep neural networks. Some of them are 

listed below. 
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• Data Augmentation: Data augmentation is a good technique to add extra variations 

to the training set given the common features of the sample data. The typical 

variation includes noise, changes in contrast, rotations, and translations etc.  This 

technique can increase the number of data points in the training set, which is 

particularly helpful for infrequent observations. In medical image processing, it is 

commonly difficult to acquire a large dataset with well-annotated labels. For 

example, Ronneberger et al. successfully applied the U-net with augmented data 

for classification and segmentation on a non-rigid deformation image dataset [34]. 

Recently, the new GANs are powerful to generated highly similarly data to improve 

the CNN performance on rear image datasets such as radiological images and 

histological images [37]. 

• Precision Learning: Precision learning is a machine learning strategy that includes 

known operators in the learning process [38]. It is not a conventional learning 

strategy which aims to learn the optimal representation. However, this approach is 

useful for signal processing in which a prior distribution is known, and an operator 

must be applied to the data processing pipeline. When the operator is embedded in 

the network architecture, not only is the training error further reduced, but also the 

required number of training samples can be decreased.  It is particularly useful for 

data-greedy machine learning algorithms like the deep neural networks. This 

technique effectively extends the use range of deep learning for most signal 

processing tasks given the gradient or sub-gradient is kept in the training. 

• Adversarial Examples: The adversarial examples can be generated by a well-trained 

GAN network. The adversarial examples can fix some weak spots which can by 

exploited by an attacker to lower the model performance [39]. In general, an 

attacker finds a perturbation 𝑒𝑒 such that the network prediction 𝑓𝑓(𝑥𝑥 + 𝑒𝑒) is diverted 

to a different class other than the true 𝑦𝑦. while keeping the magnitude of 𝑒𝑒 low. e.g., 

minimizing ‖𝑒𝑒‖22, and the attack is related to the type of the objective function. The 
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attack either generates noise that misleads the training the deep model, or to exert 

extra weights to the patterns guiding the model to the wrong direction [40]. 

• GAN Evaluation: Unlike other deep learning neural networks which are trained 

with a loss function until convergence, a GAN generator model is trained using a 

discriminator that learns to classify images as real or generated. Both the generator 

and the discriminator model are trained together to maintain an equilibrium. 

Therefore, there is no objective loss function used to train the generator, nor a way 

to objectively assess the progress of the training or the quality of the model from 

the loss. Instead, the GAN model uses a set of qualitative and quantitative methods 

to evaluate the performance of the GAN models based on the quality and diversity 

of the generated synthetic images [41]. The qualitative measures include rapid 

scene categorization by human judgement and nearest neighbors. And there are 

many  quantitative methods developed by different researchers: average log-

likelihood, coverage metric, inception score (IS), modified inception score (m-IS), 

mode score, AM score, Frechet inception distance (FID), maximum mean 

discrepancy (MMD), the Wasserstein critic, birthday paradox test, classifier two-

sample tests (C2ST), classification performance, boundary distortion, number of 

statistically-different bins (NDB), image retrieval performance, generative 

adversarial metric (GAM), tournament win rate and skill rating, normalized relative 

discriminative score (NRDS), adversarial accuracy and adversarial divergence, 

geometry score, reconstruction error, image quality measure, and low-level image 

statistics. 

In the original GAN paper by Goodfellow et al., they used the average Log-

likelihood method, which was referred as kernel estimation or Parzen density 

estimation, to summarize the quality of the generated images [7]. This method 

estimates how well the generator captures the probability distribution of images in 

the domain. This method is eventually found not to be effective for GAN evaluation 

[41]. Alternatively, there are two common methods for GAN evaluation: inception 

score (IS), and Frechet inception distance (FID). 
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Inception score (IS) is proposed by Tim Salimans, et al. in 2016. It is an 

objective metric for evaluating the quality of generated images, specifically 

synthetic images output by GAN models [42]. The IS score uses the pretrained 

Inception v3 model to classify the generated images and calculate the probability 

of the prediction for each class. The outputs are conditional probabilities given the 

generated images. Images that are classified strongly as one class over all other 

classes indicate a high quality. The conditional probability of all generated images 

in the collection should have a low entropy. The entropy is calculated as the 

negative sum of each observed probability multiplied by the log of the probability. 

The intuition here is that large probabilities have less information than small 

probabilities [43]. 

                                   𝑒𝑒𝑠𝑠𝑡𝑡𝑜𝑜𝑙𝑙𝑒𝑒𝑦𝑦 =  −∑𝑒𝑒𝑖𝑖 × log (𝑒𝑒𝑖𝑖)                                        (2.40) 

The conditional probability captures the interest in image quality. The 

marginal probability is applied to represent the probability distribution of all 

generated images. If generating various images is preferred, we use the marginal 

integral 𝑒𝑒(𝑦𝑦|𝑥𝑥 = 𝐺𝐺(𝑧𝑧))𝑑𝑑𝑧𝑧  as the entropy. These elements are combined by 

calculating the Kullback-Leibler divergence, or KL divergence: 𝐾𝐾𝐿𝐿(𝐶𝐶||𝑀𝑀) . It 

calculates the divergence between two distributions C and M, where C is the 

conditional distribution and M is the marginal distribution. 

              𝐾𝐾𝐿𝐿 𝑑𝑑𝑠𝑠𝑣𝑣𝑒𝑒𝑜𝑜𝑙𝑙𝑒𝑒𝑠𝑠𝑑𝑑𝑒𝑒 = 𝑒𝑒(𝑦𝑦|𝑥𝑥) × (log�𝑒𝑒(𝑦𝑦|𝑥𝑥)� − log�𝑒𝑒(𝑦𝑦)�)                (2.41) 

where 𝑒𝑒(𝑦𝑦|𝑥𝑥)  is the conditional probability for each image and 𝑒𝑒(𝑦𝑦)  is the 

marginal probability. We can summate the KL divergence over all images and 

average over all classes. Then the exponent of the result is calculated to give the 

final score. 

Another commonly used metric is the Frechet inception distance, or FID. FID 

is a metric that calculates the distance between feature vectors calculated for real 

and generated images. The score summarizes how similar the two groups are in 

terms of statistics on computer vision features of the raw images calculated using a 

pretrained image classifier. A Lower score indicates the two groups of images are 
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more similar or have more similar statistics. A 0 score indicates the two groups of 

images are identical. The FID score was proposed and used by Martin Heusel, et 

al., which is considered as an improvement of IS. The FID algorithm summates the 

activations of the coding layer of the pretrained network as a multivariate Gaussian 

based on the mean and covariance of the images. The outputs are used to compute 

the activations across the collection of real and general images. The Frechet 

distance (or Wasserstein-2 distance) represents the distance between the two 

distributions. A lower FID indicates better-quality images; conversely, a higher 

score indicates a lower-quality image, and the relationship may be linear. The FID 

score is computed with the formula below: 

                𝑑𝑑2 = ‖𝑚𝑚𝑢𝑢1 − 𝑚𝑚𝑢𝑢2‖2 + 𝑇𝑇𝑜𝑜(𝐶𝐶1 + 𝐶𝐶2 − 2 × �𝐶𝐶1 × 𝐶𝐶2)                     (2.42) 

where 𝑑𝑑2 is the FID score, 𝑚𝑚𝑢𝑢1 and 𝑚𝑚𝑢𝑢2 refer to the feature-wise means of the real 

and generated images. 𝐶𝐶1 and 𝐶𝐶2  are the covariance matrix for the real and 

generated feature vectors. 

 

The above discussion indicates that the DNNs currently offer many techniques for 

different problems on medical image processing, particularly the perceptual tasks. In the 

upcoming section, we will discuss the tasks of deep learning for medical imaging. 

2.2 Tasks of Deep Learning for Medical Imaging 

In this section, we will discuss the tasks of deep learning in medical imaging, which 

includes image pattern detection and recognition, image segmentation, image registration, 

computer-aided diagnosis, and image reconstruction. 

2.2.1 Image Pattern Detection and Recognition 
Image detection and recognition relates to the problem about detecting a certain 

pattern in a medical image. The conventional methods need a complex preprocessing 

pipeline to parse the volumetric patterns from the images before passing to the classifier. 

For example, a popular method before deep learning is marginal space learning by a 
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probabilistic boosting tree model [44]. The introduction of the deep neural makes this 

procedure more efficient for the convolutional layer of a neural network model can boost 

the cascade and simplify the model architecture.  

The current commonly used CNN-based algorithms for image pattern detection and 

recognition include the region-based convolutional neural networks (R-CNN) and the 

YOLO (You Only Look Once). The R-CNN is a family of techniques for addressing object 

localization and recognition. It was proposed by Ross Girshick in 2014, which covers R-

CNN, Fast R-CNN, and Faster-RCNN designed for object localization and object 

recognition [45]. The original R-CNN model is comprised of three modules: 

• The region proposal is used to generate and extract category-independent region 

proposals. e.g., the candidate bounding boxes. 

• The feature extractor applies a deep convolutional neural network to extract 

features from each candidate region. 

• The classifier is used to predict the features as one of the known classes. 

A computer vision technique is used to propose candidate regions or bounding boxes 

of potential objects in the image called selective search. The feature extractor used by the 

model is a pretrained AlexNet CNN. When the input image passes through the pretrained 

CNN model, it generates a feature map in a 4,096 vector that is fed to an SVM classifier 

for the final classification. The R-CNN is a straightforward application of CNN to object 

localization and recognition, but its cost for runtime is very high because the CNN-based 

feature extractor passes on each of the candidate regions generated by the region proposal 

algorithm. Thus later, the author further proposed the Fast R-CNN and Faster R-CNN to 

improve the original R-CNN performance. The Fast R-CNN is proposed as a single model 

instead of a pipeline to learn and output regions and classifications directly. The 

architecture of the model takes the photograph and a set of region proposals as input that 

are passed through a deep convolutional neural network. The output of the CNN is then 

interpreted by a fully connected layer then the model bifurcates into two outputs: one for 

the class prediction via a softmax layer, and another with a linear output for the bounding 
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box. The model is significantly faster to train and to make predictions, yet still requires a 

set of candidate regions to be proposed along with each input image [46,47].  For further 

improvement, the Faster R-CNN uses the architecture that accommodates both proposing 

and refining region proposals as part of the training process, referred as Region Proposal 

Network, or RPN. These regions are then used in concert with a Fast R-CNN model in a 

single model design. These improvements both reduce the number of region proposals and 

accelerate the test-time operation of the model to near real-time with then state-of-the-art 

performance. 

Another popular deep learning-based algorithm for object recognition is the YOLO 

family, or You Only Look Once by Joseph Redmon in 2016 [48]. The YOLO approach 

involves a single neural network trained end-to-end that takes a photograph as input and 

predicts bounding boxes and class labels for each bounding box directly. The technique 

involves a single deep convolutional neural network that splits the input into a grid of cells 

and each cell directly predicts a bounding box and object classification. The output is a 

series of candidate bounding boxes that are consolidated into a final prediction by a post-

processing step. After it was firstly introduced in 2016, there are three versions of the 

YOLO algorithm (i.e., YOLOv1, YOLOv2, and YOLOv3). YOLOv1 proposed the general 

architecture of the model. YOLOv2 refined the design and made use of predefined anchor 

boxes to improve bounding box proposal. Finally, YOLOv3 further refined the model 

architecture and training process. Although the accuracy of the models is close but not as 

good as Region-Based Convolutional Neural Networks (R-CNNs), they are popular for 

object detection because of their detection speed, often demonstrated in real-time on video 

or with camera feed input. 

The above object detection and classification algorithms have been successfully 

applied many research domains of medical imaging. For example, in the study domain of 

radiology image processing, Bier et al. use the deep neural network model to detect the 

invariant anatomical landmark for pelvic trauma surgery. They conclude that the deep 

reinforcement learning model can more efficiently detect the anatomical landmarks than 

the conventional search process. The new method can detect hundreds of landmarks in a 
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complete CT volume in a few seconds [49]. In another work, they use the region proposal 

convolutional neural network (R-CNN) to robustly detect tumors in mammographic 

images [50]. 

The deep learning-based detection and recognition are also applied in many other 

fields of medical imaging, such as histology and endoscopy diagnosis. For example, 

Aubreville et al. applies guided spatial transformer networks that refine the detection before 

the actual classification. In their next study, they use the convolutional neural network 

model to automatically detect images containing motion artifacts in confocal laser-

endoscopy images [51]. Another popular application filed is on the historical images. In 

digital pathology, the image data are usually generated with a certain staining and present 

significant challenges towards image pattern detections. The difficulties include 

background clutter, inhomogeneous intensity, touching or overlapping nuclei/cells, etc. 

[52-54]. 

2.2.2 Image Segmentation 

The image segmentation technology is an extension of the image recognition and 

classification in that it is the process of partitioning the images into multiple segments 

based on the output predictions of the classifiers. It is the process to give a label to every 

region of interest (ROI) in the whole image such that the ROIs with the shared label have 

some common characteristics. The goal of image segmentation is to simplify and or change 

the representation of the whole image into smaller pieces of pattern given the knowledge 

learned and represented by the machine learning classifiers (e.g., the deep neural 

networks).  

The image segmentation technology is greatly benefited from the recent development 

in deep learning. In the research of medical image segmentation, our purpose is to 

determine the outline of an organ, or some anatomical or histological structure as 

accurately as possible. Currently, the image segmentation is also dominated by 

convolutional neural networks (CNNs) because the CNN architecture is effective in 

capturing intricate structural patterns that is even difficult to well-trained experts. For 
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example, Holger Roth et al. proposed a CNN-based model called DeepOrgan for the 

segmentation of MRI images. They concluded that the DeepOrgan model is efficient and 

allows to detect organs robustly [55]. Florin Ghesu et al. propose a marginal space deep 

learning (MSDL) to build a processing pipeline to detect and segment for volumetric image 

parsing. The MSDL can perform anatomical pose estimation and boundary delineation 

together. It is more efficient because its probabilistic boosting trees are replaced using a 

neural network-based boosting cascade. Furthermore, the MSDL drives efficiency even 

further by replacing the search process by an artificial agent that follows anatomy to detect 

anatomical landmarks using deep reinforcement learning. The authors concluded that it 

could detect hundreds of landmarks in a complete CT volume in few seconds [56]. In other 

study by Moeskops et al. used a CNN model to perform MRI (Magnetic resonance 

imaging) image segmentation for different anatomical region of human brain [57]. Chen et 

al. applied a fully convolutional neural network to segment different organs from the dual 

energy computed tomography (DECT) data. By evaluation the segmentation performance 

on four abdominal organs (liver, spleen, left and right kidneys), the average Dice 

coefficient is 93% for the liver, 90% for the spleen, 91% for the right kidney and 89% for 

the left kidney [58].  Jeffrey Nirschl et al. used an AlexNet-based CNN to perform pixel-

level segmentation for cardiac histopathologic tissues and proved that the deep learning 

model outperforms the random forest model [59]. 

Early in 2004, Middleton et al. did an experiment with a hybridized model of 

combined with the neural networks and the active contour models to segment MRI images. 

They found that the deep neural network can effectively improve other models as the 

feature extractor. This finding suggests that revising conventional segmentation methods 

and fusing the available algorithms with deep learning in the end-to-end manner is the 

promising way to the 2D MRI images [60].  Fu et al. follow a similar idea by mapping the 

Frangi’s vesselness into a neural network. They demonstrate that their solution can adjust 

the convolution kernels in the first step of the algorithm towards the specific task of vessel 

segmentation in in ophthalmic fundus imaging [61]. 
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In addition, another interesting class of segmentation algorithm is the use of recurrent 

networks (RNN) for medical image segmentation. Poudel et al. applies a series of recurrent 

fully convolutional neural networks for multi-slice MRI cardiac image segmentation [62].  

Andermatt et al. reports a successful application of multi-dimensional gated recurrent units 

for the 3D brain MRI image segmentation [63]. 

2.2.3 Image Registration 

While the perceptual tasks of image detection and classification have been receiving 

a lot of attention to the applications of deep learning, image registration has not seen this 

large boost yet. Fortunately, there are several promising studies found in the latest literature 

that implies there are some opportunities to use deep learning for image registration. 

Image registration is the process to transform different sets of image data into an 

identical coordinate system [64]. In medical imaging, this process is often used as a 

preliminary step in other image processing applications. For example, it applies geometric 

transformations or local displacements to align medical images captured with different 

diagnostic modalities, such as MRI and SPECT to the reference image. Image registration 

enables people to compare common features in different images. For example, by 

designating different images captured by various diagnostic devices, the doctors can 

determine whether a tumor is visible in an MRI or SPECT image. 

One typical problem in point-based registration is to find good feature descriptors 

that allow correct identification of corresponding points. Wu et al. proposed an 

unsupervised framework using autoencoder by deep neural network to mine useful features 

from the MRI images of brains [64]. Compared to the existing image registration methods, 

the deep learning framework provides an end-to-end solution for fast processing with 

relatively low development cost.  Schaffert R. et al. improve the deep learning-based 

unsupervised method by using the registration metric as loss function for learning good 

feature representations for training [65]. Miao et al. used deep convolutional neural 

network (CNN) for both 2D and 3D radiological images by estimating the 3D pose directly 

from the 2D point features, and concluded that CNN can significantly improve the 
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robustness, capture range and computational runtime as an intensity-based method for 

image registration [66]. 

In addition, deep learning provides an effective solution for full volumetric 

registration. Yang et al. used a CNN-based deep learning model called the quicksilver 

algorithm to model a deformable registration (large deformation diffeomorphic metric 

mapping, LDDMM) and used a patch-wise prediction directly from the image appearance 

[67]. Another report by Liao et al. modeled the registration problem as a control problem. 

Their strategy is to use an agent and reinforcement learning for rigid registration of 

predicting the next optimal movement to align the new incoming image to the old ones 

[68]. This approach can also be applied to non-rigid registration with a statistical 

deformation model. In this use case, the actions are movements in the vector space of the 

deformation model. Obviously, agent-based approaches are applicable for point-based 

registration problems. Zhong et al. reported a study belonging to this type of application 

for intra-operative brain shift using imitation learning. This method can be easily further 

applied to the landmark detection of different brain regions in the MRI images [69]. 

2.2.4 Computer-aided Diagnosis 

Computer-aided diagnosis, or CAD in medical imaging, refers to the type of 

computer systems that assist the medical doctors in the interpretation of medical images. 

The digital images generated by X-ray, MRI, and ultrasound diagnostics provide a massive 

volume of objective information for the radiologist or other medical professionals to make 

the accurate diagnosis. On the other hand, the medical experts must analyze and evaluate 

the whole information collection comprehensively in a short time. The CAD systems can 

efficiently process the large number of digital images for typical appearances. It can also 

highlight the conspicuous sections or regions, such as the possible diseases and historical 

trauma, as the concrete evidence for the clinical decision made by the medical 

professionals. CAD is regarded as one of the most challenging problems in the field of 

medical image processing and deep learning. The success of deep learning in many pattern 

recognition applications gives excellent expectation for CAD. In computer-aided 
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diagnosis, we use the technology of artificial intelligence (AI) not merely as a supportive 

role to acquire and quantify clinical findings and evidence to the diagnosis but also to 

predict the complete diagnosis. Therefore, the decision procedure must be rigorous, and 

the result be reliable. A typical CAD system is comprised of four stages: pre-processing, 

feature extraction, feature selection, and classification. The three promising domains of 

deep learning for CAD include ultrasonic diagnosis, radiological diagnosis (MRI, CT, PET 

and X-ray), and procedure management and prediction [70]. 

Radiology diagnosis is the most common application in Computer-aided diagnosis. 

Diamant et al. used a transfer learning CNN to analyze chest radiographs consists of a large 

amount of routine radiologist information to classify 6 different pathologies with robust 

ROC AUC close to 90% [71]. Antropova N. used a CNN with the MIP (maximum intensity 

projections) images as input to perform automated MRI diagnosis [72]. Other CAD 

applications reported by current literature includes the diagnosis for fatty liver [73], 

prostate cancer [74], dry eye [75], Alzheimer disease [76], and breast cancer [77].  Salam 

et al. used the hybrid features combined with color and texture of the optic disc and the 

optic cup as the feature map to detect glaucoma in fundus images [78]. The optic disc is 

localized by employing support vector machine trained using local features extracted from 

the vessels in the eye [79]. For the automatic diagnosis of Alzheimer disease, a hybrid 

pattern comprised of clinical finding and image features was used for the multi-class 

classification for different types of the disease. The method was tested and evaluated by 

the Alzheimer disease neuro-image initiative (ADNI) dataset with promising accuracy 

[80]. 

For ultrasound-based diagnosis, Zhang et al. proposed deep neural network called 

BIRADS-SSDL that integrates clinically approved breast lesion characteristics as inputs 

for the semi-supervised deep learning (SSDL) for the automatic diagnosis based on a small 

dataset of ultrasound images. The model classification accuracy reaches 94.23% and is 

higher than the conventional model for ultrasound image classification (84.38%) [81]. 

Another study on the CADx for breast lesion used convolutional neural network (CNN) to 

detect and then classify the lesion region of interests (ROI). A dataset comprised of 579 
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benign breast lesion images and 464 malignant breast lesion images are used to evaluate 

the CNN model performance with satisfactory results [82]. 

Positron-emission tomography, or PET, is a technology of nuclear medicine that uses 

functional imaging technique to observe the metabolic processes in the body. PET is a 

state-of-art technology for the aid to the diagnosis of disease based on digital images, thus 

it also becomes one promising domain for deep learning. For example, to predict the 

prognosis of oropharyngeal squamous cell carcinoma, Fujima et al. proposed a CNN model 

to differentiate FDG-PET images between the human papillomavirus (HPV) and negative 

oropharyngeal squamous cell carcinomas. An image dataset with 2160 FDG-PET images 

was used to evaluate the model with the overall accuracy of 83% [83].  

The above examples show that deep learning has become the state-of-the-art solution 

for computer aided diagnosis (CAD) because its flexible architecture is very good at 

parsing complex tasks. 

2.2.5 Medical Image Retrieval 

Digital medical imaging is widespread in most every aspect of practice in hospitals. 

As the volume of medical image repositories is increasing, it is in urgent need for image 

retrieval technology to effectively manage and query of the large image databases. The 

development of an effective medical image retrieval system can aid the clinicians in 

browsing these large datasets in an efficient way. Algorithms for automatic analysis of 

medical images have been introduced by many researchers [84-86]. Content-based image 

retrieval, or CBIR, is the computer vision technology to search for digital images by 

analyzing the contents of the image rather than the metadata such as keywords, tags, or 

descriptions associated with the image. The term “content-based” refers to the color, shape, 

texture, or any other pattern that can be derived from the image. The strength of CBIR is 

that it does not rely on the annotation quality and completeness. In stead, the search by 

CBIR is based on the latent patterns of the images such as the similarity of the query 

images.  
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Content based medical image retrieval (CBMIR) systems offer an effective way to 

support clinical diagnosis and provide the basis for the treatment of various diseases [87]. 

In addition, CBMIR is an efficient management tool to access, manage, and extract the 

relevant information from the large collections of complex medical images. The 

conventional medical image retrieval technology based on textual information such as tags 

and manual annotation is inefficient and with high cost of manpower, expertise, and 

preprocessing time. In comparison, CBMIR with deep learning can automatically classify 

and retrieve images based on feature representations extracted from the medical images. 

The technology will support not only the healthcare decision process, but also facilitate the 

medical research and clinical studies in finding relevant information through the large 

medical image repositories.  

Deep learning methods have been applied for CBMIR in recent studies after the 

breakthrough of deep learning methods in bridging the semantic gap between meaning and 

the image. In particularly, the convolutional neural network (CNN) is adapted for learning 

feature representations for different imaging modalities and body organs. In general, the 

3D volumetric medical image is obtained consisting of a series of 2D slices acquired from 

the target body organ. For example, the digital radiological images from different body 

parts were divided into separate classes with respective body part label. In this way, the 

supervision is very weak and requires very less time for labeling, hence decreasing the 

annotation effort required in training phase.  The annotation of the medical image usually 

requires high-cost expert knowledge, if we can train a series of CNN classifiers to 

categorize the medical images in the first phase, then the workload of the following 

retrieval tasks can be decreased. Anthimopoulos et al. introduced a CNN based system for 

classification of Interstitial Lung Diseases (ILDs). The study dataset consists of 7 classes 

including 6 different ILD patterns and a healthy tissue class. The CNN model achieved a 

classification performance of 85.5% in characterizing lungs patterns [88].  Van Tulder et 

al. used a Boltzmann machine-based network for lung computed tomography (CT) image 

analysis in the semi-supervised learning manner. The research presented two approaches 

for two datasets: the first one is for lung texture classification, and the second one is for 
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airway detection [89]. Jiji et al. introduced a CBIR system for skin lesion images using 

reduced feature vector, classification and regression tree [85]. To integrate the semantic 

information to image retrieval, Brahmi et al. used a Bag of Visual Word (BoVWs) method 

along with scale invariant feature transform (SIFT) for the diagnosis of Alzheimer disease 

(AD) [90]. Rahman et al. proposed a supervised learning framework for biomedical image 

retrieval, where the predicted class label from classifier for retrieval [86]. 

The above discussion indicates that the image retrieval technology is often integrated 

into the computer aided diagnosis (CAD), where the deep learning models are used for 

image pattern extraction in either the supervised or semi-supervised manner. 

2.2.6 Physical Simulation 

Simulation is a common technology for performance tuning or optimizing. In the 

medical domain, physical simulation is frequently used for the diagnosis and prognosis 

prediction of radiology and surgery. Physical simulation becomes a new field of deep 

learning to support the medical engineering modeling. Wu et al. proposed a deep learning-

based method to perceive the physical object properties, which can be exploited in the 

gaming industry to compute realistically appearing physics engines [91]. Chu and Thuerey 

used a convolutional neural network as a data-driven model for real-time smoke 

stimulation [92]. Meister et al. applied brought deep learning to biomedical modeling, 

using a neural network to learn the underlying biomechanics and to predict vertex-wise 

accelerations of biophysics solvers [93]. 

In addition to the application for pure theoretical studies, researchers also started to 

use such methods for medical imaging. For example, Maier et al. trained a deep 

convolutional neural network to reproduce the output of Monte Carlo simulations for the 

deep scatter estimation of CT images [94]. Unberath et al. used a deep neural network 

called DeepDRR for the simulation of fluoroscopy and digital radiography from CT 

images. They found that the deep learning model can be generalize to unseen clinically 

acquired data without the need for re-training or domain adaptation [95]. Horger et al. 

used a deep neural network to learn different noise distributions to a certain direction. 
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They concluded that the deep learning is a good alternative sampling method for 

simulation [96]. 

Except for the above samples, physical processes have been investigated using deep 

learning. Maier et al. introduced precision learning with prior physical operator to 

simulate material decomposition. They used the X-ray material decomposition as an 

example, in which the deep learning-based model is incorporated with additional prior 

knowledge. The new method is found to be able to improve prediction quality with SSIM 

(Structural Similarity) values from 0.54 to 0.88 [38]. Han proposed to use a deep 

convolutional neural network (DCNN) with 27 convolutional layers to synthesize MRI 

images to CT images to simplify the clinical decision process for soft tissue imaging. The 

new method is evaluated by the mean absolute error (MAE) and is superior to the atlas-

based methods [97]. Stimpel et al. went further to use MRI projection images to predict 

X-ray projections [98]. And Schiffers et al. reported that the application of cycle GANs 

can create appearing fluorescence images from fundus images in ophthalmology [99]. 

However, some study indicates that deep learning can produce undesired effect such as 

mapping drusen onto micro aneurysms. Cohen et al. reported that hallucinate features 

can be produced when they attempted to create radiological patterns for cancers by the 

modality-to-modality mapping [100]. Therefore, the simulation by deep learning 

approaches must be used carefully. 

2.2.7 Image Reconstruction 

Image reconstruction refers to using the iterative algorithms to reconstruct 2D and 3D 

images given certain imaging techniques. The reconstruction of an image from the 

acquired data is an inverse problem. Usually, it is not possible to exactly solve the inverse 

problem directly. Alternatively, given an algorithm can approximate the solution, it might 

cause visible reconstruction artifacts in the image. Iterative algorithms approach the 

correct solution using multiple iteration steps, which allows to obtain a better 

reconstruction at the cost of a higher computation time. Medical image reconstruction is 

one of the common domains for this technology. For example, in computed tomography 
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or CT, an image is reconstructed from projections of an object. The iterative 

reconstruction methods usually have a better, but more expensive alternation to the 

common filtered back projection (FBP) method [101].  

The deep learning-based iterative reconstruction algorithm uses the convolutional 

neural network (CNN) to learn the visual patterns from training data and combines the 

patterns with the image formation model. This method gives faster and higher quality 

reconstructions, which has been applied to both CT and MRI reconstructions [102-103]. 

A recent review concludes that using the deep learning models can omit the actual 

problem of reconstruction and formulate the inverse as image-to-image transforms with 

different initialization techniques [104]. Zhang et al. used the deep learning model called 

DenseNet with the deconvolution layers (inverse operation of convolution) to reconstruct 

sparse-view CT images. The study found the DenseNet can produce better reconstructed 

image with higher structure similarity (SSIM) and much lower root mean square error 

(RMSE) compared to other reconstruction methods [105].  Another work by Kofler et al. 

used a convolution neural network named U-net to reconstruct sparse view computed 

tomography images by a cascade of U-nets and data consistency layers. The study found 

that this model produces superior visual results and better preserves the overall image 

structure and diagnostic details [106]. Zhu et al. introduce a semi-supervised learning 

model using a structure like an autoencoder to reduce the dimensions of raw data and 

reconstruct the domain knowledge for image reconstruction. The entire model is linked by 

a non-linear correlation model, which can be combined as a single network and be trained 

in an end-to-end manner. The entire model was tested by reconstructing 2D MRI and PET 

(Positron Emission Tomography) images and showed better performance compared to 

traditional approaches [107].   

A challenge for applying deep learning to image reconstruction is that the data-driven 

model has the risk to produce undesired effects [108]. Therefore, it needs to integrate prior 

knowledge and operators to improve the overall learning outcome. For example, Ye et al. 

introduce the concept of deep convolutional framelets by adding a multi-scale transform 

into the encoder and decoder of the U-net like network. This design is believed to bring 
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consistent improvement to the CNN models [109]. Another technique is to use wavelets 

for the multi-scale transforms. One successful case by Kang et al. added the wavelets to 

the residual net-based model to reduce undesired artifacts [110]. In another case by Han et 

al., a U-net-based model was embedded with the wavelets to reduce the noise of the 

reconstructed images from sparse-view CT images [111]. 

From the above discussion, we are inspired that the variational networks derived 

from the classical deep neural network architecture are useful to tackle various type of 

image reconstruction tasks when combined with the iterative algorithms by minimizing an 

energy function step by step. With a limit number of iterations, we can use the deep learning 

framework to map almost all iterative reconstruction algorithms onto the deep neural 

networks. One impressive work by Hammernik et al. used a variational network for MRI 

image reconstruction. It concluded that the reconstructed images can well preserve both 

the natural appearance and the pathological patterns of the original MRI images [103]. 

Vishnevskiy et al. used the variational network model to reconstructed ultrasound images 

and found it was able to produce high-quality rapidly reconstructed ultrasound images 

[112]. Adler et al. moved further to use this type of neural network for the entire primal-

dual reconstruction of CT images and found it can significantly reduce noise [102]. In the 

work by Würfl et al., they followed the idea of using prior operators to improve the 

reconstructed CT images [113,114]. They designed the neural network based on the 

classical filtered back-projection which can be retrained to improve the approximation of 

limited angle geometries. This is very difficult to be solved by classical analytic inversion 

methods. In addition, the following research revealed that this end-to-end design manner 

can intrinsically correct the errors produced by the filter discretization or initialization 

during the learning process [115]. Their later study showed that their proposed deep neural 

network with prior operator model is compatible with other methods, such as learning an 

additional de-streaking sparsifying transform [116]. Syben et al. went further to 

demonstrate this concept can be extended to precision learning and derived a neural 

network structure [117]. In the above work, the researchers assumed that an expensive 

matrix inverse is a circulant matrix. Thus, it can be replaced by a convolution operation. 
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This method led to the derivation of a previously unknown filtering, back-projection, re-

projection-style rebinning algorithm that intrinsically suffers less from resolution loss than 

the traditional interpolation-based rebinning methods. 

Since all the neural networks are prone to adversarial attacks when the trained 

networks are trained, Huang et al. demonstrated their research that a conventional model 

mixed with incorrect noise can distort the entire image, but the network still constructs 

visually pleasing results [108]. These reconstructed images with plausible artifacts cannot 

be easily identified by classical methods [114]. A possible solution for this issue is to use 

the precision learning paradigm and fix the network as much as possible, so that the 

network model can be analyzed with classical methods [118]. An alternation is the 

Bayesian deep learning, where the network output has two aspects: the reconstructed 

image, and a confidence map on the measure of the accuracy [119]. 

In summary, deep learning can contribute to the suppression of artifacts as mentioned 

in the work by Zhang et al. where the deep learning model was successful to reduce metal 

artifacts [120]. Another study by Bier et al. shows the deep learning-based method is 

feasible for motion tracking and it is a feasible solution for motion compensated 

reconstruction [120]. 

2.3 Generative Adversarial Learning for Medical Imaging 

As mentioned above, the generative adversarial network, or GAN, is introduced by 

Ian Goodfellow et al. in 2014 [7]. It applies two neural network models to learn a 

representative distribution from the training dataset in competition with each other. The 

first network called the generative network, or the generator (G) is to generate the new data 

from a noise input. Then the generated fake data is pipelined to the second network, the 

discriminator (D) to distinguish the real data X against the fake data G(X) by the generator. 

The adversarial optimization scheme for the GAN models has gained great interest 

in both the academia domain and the industrial domain because of its potential applications 

for counteracting domain shift, and the effectiveness in generating new image samples. 

The GAN models have achieved state-of-the-art performance on many fields of computer 
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imaging tasks such as text-to-images synthesis [121], improving image resolution [122], 

and image-to-image-translation [30]. The original GAN model introduced by Goodfellow 

et al. in 2014 [7] is a generative model designed for directly drawing samples from the 

desired data distribution without the need to explicitly model the underlying probability 

density function. The input z to the generator (G) is pure random noise sampled from a 

prior distribution p(z) chosen from a distribution such as Gaussian distribution or uniform 

distribution. The output of the generator (G) xg is expected to have visual similarity with 

the real sample xr, drawn from the real data distribution pr(x). We denote the non-linear 

mapping function learned by G parameterized by 𝜃𝜃𝑔𝑔 as 𝑥𝑥𝑔𝑔 = 𝐺𝐺(𝑧𝑧;𝜃𝜃𝑔𝑔). The input to the 

discriminator (D) is either a real or generated sample. The output y1of D is a single value 

indicating the probability of the input being a real or fake sample. The mapping learned by 

D parametrized by 𝜃𝜃𝑑𝑑  is denoted as 𝑦𝑦1 = 𝐷𝐷(𝑥𝑥;𝜃𝜃𝑑𝑑) . The generated samples form a 

distribution 𝑒𝑒𝑔𝑔(𝑥𝑥)  which is desired to approximate 𝑒𝑒𝑟𝑟(𝑥𝑥)  after the GAN model is 

successfully optimized. The objective of the discriminator (D) is to differentiate these two 

groups of images whereas the generator (G) is optimized to confuse the discriminator (D) 

as much as possible. Intuitively, G could be viewed as a forger trying to produce some 

quality counterfeit material, and D can be considered as the detective trying to find out the 

fake items. In other words, we can consider G will receive a reward from D based on 

whether the generated data is correct or not. The gradient information is back propagated 

from D to G, so G updates its parameters to yield a better output image in the next iteration 

to cheat D. Mathematically, the training goal of the discriminator (D) and the generator (G) 

can be presented as: 

 Discriminator:  ℒ𝐷𝐷𝐺𝐺𝐺𝐺𝑁𝑁 = 𝑚𝑚𝑎𝑎𝑥𝑥𝐷𝐷𝔼𝔼𝑥𝑥𝑟𝑟~𝑝𝑝𝑟𝑟(𝑥𝑥)[𝑙𝑙𝑙𝑙𝑙𝑙𝐷𝐷(𝑥𝑥𝑟𝑟)] + 𝔼𝔼𝑥𝑥𝑔𝑔~𝑝𝑝𝑔𝑔(𝑥𝑥)[log (1 −𝐷𝐷(𝑥𝑥𝑔𝑔))] 

 Generator: ℒ𝐺𝐺𝐺𝐺𝐺𝐺𝑁𝑁 = 𝑚𝑚𝑠𝑠𝑠𝑠𝐺𝐺𝔼𝔼𝑥𝑥𝑔𝑔~𝑝𝑝𝑔𝑔(𝑥𝑥)�log (1 − 𝐷𝐷(𝑥𝑥𝑔𝑔))�                                            (2.43) 

From the above formula, 𝐷𝐷  is simply a binary classifier with a maximum log 

likelihood objective. If the discriminator 𝐷𝐷 is trained to optimality before the next update 

of the generator 𝐺𝐺, then minimizing ℒ𝐺𝐺𝐺𝐺𝐺𝐺𝑁𝑁 is proven to be equivalent to minimizing the 
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Jensen-Shannon (JS) divergence between 𝑒𝑒𝑟𝑟(𝑥𝑥) and 𝑒𝑒𝑔𝑔(𝑥𝑥) [30]. The expected outcome 

after training is that the samples formed by 𝑥𝑥𝑔𝑔 should properly approximate the real data 

distribution 𝑒𝑒𝑟𝑟(𝑥𝑥) of the real input images. 

2.3.1 Deep Convolutional Generative Adversarial Network 
A deep convolutional generative adversarial network, or DCGAN, is a GAN model 

built based on two CNNs: a CNN-based generator and a CNN-based discriminator. The 

model is optimized by the competition of the generator and the discriminator following the 

game theory. The generator is updated by loss of the low-quality images it produces and 

those are classified as ‘fake’ by the discriminator. On the other hand, the discriminator is 

updated by the loss from the error of misclassifying the read images and the ‘fake’ images 

yielded by the generator. The optimization goal is that the generator attempts to fool the 

discriminator with plausible generated images after each update, and the discriminator tries 

to correctly distinguish the generated images by the generator from the real images 

acquired from the real train set. This optimization strategy follows the game theory and is 

considered the most promising method to overcome the current threshold of deep learning 

[123]. Johnson et al. applied a conditional DCGAN to predict artifact-free brain images 

from motion-corrupted MRI images. And finds that the images generated by the 

conditional GAN have improved image quality [124].  

There are generally two application approaches of GANs in medical imaging. The 

first is focused on the generative aspect, which can help in exploring and discovering the 

underlying structure of training data and learning to generate new images. This property 

makes GANs very promising in coping with data scarcity and patient privacy. The second 

focuses on the discriminative aspect, where the discriminator 𝐷𝐷  can be regarded as a 

learned prior for normal images so that it can be used as a regularizer or a detector when 

presented with abnormal images. Furthermore, the constraints in clinical environment such 

as radiation dose and patient comfort, the diagnostic quality of acquired medical images 

may be limited by noise and artifacts. In the last decade, we witness the change of the 

clinical paradigm in reconstruction methods changing from analytic to iterative and now 
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to machine learning based methods. These data-driven learning-based methods either learn 

to transfer raw sensory inputs directly to output images or serve as a post processing step 

for reducing image noise and removing artifacts. Most of the methods reviewed in this 

section are borrowed directly from the computer vision literature that formulate post-

processing as an image-to-image translation problem where the conditioned inputs of 

cGANs are compromised in certain forms, such as low spatial resolution, noise 

contamination, under-sampling, or aliasing. One exception is for MRI images where the 

Fourier transform is used to incorporate the raw K-space data into the reconstruction. In 

the next sections, we will discuss different types of GAN models that are originated from 

the GAN by Goodfellow et al. in 2014 [7]. 

2.3.2 Conditional Generative Adversarial Network 
The conditional generative adversarial network, or cGAN, is an extension of the basic 

GAN that involves the conditional generation of images by a generator model. Image 

generation can be conditional on a specific, which allows the cGAN model to render 

generated images of a given class [122].  GANs are effective at image synthesis, that is, 

generating new examples of images for a target dataset. There are two motivations for 

using of the class label information in a GAN model: to improve the GAN performance, 

and to generate to target images. Additional information that is correlated with the input 

images, such as class labels, can be used to improve the GAN, which can benefit with 

stable training, faster training, and the generation of better images. The information of the 

label can be used for the deliberate or targeted generation of the images of the given label. 

One of the limitations of a basic GAN is that it generates a random image from the domain. 

The relationship between the points in the latent space to the generated image is complex 

and cannot by precisely mapped. An alternative approach to control the generated image is 

adding constraints to both the generator and the discriminator such that the whole model is 

conditional to a particular class label. When the trained generator model is used as a 

standalone model to generate images in the domain, it only produces images of a given 

type or class. The idea of conditional GAN is usually combined with deep convolutional 
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GAN or DCGAN, which is referred to as cDCGAN. There are many methods to 

incorporate the class information into the GAN models. One of the best methods proposed 

by Denton et al. is to add an embedding layer on the top of the CNN architecture and then 

it is followed by a fully connected layer with a linear activation that scales the embedding 

to the size of the image before concatenating it in the model as an additional channel [125]. 

Note that a GAN can be conditioned not only on the class label as a class-conditional GAN, 

but it can also be conditioned on other inputs, such as an image, in the case where a GAN 

is used for image-to-image translation tasks. 

2.3.3 Information Maximizing Generative Adversarial Network 
The information maximizing GAN, or InfoGAN, is another extension to the GAN 

architecture. An InfoGAN introduces control variables that are automatically learned by 

the architecture and allow control over the generated image, such as style, thickness, and 

type of generated images. A classic GAN consists of two models: the discriminator and the 

generator. While the whole model is optimized, the discriminator and the generator 

compete in a zero-sum game such that convergence of the training process involves finding 

a balance between the generator’s skill in generating convincing images and the 

discriminator’s in being able to distinguish them. The generator model takes as input a 

random point from a latent space us and a series of random numbers from a Gaussian 

distribution. The generator applies a unique meaning to the points in the latent space via 

training and maps points to specific output synthetic images. This means that though the 

latent space is structured by the generator model, it has no control over the generated 

images.  

The latent space is used to explored and generated images and to be compared to the 

learned mapping function that the generator was learned. One approach is to use the 

conditional generative adversarial network, or cGAN to alter the generation process with a 

conditioned layer (e.g., using a class representation). Alternatively, we can provide control 

variables as input to the generator along with the point in the latent space. Then the 

generator is trained with the control variables to influence specific properties of the 
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generated images. This method is called information maximizing generative adversarial 

network, or InfoGAN [125].  

The InfoGAN is motivated by the desire to disentangle the properties of generated 

images. For example, the properties of generating a face can be disentangled and 

controlled, such as the shape of the face, hair color, hairstyle, and so on. Control variables 

are provided along with the noise as input to the generator and the model is trained via a 

mutual information loss function. Mutual information refers to the amount of information 

learned about one variable given another variable. In information theory, mutual 

information between X and Y, I(X; Y) measures the amount of information learned from 

knowledge of random variable Y about the other random variable X. The Mutual 

Information (MI) is the conditional entropy of the control variables (c) given the new 

image (created by the generator (𝐺𝐺 ) from the noise (𝑧𝑧 ) and the control variable (c) 

subtracted from the marginal entropy of the control variables (c): 

                           MI = Entropy(c) − 𝐸𝐸𝑠𝑠𝑡𝑡𝑜𝑜𝑙𝑙𝑒𝑒𝑦𝑦(𝑑𝑑;𝐺𝐺(𝑧𝑧, 𝑑𝑑))                                         (2.44) 

The computation of the true mutual information is often intractable, but we can use 

a simplified method called variational information maximization where the entropy is kept 

constant. Thus, training the generator via mutual information is achieved using a new 

model, referred to as Q or the auxiliary model [126], where the model shares all the same 

weights as the discriminator model for interpreting an input image. Unlike the 

discriminator model that predicts whether the image is real or fake, the auxiliary model 

predicts the mutual information used to generate the image. Both the discriminator model 

and the auxiliary model are used to update the generator model. The discriminator 

improves the likelihood of generating images to confuse the discriminator model, and the 

auxiliary model improves the mutual information. The result is that the generator model is 

regularized via mutual information loss such that it captures salient properties of the 

generated images, and, in turn, it can be used to control the image generation process. 
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2.3.4 Auxiliary Classifier Generative Adversarial Network 
The auxiliary classifier generative adversarial network, or AC-GAN, is a new 

implementation of the conditional model (cGAN) whose focus switch from the generator 

network to the discriminator network. The classic cGAN adds the class information to the 

generator as the input to constrain the image generation process. As a result, the trained 

generator model will generate images of a given specific type. The auxiliary classifier 

generative adversarial network (AC-GAN) was introduced by Augustus Odena et al. in 

2017 [127]. Its generator uses similar mechanism of the classic GAN where a random 

vector from the latent space and the class label are provided as input. In addition, the 

discriminator of the AC-GAN renders two predictions: first, whether the given image is a 

real one or a generated fake image; and second, the class of the given image. Therefore, 

the AC-GAN architecture requires that the discriminator (predicting real or fake) and the 

auxiliary classifier (predicting class label) are considered as separated models but sharing 

the same set of weights of the network. In practice, the discriminator and auxiliary classifier 

can be merged into a single neural network model with two outputs: first, an output by a 

sigmoid activation to predict whether the input is a real or a generated image, second, an 

output by a softmax activation to the probability of each class. Since the discriminator and 

the auxiliary classifier have similar architecture, they can share the model weights with the 

model is trained. During the optimization process, the objective function of the 

discriminator has two parts: the log-likelihood of the correct source (LS), and the log-

likelihood of the correct class (LC). Thus, the discriminator (D) is optimized to maximize 

LS+LC while the generator (G) is optimized to maximise LC-LS [127]. As a result, the 

generator learns a latent space representation that is independent of the class label, which 

is different from the classic cGAN that aims to embed the information of the class label to 

the input of the generator. 

2.3.5 Semi-Supervised GAN 
Semi-supervised learning refers to a machine learning problem where a predictive 

model is attained from a training set of few labeled examples and many unlabeled 
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examples. A common example is a classification predictive modeling problem in which 

there is a large dataset only with a small fraction of data examples having target labels. The 

model is mainly optimized by the small set of labeled examples but is somehow affected 

by the unlabeled examples in the whole dataset in order to bed generalized to new data in 

the future. The Semi-Supervised GAN, or SGAN, is an extension of the Generative 

Adversarial Network architecture for solving the semi-supervised learning problems by 

utilizing the additional unlabeled examples [42]. The discriminator (D) in a classic GAN 

predicts whether a given input image is real or fake (generated), which allows D to learn 

the features from the unlabeled image data. Thus, the discriminator can be used via transfer 

learning as a start point for the unlabeled data in the same dataset. This allows the model 

optimization process in the supervised learning manner to benefit from the unsupervised 

training of the GAN. In the SGAN, the discriminator network is updated to predict N+1 

classes, where N is the number of the classes in the prediction problem and the extra one 

class label is added for a new fake class. The training of the SGAN involves the 

simultaneous optimization for both the unsupervised task and the supervised task [128]. 

The discriminator of the SGAN is trained in two modes: in the unsupervised training mode, 

the discriminator is trained in the same way as in the classic GAN to predict whether a new 

input is real or fake; in the supervised training mode, the discriminator is trained to predict 

the class label of real examples. 

The optimization in the unsupervised mode allows the network to learn useful feature 

extraction capabilities from a large unlabeled dataset, whereas the training in the supervised 

mode allows the network to use the extracted features and apply class labels. The result of 

this dual training mode provides a model that can achieve state-of-the-art results with very 

few labeled examples. In the work by Odena et al., they compared the SGAN model with 

a conventional CNN on the MNIST dataset from a series of examples from 1,000 labeled 

images to 25 labeled images only. The result shows that the SGAN has stable performance 

even with 25 labeled images, and the performance of the CNN drops significantly when 

the training set contains 25 images [128], the similar conclusion was also found in the 

research by Salimans et al. [42]. 
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2.3.6 GAN Optimization 
The basic GAN architecture introduced by Goodfellow et al. in 2014 contains two 

neural networks respectively called generator and discriminator. The optimization of the 

GAN architecture is considered as a zero-sum game regarding the competing against these 

two networks. During the optimization procedure, the objective of the generator is to learn 

mapping from a random distribution to a particular domain belonging to the distribution of 

the training dataset. On the other hand, the discriminator learns to classify the real data 

samples from the fake ones generated by the generator.  When we apply the optimization 

algorithms such as stochastic gradient descent, the generator 𝐺𝐺  aims to minimize the 

objective function meanwhile the discriminator 𝐷𝐷 aims to maximize the objective function: 

     𝐺𝐺∗,𝐷𝐷∗ = arg𝑚𝑚𝑠𝑠𝑠𝑠𝐺𝐺 𝑚𝑚𝑎𝑎𝑥𝑥𝐷𝐷ℒ(𝐺𝐺,𝐷𝐷) = 𝐸𝐸𝑥𝑥�log�𝐷𝐷(𝑥𝑥)�� + 𝐸𝐸𝑧𝑧[log (1 − 𝐷𝐷(𝐺𝐺(𝑧𝑧))]    (2.45) 

Formula 2.45 is the original GAN loss function proposed by Goodfellow et al. [7], 

which can be further divided into the generator loss and the discriminator loss during model 

optimization. 

    𝐺𝐺𝑒𝑒𝑠𝑠𝑒𝑒𝑜𝑜𝑎𝑎𝑡𝑡𝑙𝑙𝑜𝑜 𝑙𝑙𝑙𝑙𝑠𝑠𝑠𝑠: ∇𝜃𝜃𝑔𝑔
1
𝑚𝑚
∑ log (1 − 𝐷𝐷(𝐺𝐺(𝑧𝑧(𝑖𝑖))))𝑚𝑚
𝑖𝑖=1  

    𝐷𝐷𝑠𝑠𝑠𝑠𝑑𝑑𝑜𝑜𝑠𝑠𝑚𝑚𝑠𝑠𝑠𝑠𝑎𝑎𝑡𝑡𝑙𝑙𝑜𝑜 𝑙𝑙𝑙𝑙𝑠𝑠𝑠𝑠: ∇𝜃𝜃𝑔𝑔
1
𝑚𝑚
∑ [logD�𝑥𝑥(𝑖𝑖)� + log �1 − 𝐷𝐷 �𝐺𝐺�𝑧𝑧(𝑖𝑖)���]𝑚𝑚
𝑖𝑖=1              (2.46) 

The initial GAN has some weakness points during the optimization by the original 

loss objective. The first one is mode collapse, which means the generator keep producing 

monotonous outputs in stead of diverse generated examples representing the whole 

distribution of the target domain. This phenomenon is like overfitting in common machine 

learning problems where the generator is stuck in some local minimal, but it succeeds in 

confusing the discriminator. The second one is vanishing gradients when the discriminator 

outperforms the generator, leading to generator saturation and eventually causing gradient 

vanishing. In this case, the adversarial equilibrium cannot be maintained and the whole 

GAN cannot be further optimized. This causes the convergence of the GAN training where 

both the generator and the discriminator become stabilized and keep producing consistent 

outputs.  
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There are different strategies to solve the above problems in GAN optimization. For 

example, we can revise the loss function for smoother and more stable optimization. 

Wasserstein GAN or WGAN is one of the most successful examples for this pathway [28]. 

WGAN uses a linear function to compute the continuous Wasserstein distance as the loss 

for the discriminator instead of estimating the probability between 0 to 1 for telling whether 

the input data is true or fake. Thus, the discriminator is also called the critique to rate the 

quality of the generated data example. The optimization objective is to maximize the output 

difference between the critique and the generator. Another strategy to improve the GAN 

optimization is using conditional GAN or cGAN architecture, where the labels of the data 

examples are encoded as part of the training inputs. cGAN is an effective way to exert 

controls to the outputs of GAN generator with the labels as auxiliary information for the 

optimization. There are multiple variations for the cGAN implementation as we discussed 

above. In practice, we can add various labels either by directly encoding into the data and 

the GAN components, or by adjusting the GAN architecture by building multiple 

generators and discriminator for different modalities inside the GAN. 

2.4 Summary 

In this chapter, we go through the theory and concepts of deep neural network for 

artificial intelligence. Then we introduced the types of deep neural network and their 

application to various medical imaging tasks. In particular, the deep learning-based 

algorithms are successful to solve many tasks such as object detection, image recognition, 

and medical pattern segmentation. All these tasks are clearly linked to perception without 

any presenting of prior knowledge. The current state-of-the-art deep learning architectures 

applied in other fields, such as computer vision, are often easily adopted to biomedical 

tasks, such as radiological imaging analysis (e.g., X-ray, CT, and MRI, etc.), histological 

and pathological imaging analysis, and the science of omics. In order to improve the 

understanding of the black box, the combined model like reinforcement learning and 

modeling of artificial agents are the promising solution in the near future. 
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In the field of image registration, deep learning is not commonly used so far. 

However, research efforts have brought interesting applications that aims to either predict 

the deformations directly from the input image, or to use reinforced learning-based 

methods for the registration as on optimal control problem. An additional benefit of deep 

neural network is to obtain pattern representations which are either done in an unsupervised 

manner or using the registration metrics.   

Computer-aided diagnosis is one of the most popular domains addressed by many 

studies recently. The objective of the application is to simplify the procedure of the high 

workload of routine tasks that the medical practitioners will prioritize in their work. 

Unfortunately, the deep learning approach cannot perform well in complex diagnosis tasks 

because the deep neural network cannot effectively represent the internal relation of the 

evidence. One possible method is to link the observations to evidence and then use a model 

to construct a line of argument towards a decision. Many authors concluded that the deep 

learning approach can bring an impact to computer-aided diagnosis if only the network can 

achieve all the evidence-based decision-making process.   

Physical simulation is an application field of deep learning with accelerated 

improvement with realistic outcomes as with the support of advanced graphical processing 

in both software and hardware. As the result, this kind of applications is highly relevant to 

interventional applications, particularly to those requiring real-time processing. First 

approaches exist, yet there is considerable room for more new developments. Particularly, 

precision learning and variational networks seem to be suitable for such tasks, which 

provide some promising improvements to the prediction outcomes. We can expect that 

there will be some new progress in both the academia and the industry soon, especially in 

radiation therapy and real-time interventional dose tracking. 

Reconstruction based on data-driven methods with deep learning has significant 

outcomes, too. However, these methods such as the GAN networks still suffer from a “new 

kind” of deep learning artifacts that need further improvement. As shown in the work by 

Huang et al. in 2018, the robustness of the deep learning-based graphical reconstruction 

still needs upcoming efforts in detail [30]. Both precision learning and Bayesian 
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approaches seem well suited to tackle the problem in the future. Another concern is that 

the researchers are still unclear how to benefit best from the data-driven methods while 

maintaining intuitive and safe image reading. 

The generative adversarial networks (GANs) are a new and promising deep neural 

network model since 2016 [7,42], which have achieved remarkable results and become the 

state-of-the-art in generative modeling. On the other hand, the nascent GAN models are 

still based on empirical findings without concrete theory about how to implement and 

configure them. The current research progress is exciting because the achieved findings are 

significant. However, we have only scratched the surface on the capabilities of the GAN 

methods. The challenge is that the GAN models are fussy and prone to failure modes even 

after careful consideration on the model architecture, model configuration hyperparameters 

and data preparation. 

A great advantage of all the deep learning methods is that they are inherently 

compatible to each other and to many classical approaches. The major difference between 

deep neural learning with image input and deep neural network learning with feature input 

is the direct use of pixel values with the deep learning architecture. In other words, the 

classic neural network for machine learning methods for classification, object detection, or 

segmentation require the pre-processing step for feature calculation, while the deep 

learning-based models accept direct raw data input. Therefore, deep learning for image 

processing can avoid errors caused by inaccurate feature calculation and segmentation. The 

performance of the deep learning models is higher than that of conventional feature-based 

classifiers. In the medical image processing tasks, the visual patterns with significant are 

usually sparsely located in the small region. The deep neural networks learn pixel data 

directly, thus all information on the pixels can be preserved when them are entered into the 

model. In comparison, the classic feature-based ML methods learn the features extracted 

from segmented lesions and thus important information is likely to be lost during the 

extraction because of their special sparsity. Errors are also to occur from inaccurate 

segmentation for complicated patterns. In addition, the development and implementation 

of segmentation and feature calculation, and selection of feature are unnecessary given the 
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deep learning models where feature calculation is not required. This feature of deep 

learning offers fast and efficient development for AI solutions for medical image 

processing. The characteristics of the deep learning models with direct image input would 

generally differ from those of ordinary feature-based models (with extracted feature input). 

As the result, the combination a classic feature-based model with the deep learning model 

by direct raw data input can provide a higher performance than using either of them alone. 

In the above studies on medical pattern detection or classification, we have witnessed these 

combinations generate the state-of-the-art outcomes. 

In general, this fusion of the image processing pipeline by deep learning will spark 

many new developments in the future. In particular, the fusion on network-level using 

either the direct connection of networks or precision learning allows end-to-end training of 

algorithms. The only requirement for this deep fusion is that each operation in the hybrid 

net has a gradient or sub-gradient for the optimization. In fact, there are already efforts to 

design whole programming languages to be compatible with this kind of differential 

programming [108]. With such integrated networks, multi-task learning can be 

implemented by a single architecture. For example, Wang conjectured that the training of 

networks that deliver optimal reconstruction quality and the best volumetric overlap of the 

resulting segmentation at the same time can be integrated in a single deep learning model 

[129]. This advantage can hopefully be expanded to computer-aided diagnosis or patient 

benefit. 

In general, we observe that the CNN-based architectures that emerge from deep 

learning are computationally efficient. The deep neural networks usually find solutions 

comparable or even better than many classic algorithms. However, the computational cost 

for inference time is often much lower than other algorithms in typical domains of medical 

imaging in detection, segmentation, registration, reconstruction, and physical simulation 

tasks. This benefit at runtime comes at high computational cost of model optimization even 

with the support of high-performance GPU clusters. Given an appropriate problem domain 

and training setup, we can thus exploit this effect to save runtime at the with relative cost 

of additional training time. 
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On the other hand, however, deep learning is an extremely data hungry ML approach. 

This is one of the main factors that limits the model performance with logarithmically with 

the amount of training data [130]. Other weakly supervised learning approaches can 

partially compensate this gap [131]. Hence in the clinical setting, one hospital or a group 

of researchers are unlikely to collect a competitive amount of data in a short period of time. 

Therefore, the industry needs initiatives such as hackathon challenges or medical data 

donors and hope that they will be successful in the near future. 
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Chapter 3 Survey of GAN on Medical Image Processing 

In this chapter, we perform a quantitative review on the available literature on the 

applications of GAN for various medical image processing tasks since 2017.  

The papers are retrieved from PubMed (https://www.ncbi.nlm.nih.gov/), the most 

recognized database for medical research. The search was performed in August 2022. The 

search keywords include “GAN” and “Generative Adversarial Network”.  

The inclusion criteria are: 

1. The research is related to computer medical image processing. 

2. The research is about generative adversarial networks. 

The exclusion criteria are: 

1. The research is not directly related to medical image. 

2. The research is not related to GAN. 

3. The paper is not about original research. 

4. It is a review paper. 

After searching on PubMed, 952 papers were found. Then the retrieved papers are 

reviewed by manually by the researcher to determine whether the content is directly related 

to the research topic. Eventually 132 papers are included for quantitative analysis.  

The applications of the GAN models for medical image processing started in 2017 

after sophisticated GAN models with stable and reliable synthetic image outputs in 

multiple industrial domains. Examples of the most successful GAN architecture include 

Cycle-Consistent Adversarial Network (CycleGAN) by Zhu JY in 2017 [30], pix2pix by 

Isola P et al. in 2017 [36], StyleGAN by Karras T et al. in 2019 [132]. In the search with 

the keyword “GAN” or “generative adversarial network” on PubMed, the world class 

search engine to the MEDLINE database hosted by NCBI (National Center for 

Biotechnology Information), NLM (National Library of Medicine), USA, there are 952 

relevant research papers are found since the year 2017. The detailed numbers of the 

relevant search papers are shown in Figure 20. It indicates an increasing trend to apply 

https://www.ncbi.nlm.nih.gov/
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GAN models to medical research as one of the most promising methods for data 

augmentation and synthesis that hopefully solve the “data greedy” bottle-net problem to 

improve DNN performance. Note that the current number of publications regarding GAN 

for medical research in 2022 remains lower than that in 2021, but the search was performed 

in the middle of the year 2022, we can predict there will be more GAN related research 

published in 2022 than in 2021 given this tendency. 

 

Figure 20: Publication of GAN Related Medical Research. 

3.1 Overview of GAN on Medical Images 

The retrieved papers are later processed by manual analysis to filter the irrelevant 

contents. Eventually we achieved 169 highly relevant research paper, which will be further 

analyzed by different topics and themes. In Table 3.1, we summarize the image category 

used for GAN studies in the retrieved research papers. From Table 3.1, we find that the 

majority of GAN applications for medical imaging falls in the radiology images such as 

computed tomography (CT) images, magnetic resonance images (MRI), histological 

images, endoscopic images, retinal images, etc. In addition, GAN can be also applied to 

analyze non-image data, particularly the sequential data in biomedicine.  The typical 

applications include synthesizing electrocardiogram (ECG) and electroencephalogram 

(EEG) data [277-280], and synthesizing genomic or proteomic sequence [281, 293, 294]. 

These types of research help to exploration the new domains of GAN applications but they 
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are beyond the discussion of this thesis. Figure 21 illustrates comparison of the GAN 

applications to different types of medical images. It indicates that the studies on radiologic 

images occupy 75.93% (123 out of 162) of the published papers. This phenomenon has 

several reasons. First, the radiologic images are usually saved in the gray-scale format. 

Though there are research using 3D radiologic images as the data sample, each slide of the 

3D data can be represented by a single channel of 2D array like the gray-scale image. 

Therefore, the complexity of processing this image data can be effectively simplified and 

less expensive compared to the 3-channel color image data.  Second, the pixel brightness 

intensity in different types of radiologic images (i.e., CT, MR, PET, or X-Ray) has different 

meaning given their signal handling mechanism. GAN models can effectively learn the 

spatial patterns after sufficiently exposed to data samples and generate plausible synthetic 

images to augment the imbalanced dataset. All the factors lead to the widely use of GAN 

for radiologic image processing just in a few years. 

In general, the research purposes or the tasks for the GANs are divided into five 

categories: image reconstruction and enhancement, image synthesis or augmentation, 

image translation, image segmentation. In addition, there are marginal applications such as 

dosage prediction, latent feature representation, network attack, etc. These applications can 

be considered as extensions to the above four categories. 

Image category Publication number 

Computed tomography (CT) images 46 

Magnetic resonance (MR) images 54 

Positron emission tomography (PET) images 14 

X-Ray images 9 

Ultrasound Images 10 

Cell, endoscopic and histologic image 19 

Retina image 10 

Medical sequential data 7 

Table 1: GAN Research Category. 
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Figure 21: Publication Number in Different Medical Image Category. 

In the rest sections of this chapter, we will analyze the retrieved GAN research papers 

respectively under these four categories of topics. 

3.2 GAN on Medical Image Reconstruction and Enhancement 

The tasks of image reconstruction and enhancement include converting images from 

low resolution to high resolution, reducing noise and artifacts caused by low-dose 

radiation, and reconstructing image from inconsistent signals. Compared to conventional 

methods like pixel interpolation, the GAN models can produce much more meaningful 

details to reconstructed or enhanced images which facilitates the clinical diagnosis and 

prognosis prediction for radiologists. Figure 22 shows the number of research on medical 

image reconstruction and enhancement in each image category. Note that the majority of 

research are about CT or MR image reconstruction and enhancement. One possible reason 

is that the quality of the CT or MR images mainly relies on the radiation dose received by 

the patients. If GAN can generate high quality radiological images or improve the image 

resolution while preserved the fidelity, it provides an effective method for the trade-off of 

patient safety and diagnostic performance. 
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Figure 22: Publications on Image Reconstruction and Enhancement Research. 

For example, the research by Wolterink JM et al. [135], Yang Q et al. [136], Yi X et 

al. [137], Choi K et al. [138], Hu Z et al. [139], and Tang C et al. [140] used DCGAN-

based models as a new denoising technique for CT images. Wang J et al. [141], Podgorsak 

AR et al. [146], and Huang Z et al. [186] used DCGAN models to remove artifacts from 

low-dose CT images. Hsieh KY et al. [159], Janssens N et al. [160], and Usui K et al. [202] 

respectively used DCGAN and CycleGAN to convert low resolution CT images to high 

resolution CT images. 

Regarding the research on MR images, Yang G et al. proposed the DAGAN model 

to remove the aliasing artefacts from MR images [163]. Johnson PM et al. used a 

conditional GAN model to perform MR image motion correction [124]. Yuan Z et al. [165] 

and Liu X et al. [190] used GAN models to perform MR image reconstruction and 

denoising. Mardani M et al. [284], Zhao M et al. [289], Luo S et al. [191], Ota J et al. [195], 

Zhang K et al. [213], and Zhao M et al. [216] used GAN models to improve MR image 

resolution. Similar GAN applications are also used for PET, regular X-Ray, ultrasound, 

and retina images. The research under this topic is summarised in Table 2. 
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Image category Authors 

CT images Mosser L et al. [133], Bai J et al. [134], Hsieh KY et al. [159], Janssens 

N et al. [160],  Wolterink JM et al. [135], Yang Q et al. [136], Yi X et 

al. [137], Choi K et al. [138], Hu Z et al. [139], Tang C et al. [140], 

Wang J et al. [141], Funama Y et al. [142], Harms J et al. [143], 

Podgorsak AR et al. [146], Tien HJ et al. [147], Wang Y et al. [148], 

Deng L[180], Huang Z [185], Huang Z et al. [186], Nakamoto A et al. 

[192], Tan C et al. [199] 

MR images Quan TM et al. [162], Yang G et al. [163], Hamghalam M et al. [164], 

Yuan Z et al. [165], Johnson PM et al. [124], Gomi T et al. [183], Li 

Z et al. [189], Liu X et al. [190], Luo S et al. [191], Ota J et al. [195], 

Ueki W et al. [201], Wang C et al. [204], Wei H et al. [205], Xie H et 

al. [206], Zhang K et al. [213], Zhao M et al. [216], Mardani M et al. 

[284], Zhao M et al. [289], Cui J et al. [292] 

PET images Wang Y et al. [229], Lei Y et al. [231], Armanious K et al. [232], 

Jeong YJ et al. [237], Xue H et al. [238] 

X-Ray images Galbusera F et al. [238], Sun Y et al. [239], Ahn G et al. [242], Bae K 

et al. [243], Yang CJ et al. [244], Zhou Y et al. [245] 

Ultrasound Images Goudarzi S et al. [220], Zhou Z et al. [221], Zhang L et al. [222] 

Retina images Mahapatra D et al. [265] 

Table 2: GAN Research on Image Reconstruction and Enhancement. 

3.3 GAN on Medical Image Synthesis or Augmentation 

Another common research purpose of GAN is image synthesis or augmentation. 

Theoretically, when the GAN models are fully optimized, they can generate synthetic 

images belonging to target domain with good fidelity and diversity [295]. Fidelity means 

the generated images should be looked like the real images; while diversity means the 

generated images should have reasonable random change within the due feature domain. 

If the GAN models are successfully optimized, the generated images are good enough to 
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replace the real ones. This will solve the data-greedy restriction for deep neural networks. 

As a new image augmentation method, the GANs are ideal to solve the imbalanced training 

of medical data, where the data samples of abnormal cases or rare disease are usually 

difficult to collect and be well annotated. Therefore, the applications of GAN for image 

synthesis or augmentation are usually combined with disease diagnosis. Figure 23 shows 

the number of research on medical image synthesis or augmentation in each image 

category. 

 

Figure 23: Publications on Image Synthesis & Augmentation Research. 

Figure 23 indicates that using GAN for image synthesis or data augmentation to 

improve image-based diagnosis and prognosis is common for all image categories though 

the numbers of published research vary among them. It reflects that the research topic is of 

common interest for both gray-scale images (e.g., radiological images) and colored images 

(e.g., cell, endoscopic and histologic images).  

Among the studies on radiological images, Onishi Y et al. used DCGAN to improve 

the classification accuracy of pulmonary nodule from CT images [154]; Babier A et al. 

introduced the KBPGAN as a new data augmentation method to measure the CT scan dose 

[156]. Nneji GU et al. [194] and Roy R et al. [198] used DCGAN as to augment the CT 

image classification performance optimized by low-quality CT image datasets. Dai X et al. 

used a unified GAN model to synthesize MR images [286]. Decourt C et al. [287] and 
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Delannoy Q et al. [173] both proposed to use DCGAN models as a new data augmentation 

approach for semi-supervised learning for insufficiently annotated MR image datasets.   

In addition, many studies on colored medical images such as cell, endoscopic, 

histologic, or retina images also apply the GAN models for data synthesis and 

augmentation. For example, Hu B et al. [254], Levine AB et al. [256], and Lorencin I et al. 

[259] used DCGAN to improve histological diagnosis.  Rau A et al. [248] and de Souza 

LA et al. [249] used DCGAN to enhance endoscopic image diagnosis. Iqbal T et al. [266], 

Zhao H et al. [267], Zheng R et al. [268], and Schlegl T et al. [269] used pix2pix or DCGAN 

models to synthesize the key structures (e.g., retinal fundus and neuronal) that are 

important for medical diagnosis. The relevant studies under this topic are summarised in 

Table 3. 

Image category Authors 

CT images Onishi Y et al. [154], Sandfort V et al. [155], Babier A et al. 

[156], Kawahara D et al. [157], Klages P et al. [158], Nneji GU 

et al.  [194], Roy R et al. [198], Xiong YT et al. [207], Zhang Y 

et al. [215], Zhou H et al. [218] 

MR images Dar SU et al. [169], Gao J et al. [182], Huang P et al. [185], 

Zhang H et al. [211], Zheng C et al. [217], Torrents-Barrena J et 

al. [252], Kazuhiro K et al. [282], Yu B et al. [285], Dai X et al. 

[286], Decourt C et al. [287], Huang Y et al. [288], Yurt M et 

al. [290], Ahmad B et al. [291] 

PET images Islam J et al. [234], Kimura Y et al. [235] 

X-Ray images Guan S et al. [240] 

Ultrasound Images Fujioka T et al. [225], Zhang Q et al. [226], Zhao J et al. [227], 

Fujioka T et al. [228] 

Retina images Iqbal T et al. [266], Zhao H et al. [267], Zheng R et al. [268], 

Schlegl T et al. [269], Yu Z et al. [271], Lazaridis G et al. [272], 

Zhou Y et al. [274] 
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Cell, endoscopic or 

histologic images 

Dirvanauskas D et al. [247], Rau A et al. [248], de Souza LA et 

al. [249], Hu B et al. [254], Levine AB et al. [256], Teramoto A 

et al. [257], Lorencin I et al. [258], Chen YI et al. [260], 

Theagarajan R et al. [262], Hussain S et al. [264] 

Table 3: GAN Research on Image Synthesis & Augmentation. 

3.4 GAN on Medical Image Translation 

Image translation is another common task for radiology to convert images from one 

type to another. The appearance of radiologic images is like gray-scale image. However, 

the images are acquired by different computational mechanisms, thus the anatomical and 

pathological patterns usually demonstrate different among different methods such as 

computed tomography (CT), magnetic resonance (MR), and Positron emission tomography 

(PET). As a DNN architecture, GAN can learn the detailed mapping between two medical 

imaging pattern domains.  With an optimized GAN, the digital images acquired from 

different methods (i.e., CT, MR, or PET) can be effectively converted to each other. This 

function helps the radiologists to maximize their performance to interpret the clinical 

findings without asking the patients to do all types of examinations.  Furthermore, it lowers 

the radiational dose for the examination to protect the patients while keeping the best 

diagnostic performance.  Figure 24 summarises the publications on medical image 

translation in each image category. 

 

   Figure 24: Publications on Image Translation Research. 



 

77 

The most common application of medical images translation is to convert the 

radiologic images between CT and MR images. For example, Fu J et al. introduced the 

sCTcycleGAN to convert MR images to CT images [150]. Lee JH et al. [145] and Hu N et 

al. [184] used cGAN models to perform conversion of CT image to MR images to acquire 

more detail information. Conversely, Nie D et al. [167] and Emami H et al. [168] used 

serialized GAN models to implement MR images to CT images conversions. Another type 

of image translation is to convert PET images to CT images, such as the study by Hu Z et 

al. using a WGAN model to perform attenuation correction and to convert PET to pseudo-

CT images [233]. Bazangani F et al. introduced an E-GAN for translating 3D FDG-PET 

image to MR image. And Burlingame EA et al. reported to use the pix2pix GAN model to 

translate H&E stain histopathological images to immunofluorescence (IF) images [246]. 

The main purpose of the above image translation is to convert the radiologic images 

from a complex format to relatively simple format, such as from PET to MR, then from 

MR to CT, because the latter are easier to be interpret by empirical medical expertise. On 

the other hand, one interesting topic of image translation is seldom involved, i.e., to 

perform the image domain translation from the normal domain to a certain disease domain. 

This idea is intuitive because a medical image with some morbid abnormality can be 

interpreted as: normal patterns + disease patterns. Thus, it becomes the principle of our 

experiment designed. The relevant studies under the image translation topic are 

summarised in Table 4. 

Image category Authors 

CT images Maspero M et al. [144], Lee JH et al. [145], Cai J et al. 

[149], Fu J et al. [150], Hu N et al. [184], Wang CC et al. 

[204] 

MR images Pan Y et al. [166], Nie D et al. [167], Emami H et al. 

[168] 

PET images Bazangani F et al. [178], Armanious K et al. [230], Hu Z 

et al. [233], Shiyam Sundar LK et al. [236] 
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Cell, endoscopic or histologic 

images 

Burlingame EA et al. [246] 

Table 4: GAN Research on Image Translation. 

3.5 GAN on Medical Image Segmentation 

Image segmentation is also a common research topic for GAN since 2017. The 

research objective of using GAN to generate the landmarks or masks for the target organs 

or tissue structures. Compared with whole image synthesis, generating landmarks or image 

masks are easier and requires less computation power, but this functionality provides an 

ideal low-manual-labor solution for medical image segmentation. There are many 

successful studies on GAN for medical image segmentation since 2018, first in the 

application domain of radiologic image segmentation, later extending to other research 

domains such as endoscopic images and retina images. Figure 25 summarises the 

publications on GAN for medical image segmentation in each image category. 

 

   Figure 25: Publications on Image Segmentation Research. 

As shown in Figure 25, the segmentation research mainly focuses on the MR images, 

which accounts for 51.5% (17/33) of the available studies, followed by the applications of 

CT images with 21.2% (7/33). It can be explained by the widely use of CT and MR images 

both for the diagnosis of internal medicine and surgery plan making. The segmentation 
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task by GAN is like image synthesis and augmentation, where the GAN generator is mainly 

used to produce valid mask or landmark for the real images. The image masks / landmarks 

were mainly produced by manual annotation. It was time consuming and usually expensive 

because it requires medical expertise.   The introduction of the GAN to this task is hopefully 

solved this difficulty and meanwhile significantly improves the DNN performance for 

medical image segmentation. 

MR images is produced by the signals of the energy released from stimulated protons 

of the human body in a strong magnetic field and the time the protons are realigned in the 

magnetic field. Therefore, the pixel intensity cannot be simply explained by the density of 

human tissue, but it is determined by the characteristics of different body tissues. The 

features of the difference between organ or tissue borders can be captured and learned by 

the GAN. So, the GAN models can generate clear border landmarks or shape masks for the 

target organs or tissues in the MR images. For example, Huo Y et al. applied the DCGAN 

to segment splenomegaly with MR images [283]. Shi Y et al. [170], Siddiquee MMR et al. 

[171], Carver EN et al. [172], Delannoy Q et al. [173], Conte GM et al. [175] and De Asis-

Cruz J et al. [179] and Duman EA et al. [181] applied conditional GAN or variant GAN 

architecture to performance brain MR images segmentation. Gaj S et al. used conditional 

GAN to segment the knee structure in MR images [174]. Regarding the segmentation 

research on CT images, Sandfort V et al. used CycleGAN for organ segmentation in CT 

scans [155]. He R et al. applied DCGAN for 3D liver segmentation from multiple layers 

of CT scans [151]. Zhang G et al. used DCGAN to segment artery stenosis from CT images 

[152]. Zhang T et al. proposed an architecture called NAGAN for both CT and ultrasound 

image segmentation [153].  And Tyagi S et al. applied a conditional GAN to segment lung 

nodule from CT scans.  

In addition to radiologic images, the GAN-based segmentation is extended to 

segment endoscopic and retina images. Poorneshwaran JM et al. [250] and Yoon D et al. 

[251] both reported to use GAN to segment polyp from endoscopic images. Son J et al. 

applied the pix2pix model to segment retinal vessels and the optic disc from retina images 
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[270]. Liu J et al. proposed a GAN model called A-GAN to segment cell from histologic 

retina images [273]. 

These studies reflect that GAN is improving the DNN performance not only on 

radiological image segmentation but also on multiple sources of medical images. The 

segmentation tasks vary from organs or tissues, to estimate the histologic border of 

heterogeneous structure. All these achievements hopefully improve the DNN performance 

for medical diagnosis and clinical decision making. The relevant studies under the image 

segmentation topic are summarised in Table 5. 

Image category Authors 

CT images Cai J et al. [149], He R et al. [151], Zhang G et al. [152], Zhang 

T et al. [153], Tyagi S et al. [200], van Voorst H et al. [203], 

Zhang L et al. [214] 

MR images Shi Y et al. [170], Siddiquee MMR et al. [171], Carver EN et al. 

[172], Delannoy Q et al. [173], Gaj S et al. [174], Conte GM et 

al. [175], Kossen T et al. [176], Wang W et al. [177], De Asis-

Cruz J et al. [179], Duman EA et al. [181], Kawahara D et al. 

[187], Kossen T et al. [188], Niu K et al. [193], Quintana-

Quintana OJ et al. [197], Yang M et al. [208], Zhu L et al. 

[219], Huo Y et al. [283] 

PET images Islam J et al. [234] 

X-Ray images Zhang Y et al. [241] 

Ultrasound images Han L et al. [223], Torrents-Barrena J et al. [224], Ye H et al. 

[209] 

Cell, endoscopic or 

histologic images 

Poorneshwaran JM et al. [250], Yoon D et al. [251], Gadermayr 

M et al. [263], Lei B et al. [275], Aida S et al. [276] 

Retina Image Son J et al. [270], Liu J et al. [273] 

Table 5: GAN Research on Image Segmentation. 
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3.6 Summary 

In this chapter, we perform a quantitative review on the research of GAN for medical 

image processing. GAN was a new DNN architecture introduced in 2014 [7], however, 

hundreds of GAN studies for multiple purposes have been performed in the world. The 

survey in this chapter performs a quantitative content analysis respectively with five topics: 

GAN for medical image reconstruction and enhancement with 55 papers, GAN for medical 

image synthesis or augmentation with 48 papers, GAN for medical image translation with 

14 papers, GAN for medical image segmentation with 33 papers, and GAN for other 

medical applications with 15 papers.  

The survey indicates the current research effort focuses on image quality 

enhancement, artifact removal and denoising, etc. These applications are based on the GAN 

models like StyleGAN [132]. Other research topic focusing on image synthesis, 

augmentation, translation is based on the GAN models for image-to-image translation such 

as pix2pix [36] and CycleGAN [30]. Last but the most important research topic within the 

latest three years is GAN for medical image segmentation, which mainly achievement by 

the combination of the DCGAN and the U-Net [34,35]. In conclusion, the GAN models 

have successfully expanded the scope of DNN applications and enhanced performance to 

a variety of medical image processing problems. Given the findings of our survey, we can 

expect that the medical research based on GANs models will keep increasing and new 

finding and breakthroughs will be achieved in the near future. 

In the next three chapters of this thesis, we will introduce our new GAN architecture, 

adaptive cycle-consistent adversarial network, or Ad CycleGAN, a new variant of the state-

of-the-art GAN for unpaired image translation to convert medical images from normal 

domain to a desired target disease domain. It provides a new and reliable resolution to 

synthesize medial images with new or rare diseases, which will eventually improve the 

computer-aid diagnosis and healthcare decision to a new level. 
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Chapter 4 Adaptive Cycle-Consistent Adversarial Network 

In this chapter, we introduce a new GAN architecture named adaptive cycle-

consistent adversarial network, or Ad CycleGAN to perform medical image translation 

from the normal domain to a particular disease domain. Image translation is considered as 

a sub-task of image synthesis and augmentation. Its goal is to synthesize the medical 

images carrying the designated disease patterns from normal images. This function satisfies 

the need of disease images generation because the acquisition of medical images with 

disease patterns is more difficult than normal images.  

The image translation tasks can be done by the generative networks. In the next 

section, we will introduce the two mainstream generative networks: variant autoencoder 

(VAE) and generative adversarial networks (GAN). Then we will go into details of the 

cycle-consistent adversarial network (CycleGAN), the state-of-the-art GAN architecture 

for unpaired images translation. Next, the pretrained criterion mechanism and its role in 

CycleGAN optimization will be discussed which leads to the overall architecture of the 

new Ad CycleGAN. Finally, we will end up with a further discussion on the evaluation 

metric for the synthetic images. 

4.1 Generative Networks for Image Synthesis 

The generative models are a series of machine learning algorithms that can learn the 

data distribution patterns from the training dataset in the unsupervised manner, then they 

can generate new data with reasonable variations given the learned distribution. Deep 

generative learning or generative DNN, is an unsupervised learning approach to learn the 

training data distribution with a given DNN architecture, then it can generate new data 

points belonging to the learned distribution with random variance.  However, the 

generative DNN cannot either explicitly or implicitly learn the identical distribution of the 

training data, but it can approximate the true parameters by different modeling techniques. 

There are two main methods for generative DNN: variational autoencoder (VAE) and 

generative adversarial networks (GAN). 
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4.1.1 Variational Autoencoder 
Variational autoencoder, or VAE is a generative model introduced in 2013 [295]. 

Given the observed dataset 𝑋𝑋 = {𝑥𝑥(1),𝑥𝑥(2), … , 𝑥𝑥(𝑖𝑖)}, a VAE is composed of two networks. 

The encoder is a DNN parameterized by 𝜙𝜙 to estimate the posterior distribution of the 

latent variable z given X: 𝑞𝑞𝜙𝜙(𝑧𝑧|𝑋𝑋), where the training data points are taken as observations 

to estimate the parameters of the conditional distribution of the latent representation Z. The 

decoder is another DNN parameterized by 𝜃𝜃 to estimate the conditional distribution of the 

observed data  𝑒𝑒𝜃𝜃(𝑋𝑋|𝑧𝑧) , where the input is a sample z (usually the outputs from the 

encoder). The optimization objective of a VAE can be written as: 

    −ℒ(𝜃𝜃,𝜙𝜙;𝑋𝑋) =  𝜔𝜔 ∙ 𝐷𝐷𝐾𝐾𝐾𝐾(𝑞𝑞𝜙𝜙(𝑧𝑧|𝑋𝑋)|�𝑒𝑒𝜃𝜃(𝑧𝑧)� + 𝔼𝔼𝑞𝑞𝜙𝜙�𝑧𝑧�𝑋𝑋�[−𝑙𝑙𝑙𝑙𝑙𝑙𝑒𝑒𝜃𝜃(𝑋𝑋|𝑧𝑧)]          (4.1) 

where the reverse Kullback-Leibler (KL) divergence is to measure the distance between 

posterior distribution of z ( 𝑞𝑞𝜙𝜙(𝑧𝑧|𝑋𝑋) ) parameterized by the encoder and the prior 

distribution of z (𝑒𝑒𝜃𝜃(𝑧𝑧)) parametrized by the decoder. The second term of the right side of 

Formula 4.1 is the expected negative log-likelihood to measure the expected error of 

reconstructing the data points belonging to X from the latent space Z. We aim to maximize 

the log-likelihood of 𝑙𝑙𝑙𝑙𝑙𝑙𝑒𝑒𝜃𝜃(𝑥𝑥) ≥ 𝐸𝐸𝐿𝐿𝐸𝐸𝐸𝐸, where ELBO is the evidence lower bound. We 

let 𝐸𝐸𝐿𝐿𝐸𝐸𝐸𝐸 =  ℒ(𝜃𝜃,𝜙𝜙;𝑋𝑋). The 𝑙𝑙𝑙𝑙𝑙𝑙𝑒𝑒𝜃𝜃(𝑥𝑥) will be maximized when the negative ELBO is 

minimized. There are two methods to solve the ELBO minimization problem: calculating 

the analytic KL divergence or using the reparameterization trick. Given the GPU support 

in our experiments, we choose to compute the analytic KL divergence for the solution. In 

addition, the weight (𝜔𝜔) of the KL divergence term is a crucial hyperparameter for VAE 

performance. A too small 𝜔𝜔 cannot effectively regularizing the 𝑞𝑞𝜙𝜙(𝑧𝑧|𝑋𝑋) term so the z 

sampled from 𝑞𝑞𝜙𝜙(𝑧𝑧) will be from a very low-density position of 𝑞𝑞𝜙𝜙(𝑧𝑧|𝑋𝑋). On the contrary, 

when 𝜔𝜔 is too large, the distance between the posterior distribution and prior distribution, 

resulting in the loss of diversity. In our experiments, we set the 𝜔𝜔=0.01 as the KL 

divergence weight or VAE optimization. For image generation, we use 2D convolutional 

layers to down-sampling (stride=2) the feature maps for the VAE encoder and use 2D 
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transpose convolutional layers to up-sampling (stride=2) the latent variables back to input 

images dimension for the VAE decoder. 

4.1.2 Cycle-consistent Adversarial Network (CycleGAN) 
Cycle-consistent adversarial network, or CycleGAN is the state-of-the-art 

conditional generative adversarial network (CGAN) for unpaired image to image 

translation. A typical Cycle GAN uses two generators and two discriminators to learn the 

mapping of two distributions by optimizing with a complex objective and reaching a state 

of adversarial equilibrium. The general architecture of a CycleGAN is illustrated in Figure 

26. 

 

   Figure 26: CycleGAN Architecture. 

During optimization, the objective of the CycleGAN has three components: the 

adversarial loss, the cycle consistency loss, and the identity loss. The adversarial loss 

follows the original GAN design to measure the difference of the generated images and the 

target images. As shown in Figure 4.1, there are two pairs of generators and discriminators 

in our general model. 𝐺𝐺 and 𝐷𝐷𝑌𝑌 (Fig. 1) aim to adversarially generate and distinguish the 

images belong to domain X and the images belonging to domain Y, i.e., 

𝑚𝑚𝑠𝑠𝑠𝑠𝐺𝐺𝑚𝑚𝑎𝑎𝑥𝑥𝐷𝐷𝑌𝑌ℒ𝐺𝐺𝐺𝐺𝑁𝑁(𝐺𝐺,𝐷𝐷𝑌𝑌 ,𝑋𝑋,𝑌𝑌). The optimization objective is written as: 

     ℒ𝐺𝐺𝐺𝐺𝑁𝑁(𝐺𝐺,𝐷𝐷𝑌𝑌,𝑋𝑋,𝑌𝑌) =  𝔼𝔼𝑦𝑦~𝑝𝑝𝑑𝑑𝑑𝑑𝑡𝑡𝑑𝑑(𝑦𝑦)[logD𝑌𝑌(𝑦𝑦)] + 𝔼𝔼𝑥𝑥~𝑝𝑝𝑑𝑑𝑑𝑑𝑡𝑡𝑑𝑑(𝑥𝑥)[log (1 − 𝐷𝐷𝑌𝑌(𝐺𝐺(𝑥𝑥))]            (4.2)         
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where the data distribution of X and Y are denoted as 𝑥𝑥~𝑒𝑒𝑑𝑑𝑎𝑎𝑡𝑡𝑎𝑎(𝑥𝑥), and 𝑦𝑦~𝑒𝑒𝑑𝑑𝑎𝑎𝑡𝑡𝑎𝑎(𝑦𝑦). On 

the other hand, 𝐹𝐹  and 𝐷𝐷𝑋𝑋  (Figure4.1) aim to adversarially generate and distinguish the 

generated and real images belonging to domain Y, i.e. 𝑚𝑚𝑠𝑠𝑠𝑠𝐹𝐹𝑚𝑚𝑎𝑎𝑥𝑥𝐷𝐷𝑋𝑋ℒ𝐺𝐺𝐺𝐺𝑁𝑁(𝐹𝐹,𝐷𝐷𝑋𝑋 ,𝑌𝑌,𝑋𝑋), the 

corresponding objective is writing as: 

        ℒ𝐺𝐺𝐺𝐺𝑁𝑁(𝐹𝐹,𝐷𝐷𝑋𝑋,𝑌𝑌,𝑋𝑋) =  𝔼𝔼𝑥𝑥~𝑝𝑝𝑑𝑑𝑑𝑑𝑡𝑡𝑑𝑑(𝑥𝑥)[logD𝑋𝑋(𝑥𝑥)] + 𝔼𝔼𝑦𝑦~𝑝𝑝𝑑𝑑𝑑𝑑𝑡𝑡𝑑𝑑(𝑦𝑦)[log (1 −𝐷𝐷𝑋𝑋(𝐹𝐹(𝑦𝑦))]         (4.3) 

Thus, the total adversarial loss during a single iteration is summation of the loss from 

Formula 4.2 and formula 4.3, i.e., ℒ𝐺𝐺𝐺𝐺𝑁𝑁(𝐺𝐺,𝐷𝐷𝑌𝑌,𝑋𝑋,𝑌𝑌) + ℒ𝐺𝐺𝐺𝐺𝑁𝑁(𝐹𝐹,𝐷𝐷𝑋𝑋 ,𝑌𝑌,𝑋𝑋). The adversarial 

optimization can theoretically learn the mappings of G and F to produce identical images. 

However, this goal is unrealistic in two folds: first, given the ideal situation, the generator 

networks can randomly map an input image from the source domain to a random image in 

the target domain, and it is not our desired outcome. Second, we need to guarantee that the 

generated images have valid shapes and other uncommon elements within a reasonable 

scope of the real images. We add the cycle-consistent losses to reversely translate the 

images back to their original domains, i.e., 𝑥𝑥 → 𝐺𝐺(𝑥𝑥) → 𝐹𝐹(𝐺𝐺(𝑥𝑥)) ≈ 𝑥𝑥  (forward cycle 

consistency), and 𝑦𝑦 → 𝐹𝐹(𝑦𝑦) → 𝐺𝐺(𝐹𝐹(𝑦𝑦)) ≈ 𝑦𝑦  (backward cycle consistency). The total 

cycle-consistent loss is written as: 

        ℒ𝑐𝑐𝑦𝑦𝑐𝑐(𝐺𝐺,𝐹𝐹) =  𝔼𝔼𝑥𝑥~𝑝𝑝𝑑𝑑𝑑𝑑𝑡𝑡𝑑𝑑(𝑥𝑥) ��𝐹𝐹�𝐺𝐺(𝑥𝑥)� − 𝑥𝑥�1� + 𝔼𝔼𝑦𝑦~𝑝𝑝𝑑𝑑𝑑𝑑𝑡𝑡𝑑𝑑(𝑦𝑦)[�𝐺𝐺�𝐹𝐹(𝑦𝑦)� − 𝑦𝑦�1]          (4.4) 

Furthermore, an identity loss is added to measure how close the generated image to 

the real image itself if the real image goes through the CycleGAN generator, i.e., 𝑥𝑥 →

𝐹𝐹(𝑥𝑥) ≈ 𝑥𝑥, and 𝑦𝑦 → 𝐺𝐺(𝑦𝑦) ≈ 𝑦𝑦. Adding to identity loss to the total loss of the generator can 

help to preserve the original color. The identity loss can be expressed as: 

        ℒ𝑖𝑖𝑑𝑑𝑒𝑒𝑛𝑛(𝐺𝐺,𝐹𝐹) =  𝔼𝔼𝑥𝑥~𝑝𝑝𝑑𝑑𝑑𝑑𝑡𝑡𝑑𝑑(𝑥𝑥)[‖𝐹𝐹(𝑥𝑥) − 𝑥𝑥‖1] + 𝔼𝔼𝑦𝑦~𝑝𝑝𝑑𝑑𝑑𝑑𝑡𝑡𝑑𝑑(𝑦𝑦)[‖𝐺𝐺(𝑦𝑦) − 𝑦𝑦‖1]                    (4.5) 

The full generator loss of the CycleGAN is written as the summation of the above 

three loss functions: 

       ℒ𝑡𝑡𝑡𝑡𝑡𝑡𝑎𝑎𝑙𝑙 = ℒ𝐺𝐺𝐺𝐺𝑁𝑁(𝐺𝐺,𝐷𝐷𝑌𝑌,𝑋𝑋,𝑌𝑌) + ℒ𝐺𝐺𝐺𝐺𝑁𝑁(𝐹𝐹,𝐷𝐷𝑋𝑋,𝑌𝑌,𝑋𝑋) + 𝜆𝜆ℒ𝑐𝑐𝑦𝑦𝑐𝑐(𝐺𝐺,𝐹𝐹) + 𝜎𝜎ℒ𝑖𝑖𝑑𝑑𝑒𝑒𝑛𝑛(𝐺𝐺,𝐹𝐹)         (4.6) 

where  𝜆𝜆 and 𝜎𝜎  are the parameters to respectively adjust the importance of the cycle-

consistent loss, and the identity loss during the model optimization. Thus, the objective for 

the whole model optimization is to solve: 
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                  𝐺𝐺∗,𝐹𝐹∗ = arg𝑚𝑚𝑠𝑠𝑠𝑠𝐺𝐺,𝐹𝐹 𝑚𝑚𝑎𝑎𝑥𝑥𝐷𝐷𝑋𝑋,𝐷𝐷𝑌𝑌ℒ(𝐺𝐺,𝐹𝐹,𝐷𝐷𝑋𝑋 ,𝐷𝐷𝑌𝑌)                                      (4.7) 

In the experiments we find that though the original CycleGAN models can produce 

visually acceptable synthetic images, but the quality of the images by CycleGAN is lower 

than the new Ad CycleGAN based on the quantitative evaluation. The pseudo code of the 

optimization algorithm for the CycleGAN model is presented in Algorithm 4.1 

 

Algorithm 4.1 CycleGAN optimization 

1: for number of epochs do 

2:       for number of batches do 

3: 

4: 
             Sample minibatch ← {𝑥𝑥(𝑖𝑖)}𝑖𝑖=1𝑚𝑚 ∈ 𝑋𝑋 

             Sample minibatch ← �𝑦𝑦(𝑗𝑗)�𝑗𝑗=1
𝑚𝑚 ∈ 𝑌𝑌 

5: 

6: 

7: 

              Generate m synthetic samples of 𝐺𝐺(𝑥𝑥)𝑎𝑎𝑠𝑠𝑑𝑑 𝐹𝐹(𝑦𝑦) 

                     𝑠𝑠𝑦𝑦𝑠𝑠𝑡𝑡ℎ𝑒𝑒𝑡𝑡𝑠𝑠𝑑𝑑 𝑋𝑋: 𝑋𝑋 → 𝐺𝐺(𝑥𝑥) 

                     𝑠𝑠𝑦𝑦𝑠𝑠𝑡𝑡ℎ𝑒𝑒𝑡𝑡𝑠𝑠𝑑𝑑 𝑌𝑌: 𝑌𝑌 → 𝐹𝐹(𝑦𝑦) 

8: 

9: 

10: 

              Compute the Adversarial loss 

                     ℒ𝐺𝐺𝐺𝐺𝑁𝑁(𝐺𝐺,𝐷𝐷𝑌𝑌,𝑋𝑋,𝑌𝑌) =  𝔼𝔼𝑦𝑦~𝑝𝑝�𝑦𝑦(𝑚𝑚)�[logD𝑌𝑌(𝑦𝑦)] + 𝔼𝔼𝑥𝑥~𝑝𝑝�𝑥𝑥(𝑚𝑚)�[log (1− 𝐷𝐷𝑌𝑌�𝐺𝐺(𝑥𝑥)�)] 

                     ℒ𝐺𝐺𝐺𝐺𝑁𝑁(𝐹𝐹,𝐷𝐷𝑋𝑋,𝑌𝑌,𝑋𝑋) =  𝔼𝔼𝑥𝑥~𝑝𝑝𝑑𝑑𝑑𝑑𝑡𝑡𝑑𝑑(𝑥𝑥)[logD𝑋𝑋(𝑥𝑥)] + 𝔼𝔼𝑦𝑦~𝑝𝑝𝑑𝑑𝑑𝑑𝑡𝑡𝑑𝑑(𝑦𝑦)[log (1−

𝐷𝐷𝑋𝑋�𝐹𝐹(𝑦𝑦)�)] 

11: 

12: 

13: 

             Generate m cycle sample of 𝐹𝐹(𝐺𝐺(𝑥𝑥))𝑎𝑎𝑠𝑠𝑑𝑑 𝐺𝐺(𝐹𝐹(𝑦𝑦)) 

                     𝐶𝐶𝑦𝑦𝑑𝑑𝑙𝑙𝑒𝑒 𝑋𝑋: 𝐺𝐺(𝑥𝑥) → 𝐹𝐹�𝐺𝐺(𝑥𝑥)� 

                     𝐶𝐶𝑦𝑦𝑑𝑑𝑙𝑙𝑒𝑒 𝑌𝑌: 𝐹𝐹(𝑦𝑦) → 𝐺𝐺(𝐹𝐹(𝑦𝑦)) 

14: 

15: 

              Compute the Cycle loss 

                     ℒ𝑐𝑐𝑦𝑦𝑐𝑐(𝐺𝐺,𝐹𝐹) =  𝔼𝔼𝑥𝑥~𝑝𝑝�𝑥𝑥(𝑚𝑚)� ��𝐹𝐹�𝐺𝐺(𝑥𝑥)� − 𝑥𝑥�1� + 𝔼𝔼𝑦𝑦~𝑝𝑝�𝑦𝑦(𝑚𝑚)�[�𝐺𝐺�𝐹𝐹(𝑦𝑦)� − 𝑦𝑦�1] 

16: 

17: 

18: 

              Generate m identical sample of 𝐹𝐹(𝑥𝑥)𝑎𝑎𝑠𝑠𝑑𝑑 𝐺𝐺(𝑦𝑦) 
                   𝑠𝑠𝑑𝑑𝑒𝑒𝑠𝑠𝑡𝑡𝑠𝑠𝑑𝑑𝑎𝑎𝑙𝑙 𝑋𝑋:𝑋𝑋 → 𝐹𝐹(𝑥𝑥) 
                      𝑠𝑠𝑑𝑑𝑒𝑒𝑠𝑠𝑡𝑡𝑠𝑠𝑑𝑑𝑎𝑎𝑙𝑙 𝑌𝑌:𝑌𝑌 → 𝐺𝐺(𝑦𝑦) 

19: 

20: 

              Compute the identity loss 

                     ℒ𝑖𝑖𝑑𝑑𝑒𝑒𝑛𝑛(𝐺𝐺,𝐹𝐹) =  𝔼𝔼𝑥𝑥~𝑒𝑒�𝑥𝑥(𝑚𝑚)�[‖𝐹𝐹(𝑥𝑥) − 𝑥𝑥‖1] + 𝔼𝔼𝑦𝑦~𝑒𝑒�𝑦𝑦(𝑚𝑚)�[‖𝐺𝐺(𝑦𝑦) − 𝑦𝑦‖1] 

21:               Compute the total generator loss 



 

87 

22:                      ℒ𝑡𝑡𝑡𝑡𝑡𝑡𝑎𝑎𝑙𝑙 = ℒ𝐺𝐺𝐺𝐺𝑁𝑁(𝐺𝐺,𝐷𝐷𝑌𝑌,𝑋𝑋,𝑌𝑌) + ℒ𝐺𝐺𝐺𝐺𝑁𝑁(𝐹𝐹,𝐷𝐷𝑋𝑋,𝑌𝑌,𝑋𝑋) + 𝜆𝜆ℒ𝑐𝑐𝑦𝑦𝑐𝑐(𝐺𝐺,𝐹𝐹) + 𝜎𝜎ℒ𝑖𝑖𝑑𝑑𝑒𝑒𝑛𝑛(𝐺𝐺,𝐹𝐹) 

23: 

24: 

25: 

               Update the Discriminator 𝐷𝐷𝑋𝑋 𝑎𝑎𝑠𝑠𝑑𝑑 𝐷𝐷𝑌𝑌 

                      𝑚𝑚𝑎𝑎𝑥𝑥𝐷𝐷𝑋𝑋𝐿𝐿𝐺𝐺𝐺𝐺𝑁𝑁(𝐹𝐹,𝐷𝐷𝑋𝑋,𝑋𝑋,𝑌𝑌) 

                      𝑚𝑚𝑎𝑎𝑥𝑥𝐷𝐷𝑌𝑌𝐿𝐿𝐺𝐺𝐺𝐺𝑁𝑁(𝐺𝐺,𝐷𝐷𝑦𝑦,𝑋𝑋,𝑌𝑌) 

26: 

27: 

               Update the Generators 𝐺𝐺,𝐹𝐹 

                     𝑚𝑚𝑠𝑠𝑠𝑠𝐺𝐺,𝐹𝐹𝐿𝐿(𝐺𝐺,𝐹𝐹,𝐷𝐷𝑋𝑋,𝐷𝐷𝑌𝑌) 

28:       end do 

29: end do 

 

4.2 Role of the Criterion in Cycle GAN Optimization 

The term criterion originates from the concept of critics introduced by Arjovsky M 

et al. for the optimization of their Wasserstein GAN (WGAN) model [28]. Its strategy is to 

use the discriminator as a critic to evaluate the quality of the generated images against the 

real ones instead of estimating the probability of the generated images being fake. To 

extend this idea, we can add extra criterion to evaluate the generated images from multiple 

aspects except simply classifying as real or fake. The errors from different criteria can be 

finally congregated as classification or criterion loss as a new component of the total 

generator loss.  

In our new model, we introduce two loss terms: the cycle criterion loss and the 

identity criterion loss. Both are estimated by a pretrained residual network to assess the 

likelihood of the generated images belong to the correct class. In other word, the pretrained 

network is classifier to evaluate the binary cross entropy from the output of the last layer 

activation. The joint critics loss is written as: 

                     ℒ𝑐𝑐𝑟𝑟𝑖𝑖𝑡𝑡𝑖𝑖𝑐𝑐𝑠𝑠 = ℒ𝑐𝑐−𝑐𝑐𝑦𝑦𝑐𝑐𝑙𝑙𝑒𝑒 + ℒ𝑐𝑐−𝑖𝑖𝑑𝑑𝑒𝑒𝑛𝑛𝑡𝑡𝑖𝑖𝑡𝑡𝑦𝑦                                                    (4.8) 
where the cycle criterion loss is to measure the similarity of 𝑥𝑥 ~ 𝐹𝐹(𝐺𝐺(𝑥𝑥))  and of 

𝑦𝑦 ~ 𝐺𝐺(𝐹𝐹(𝑦𝑦)), and the identity criterion loss is to measure the similarity of 𝑥𝑥 ~ 𝐹𝐹(𝑥𝑥) and 

𝑦𝑦 ~ 𝐺𝐺(𝑦𝑦). In other words, like the cycle loss and identity loss, the cycle criterion loss 

ℒ𝑐𝑐−𝑐𝑐𝑦𝑦𝑐𝑐𝑙𝑙𝑒𝑒  quantitatively measures whether of the back-translated images are still be 
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classified as the original class, and the identity criterion loss ℒ𝑐𝑐−𝑖𝑖𝑑𝑑𝑒𝑒𝑛𝑛𝑡𝑡𝑖𝑖𝑡𝑡𝑦𝑦  quantitatively 

measures whether the trained generators can produce real images from a real observed 

sample that still consistent to the same class. 

In addition, when the Cycle GAN training reaches an adversarial equilibrium, the 

critics loss can periodically add an extra oscillation momentum to the stable condition to 

push the generator progress to learn more details. The new ℒ𝑐𝑐𝑟𝑟𝑖𝑖𝑡𝑡𝑖𝑖𝑐𝑐𝑠𝑠 term is considered as a 

regularization method to prevent the saturated status of the GAN optimization because it 

provides a method to make the GAN training controllable to a certain degree. However, we 

need to add an empirical decay factor to the critics loss term to control its side effect of 

breaking the adversarial equilibrium leading the GAN model to learn the loss patterns again 

through more iterations. 

4.3 Ad CycleGAN 

Based on the above discussion, the newly proposed Ad Cycle GAN consists of two 

generators and discriminators to learning the mapping between the image domain, and a 

pretrained classifier as the criterion to ensure the generated images containing the key 

discriminative patterns which are likely to be ignored due to the homogenous or similarity 

of the two image domains. The total loss function of the generators in the Ad Cycle GAN 

consists of four parts: 

• Adversarial loss: ℒ𝐺𝐺𝐺𝐺𝑁𝑁(𝐺𝐺,𝐷𝐷𝑌𝑌 ,𝑋𝑋,𝑌𝑌) + ℒ𝐺𝐺𝐺𝐺𝑁𝑁(𝐹𝐹,𝐷𝐷𝑋𝑋 ,𝑌𝑌,𝑋𝑋) 

• Cycle consistency loss: ℒ𝑐𝑐𝑦𝑦𝑐𝑐𝑙𝑙𝑒𝑒(𝐺𝐺,𝐹𝐹) 

• Identity loss: ℒ𝑖𝑖𝑑𝑑𝑒𝑒𝑛𝑛(𝐺𝐺,𝐹𝐹) 

• Criterion Loss: ℒ𝑐𝑐𝑟𝑟𝑖𝑖𝑡𝑡𝑖𝑖𝑐𝑐𝑠𝑠 = ℒ𝑐𝑐−𝑐𝑐𝑦𝑦𝑐𝑐𝑙𝑙𝑒𝑒 + ℒ𝑐𝑐−𝑖𝑖𝑑𝑑𝑒𝑒𝑛𝑛𝑡𝑡𝑖𝑖𝑡𝑡𝑦𝑦 

The total generator loss of the original CycleGAN in Formula 4.6 is revised as: 

ℒ𝑡𝑡𝑡𝑡𝑡𝑡𝑎𝑎𝑙𝑙 = [ℒ𝐺𝐺𝐺𝐺𝑁𝑁(𝐺𝐺,𝐷𝐷𝑌𝑌 ,𝑋𝑋,𝑌𝑌) + ℒ𝐺𝐺𝐺𝐺𝑁𝑁(𝐹𝐹,𝐷𝐷𝑋𝑋,𝑌𝑌,𝑋𝑋)] + 𝜆𝜆ℒ𝑐𝑐𝑦𝑦𝑐𝑐𝑙𝑙𝑒𝑒(𝐺𝐺,𝐹𝐹) + 𝜆𝜆ℒ𝑖𝑖𝑑𝑑𝑒𝑒𝑛𝑛(𝐺𝐺,𝐹𝐹) + 𝜅𝜅(𝜑𝜑ℒ𝑐𝑐𝑟𝑟𝑖𝑖𝑡𝑡𝑖𝑖𝑐𝑐𝑠𝑠)   (4.9) 

In the Ad CycleGAN architecture, the generators follow the U-Net architecture with 

skip connections to reduce the input feature size from 64 by 64 to 1 by 1 then to restore to 

64 by 64. The discriminators follow the PatchGAN architecture with an output of 4-by-4-

by-1 feature map (given the low resolution of our dataset) to determine with the images are 
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real or fake. We choose to use the binary cross entropy as the objective function for the 

discriminator loss and the adversarial loss terms for the generators. The cycle consistency 

loss and the identity loss use the mean of absolute error (MAE) function as the objective. 

The terms of the criterion loss are measured by the sparse categorical cross entropy as the 

same method as how the pretrained criterion was optimized. Though some studies 

recommend using the unbounded smooth loss function such as to optimize the GAN 

models such as Wasserstein loss or least square loss (MSE) [28, 296]. Empirically, the 

choice of loss functions is mainly based on the components of the total loss objective. If 

all errors can be measured within similar scales, using the unbounded loss functions is 

straightforward and easier for the overall GAN optimization. However, if the GAN 

architecture consists of many components like this case, using hypermeters to adjust the 

importance of different terms or to determine the frequency of loss injection to the total 

loss can provide a more flexible option for GAN optimization as described in Formula 4.9. 

The Ad Cycle GAN architecture is illustrated in Figure 27. And the pseudo code of the 

optimization algorithm for the Ad CycleGAN model is presented in Algorithm 4.2. 

 

 

   Figure 27: Ad CycleGAN Architecture. 
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Algorithm 4.2 Ad CycleGAN optimization 
1: for number of epochs do 

2:       for number of batches do 

3: 

4: 
             Sample minibatch ← {𝑥𝑥(𝑖𝑖)}𝑖𝑖=1𝑚𝑚 ∈ 𝑋𝑋 

             Sample minibatch ← �𝑦𝑦(𝑗𝑗)�𝑗𝑗=1
𝑚𝑚 ∈ 𝑌𝑌 

5: 

6: 

7: 

              Generate m synthetic samples of 𝐺𝐺(𝑥𝑥)𝑎𝑎𝑠𝑠𝑑𝑑 𝐹𝐹(𝑦𝑦) 

                     𝑠𝑠𝑦𝑦𝑠𝑠𝑡𝑡ℎ𝑒𝑒𝑡𝑡𝑠𝑠𝑑𝑑 𝑋𝑋: 𝑋𝑋 → 𝐺𝐺(𝑥𝑥) 

                     𝑠𝑠𝑦𝑦𝑠𝑠𝑡𝑡ℎ𝑒𝑒𝑡𝑡𝑠𝑠𝑑𝑑 𝑌𝑌: 𝑌𝑌 → 𝐹𝐹(𝑦𝑦) 

8: 

9: 

10: 

              Compute the Adversarial loss 

                     ℒ𝐺𝐺𝐺𝐺𝑁𝑁(𝐺𝐺,𝐷𝐷𝑌𝑌,𝑋𝑋,𝑌𝑌) =  𝔼𝔼𝑦𝑦~𝑝𝑝�𝑦𝑦(𝑚𝑚)�[logD𝑌𝑌(𝑦𝑦)] + 𝔼𝔼𝑥𝑥~𝑝𝑝�𝑥𝑥(𝑚𝑚)�[log (1− 𝐷𝐷𝑌𝑌�𝐺𝐺(𝑥𝑥)�)] 

                     ℒ𝐺𝐺𝐺𝐺𝑁𝑁(𝐹𝐹,𝐷𝐷𝑋𝑋,𝑌𝑌,𝑋𝑋) =  𝔼𝔼𝑥𝑥~𝑝𝑝𝑑𝑑𝑑𝑑𝑡𝑡𝑑𝑑(𝑥𝑥)[logD𝑋𝑋(𝑥𝑥)] + 𝔼𝔼𝑦𝑦~𝑝𝑝𝑑𝑑𝑑𝑑𝑡𝑡𝑑𝑑(𝑦𝑦)[log (1−

𝐷𝐷𝑋𝑋�𝐹𝐹(𝑦𝑦)�)] 

11: 

12: 

13: 

             Generate m cycle sample of 𝐹𝐹(𝐺𝐺(𝑥𝑥))𝑎𝑎𝑠𝑠𝑑𝑑 𝐺𝐺(𝐹𝐹(𝑦𝑦)) 

                     𝐶𝐶𝑦𝑦𝑑𝑑𝑙𝑙𝑒𝑒 𝑋𝑋: 𝐺𝐺(𝑥𝑥) → 𝐹𝐹�𝐺𝐺(𝑥𝑥)� 

                     𝐶𝐶𝑦𝑦𝑑𝑑𝑙𝑙𝑒𝑒 𝑌𝑌: 𝐹𝐹(𝑦𝑦) → 𝐺𝐺(𝐹𝐹(𝑦𝑦)) 

14: 

15: 

              Compute the Cycle loss 

                     ℒ𝑐𝑐𝑦𝑦𝑐𝑐(𝐺𝐺,𝐹𝐹) =  𝔼𝔼𝑥𝑥~𝑝𝑝�𝑥𝑥(𝑚𝑚)� ��𝐹𝐹�𝐺𝐺(𝑥𝑥)� − 𝑥𝑥�1� + 𝔼𝔼𝑦𝑦~𝑝𝑝�𝑦𝑦(𝑚𝑚)�[�𝐺𝐺�𝐹𝐹(𝑦𝑦)� − 𝑦𝑦�1] 

16: 

17: 

18: 

              Generate m identical sample of 𝐹𝐹(𝑥𝑥)𝑎𝑎𝑠𝑠𝑑𝑑 𝐺𝐺(𝑦𝑦) 
                   𝑠𝑠𝑑𝑑𝑒𝑒𝑠𝑠𝑡𝑡𝑠𝑠𝑑𝑑𝑎𝑎𝑙𝑙 𝑋𝑋:𝑋𝑋 → 𝐹𝐹(𝑥𝑥) 
                      𝑠𝑠𝑑𝑑𝑒𝑒𝑠𝑠𝑡𝑡𝑠𝑠𝑑𝑑𝑎𝑎𝑙𝑙 𝑌𝑌:𝑌𝑌 → 𝐺𝐺(𝑦𝑦) 

19: 

20: 

              Compute the identity loss 

                     ℒ𝑖𝑖𝑑𝑑𝑒𝑒𝑛𝑛(𝐺𝐺,𝐹𝐹) =  𝔼𝔼𝑥𝑥~𝑒𝑒�𝑥𝑥(𝑚𝑚)�[‖𝐹𝐹(𝑥𝑥) − 𝑥𝑥‖1] + 𝔼𝔼𝑦𝑦~𝑒𝑒�𝑦𝑦(𝑚𝑚)�[‖𝐺𝐺(𝑦𝑦) − 𝑦𝑦‖1] 

21:              Compute the criterion loss for cycle sample: ℒ𝑐𝑐−𝑐𝑐𝑦𝑦𝑐𝑐𝑙𝑙𝑒𝑒 

22:              Compute the criterion loss for identical sample: ℒ𝑐𝑐−𝑖𝑖𝑑𝑑𝑒𝑒𝑛𝑛𝑡𝑡𝑖𝑖𝑡𝑡𝑦𝑦 

23: 

24: 

             Compute the total generator loss 
                   ℒ𝑡𝑡𝑡𝑡𝑡𝑡𝑎𝑎𝑙𝑙 = [ℒ𝐺𝐺𝐺𝐺𝐺𝐺(𝐺𝐺,𝐷𝐷𝑌𝑌,𝑋𝑋,𝑌𝑌) + ℒ𝐺𝐺𝐺𝐺𝐺𝐺(𝐹𝐹,𝐷𝐷𝑋𝑋,𝑌𝑌,𝑋𝑋)] + 𝜆𝜆ℒ𝑑𝑑𝑦𝑦𝑑𝑑𝑙𝑙𝑒𝑒(𝐺𝐺,𝐹𝐹) + 𝜆𝜆ℒ𝑠𝑠𝑑𝑑𝑒𝑒𝑠𝑠(𝐺𝐺,𝐹𝐹) + 𝜅𝜅(𝜑𝜑ℒ𝑑𝑑𝑜𝑜𝑠𝑠𝑡𝑡𝑠𝑠𝑑𝑑𝑠𝑠) 

25: 

26: 

27: 

               Update the Discriminator 𝐷𝐷𝑋𝑋 𝑎𝑎𝑠𝑠𝑑𝑑 𝐷𝐷𝑌𝑌 

                      𝑚𝑚𝑎𝑎𝑥𝑥𝐷𝐷𝑋𝑋𝐿𝐿𝐺𝐺𝐺𝐺𝑁𝑁(𝐹𝐹,𝐷𝐷𝑋𝑋,𝑋𝑋,𝑌𝑌) 

                      𝑚𝑚𝑎𝑎𝑥𝑥𝐷𝐷𝑌𝑌𝐿𝐿𝐺𝐺𝐺𝐺𝑁𝑁(𝐺𝐺,𝐷𝐷𝑦𝑦,𝑋𝑋,𝑌𝑌) 
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28: 

29: 

               Update the Generators 𝐺𝐺,𝐹𝐹 

                     𝑚𝑚𝑠𝑠𝑠𝑠𝐺𝐺,𝐹𝐹𝐿𝐿(𝐺𝐺,𝐹𝐹,𝐷𝐷𝑋𝑋,𝐷𝐷𝑌𝑌) 

30:       end do 

31: end do 

 

4.4 Evaluation Metrics 

In this section, we will discuss the evaluation metrics for the generated images. The 

performance evaluation of GAN networks is usually subjective and remains as an open 

problem [42]. Since our research objective is to generated synthetic medical images with 

good fidelity and diversity, we need to measure both the quality of the images and ensure 

the generated images belonging to the correct class, i.e., carrying the diagnostic significant 

patterns. The latter task is simple and straightforward because we can reuse the high-

performance criterion to estimate the accuracy of the classification. As to measure the 

quality of the synthetic images, some quantitative metrics are selected. 

The assessment of image quality means to quantitatively measures the degradation 

of the target images. There are generally two types of methods: subjective evaluation and 

objective evaluation. Subjective evaluation requires human expertise, and it is time 

consuming and difficult to replication. Therefore, we apply the objective metrics to 

compare the synthetic images and the generated images with the assumption that the high-

quality synthetic images have higher degrees of the similarity to the real images. We also 

use the Frechet Inception Distance (FID) as a common acceptable metric to compare the 

quality of the images synthesized by different generative models. 

According to the literature review for GAN evaluation measure [41], there are 

currently 24 quantitative and 5 qualitative measures for GAN evaluation. However, the 

measures are respectively introduced in different times, so some new methods such as 

Average Log-likelihood and Coverage Metric are questioned by the GAN research 

community. One of the typical measures is Inception score (IS) [42]. is a commonly 

accepted measure by the GAN research community based on the features output by a pre-
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trained Inception v3 model with the ImageNet dataset. There are many studies based on 

the IS method and a series of improved methods based on IS are introduced such as 

Modified Inception Score (m-IS), Mode Score, AM Score etc. However, these following 

methods cannot provide better quantitative measure for GAN.  The Frechet inception 

distance or FID was introduced as an enhanced method based on IS. FID also uses a pre-

trained Inception v3 model how similar the synthesis images to the input real images. FID 

is considered a robust measure for GAN performance. It overcomes some drawbacks of IS 

and IS related measures. For example, FID is more consistent with human subjective 

judgements, more robust to noise, and it can detect intra-class mode dropping [42]. 

However, FID still has limitation for medical image evaluation. One problem is that 

medical images should be similar for the normal tissues and meanwhile should have the 

significant patterns for diagnosis. In my study, the objective is to use an optimized Ad 

CycleGAN to translate normal images to disease-positive images. In the ideal condition, 

the synthetic images should be real-looking, similar to the input images, and contain the 

target disease patterns which are not in the input images. Therefore, the use case of medical 

GAN is different from the general-purpose GAN, but the fidelity and diversity of the 

synthetic images are still important. Using FID as one of the evaluation metrics can provide 

a robust and quantitative comparison among different generative models (Ad CycleGAN, 

Cycle GAN, and VAE in my use case), but the magnitude of the FID score has different 

meaning compared to the general-purpose GAN. Other quantitative metrics include MSE, 

RMSE, PSNR, UIQI, SCC, SAM and VIF are commonly used in medical image analysis, 

especially for grayscale images such as X-Ray, CT, and MR images. Therefore, I include 

these metrics in my GAN evaluation. 

The quantitative evaluation metrics for our experiments include: 

• Mean Squared Error (MSE) 

• Root Mean Squared Error (RMSE) 

• Peak Signal-to-Noise Ratio (PSNR) 

• Universal Image Quality Index (UIQI) 

• Spatial Correlation Coefficient (SCC) 
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• Spectral Angle Mapper (SAM) 

• Visual Information Fidelity (VIF)  

 MSE, RMSE and PSNR are metrics to measure the pixel difference between the 

synthetic images and the real images. MSE is the accumulated mean squared error of two 

images with the 2D size 𝑀𝑀 × 𝐺𝐺. And RMSE is the accumulated root mean square error of 

the two images. 

                                         𝑀𝑀𝑀𝑀𝐸𝐸 = 1
𝑀𝑀𝑁𝑁

∑ ∑ (𝑋𝑋𝑚𝑚,𝑛𝑛 − 𝑌𝑌𝑚𝑚,𝑛𝑛)2𝑁𝑁−1
𝑛𝑛=0

𝑀𝑀−1
𝑚𝑚=0                               (4.10) 

                                         𝑅𝑅𝑀𝑀𝑀𝑀𝐸𝐸 = �∑ ∑ (𝑋𝑋𝑚𝑚,𝑛𝑛−𝑌𝑌𝑚𝑚,𝑛𝑛)2𝑁𝑁−1
𝑛𝑛=0

𝑀𝑀−1
𝑚𝑚=0

𝑀𝑀𝑁𝑁
                                        (4.11) 

Peak Signal-to-Noise Ratio (PSNR) is a measure for image quality by Wang Z et al. 

[313] in 2004 based on the pixel difference between the synthetic image and the real image 

given the following formula: 

                                         𝑙𝑙𝑀𝑀𝐺𝐺𝑅𝑅 = 10𝑙𝑙𝑙𝑙𝑙𝑙 𝑠𝑠2

𝑀𝑀𝑀𝑀𝑀𝑀
                                                           (4.12) 

where 𝑠𝑠 = 255 as the range of the pixel value is from 0 to 255. 

Universal image quality index (UIQI or UQI) was also introduced by Wang Z and 

Bovik AC [314] in 2002 based on summarizing the attributes of human vision. The 

synthetic images and the real images are compared in three aspects: luminance, contrast, 

and structure. Given 𝜇𝜇𝑥𝑥 and 𝜇𝜇𝑦𝑦 are the mean pixel value of the real image and the synthetic 

image, 𝜎𝜎𝑥𝑥 ,𝜎𝜎𝑦𝑦, 𝑎𝑎𝑠𝑠𝑑𝑑 𝜎𝜎𝑥𝑥𝑦𝑦 are the standard deviation and covariance of the real image and the 

synthetic image, the luminance, contrast, and structure comparison of the two images are 

defined as: 

𝑙𝑙𝑢𝑢𝑚𝑚𝑠𝑠𝑠𝑠𝑎𝑎𝑠𝑠𝑑𝑑𝑒𝑒: 𝑙𝑙(𝑥𝑥,𝑦𝑦) = 2𝜇𝜇𝑥𝑥2𝜇𝜇𝑦𝑦2

𝜇𝜇𝑥𝑥2+𝜇𝜇𝑦𝑦2
, 𝑑𝑑𝑙𝑙𝑠𝑠𝑡𝑡𝑜𝑜𝑎𝑎𝑠𝑠𝑡𝑡: 𝑑𝑑(𝑥𝑥,𝑦𝑦) = 2𝜎𝜎𝑥𝑥𝜎𝜎𝑦𝑦

𝜎𝜎𝑥𝑥2+𝜎𝜎𝑦𝑦2
, 𝑠𝑠𝑡𝑡𝑜𝑜𝑢𝑢𝑑𝑑𝑡𝑡𝑢𝑢𝑜𝑜𝑒𝑒: 𝑠𝑠(𝑥𝑥,𝑦𝑦) = 2𝜎𝜎𝑥𝑥𝑦𝑦

𝜎𝜎𝑥𝑥+𝜎𝜎𝑦𝑦
      (4.13) 

Based on these three comparisons, the UIQI is defined as: 

                  𝑈𝑈𝑈𝑈𝑄𝑄𝑈𝑈(𝑥𝑥,𝑦𝑦) =  𝑙𝑙(𝑥𝑥, 𝑦𝑦) ∙ 𝑑𝑑(𝑥𝑥,𝑦𝑦) ∙ 𝑠𝑠(𝑥𝑥,𝑦𝑦) = 4𝜇𝜇𝑥𝑥𝜇𝜇𝑦𝑦𝜇𝜇𝑥𝑥𝑦𝑦
�𝜇𝜇𝑥𝑥2+𝜇𝜇𝑦𝑦2��𝜎𝜎𝑥𝑥2+𝜎𝜎𝑦𝑦2�

                        (4.14) 

Spatial Correlation Coefficient (SCC) is a correlation-based measure to compare the 

difference of image quality. Spectral Angle Mapper (SAM) [315, 316] are spectral 

distance-based measures to quantify the image difference using discrete Fourier transform. 
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The difference of the Fourier magnitude reflects the image quality. Visual Information 

Fidelity (VIF) is another measure based on human visual perception. VIF use information 

theoretic criterion to quantify image fidelity measurement. Under this framework, the 

difference of the information extracted from the real image and the information loss to the 

synthetic image by human brain is quantified as the VIF score using visual natural scene 

statistics (NSS), human visual system (HVS) and an image distortion model. The VIF score 

is represented as a numeric value between 0 and 1, where higher value indicates better 

image fidelity and quality. The detail of the Frechet Inception Distance (FID) has been 

discussed in section 2.1.5 

4.5 Summary 

In this chapter, we discuss the rationale, architecture of variational autoencoder 

(VAE), cycle-consistent adversarial network (CycleGAN) and the proposed adaptive 

cycle-consistent adversarial network (Ad CycleGAN), as well as the optimization 

algorithms for CycleGAN and Ad CycleGAN. Then we briefly introduce the quantitative 

metrics for the synthetic images. These components form the framework for the following 

experiments. 

In Chapter 5, we will present the experiments of using these DNN models to 

synthesize blood cell images which are either normal or infected by malaria plasmodium. 

Then the synthetic images will be evaluated and compared by the quantitative metrics. 
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Chapter 5 Ad CycleGAN for Histology Image Synthesis 

In this chapter, we present the series of experiments on using the newly proposed Ad 

CycleGAN to synthesize histological images. The experiment dataset contains normal and 

malaria infected blood cell images. Malaria is a tropical infectious disease threating global 

health. In our study in 2016, a convolution neural network (CNN) with 6 convolutional 

layers was implemented for classification of malaria infected blood cells. The CNN was 

trained with a dataset with 27,578 blood cell images (ration: 1:1) and the average accuracy 

is 97.37% [3]. The following studies also report extremely high classification accuracy 

[302, 303]. However, these results are all achieved based on a large, well annotated dataset 

for training the CNN models. In most cases, big annotated medical image datasets are 

difficult to acquired. If the medical images are annotated by non-medical persons, the 

quality of the image data is suspicious due to the lack of expertise. Therefore, we should 

seek for a solution to minimize the human expertise intervention to the deep neural network 

(DNN) optimization. 

Another drawback of DNN is that the specific medical image patterns are different 

from general-purposed images such as those in the ImageNet dataset. As the result, when 

using transfer learning with DNN models trained by the ImageNet to fine tune a new model 

for the medical images, the pretrained feature extractors usually cannot effectively capture 

the medical significant patterns through the complex architecture but simply develop 

meaningless combinations for the final decision. In our previous work on CNN for the 

malaria blood cell image classification, the transfer learning approach has lower accuracy 

(91.99%) than the randomly initialized CNN (97.37%) [3]. In addition, the study by Hirano 

H et al. reveals that the seemly high-performance DNN models for medical images are 

vulnerable from network attacks [4]. 

These become the motivation of the experiments. In the following experiments, we 

will sequentially use dataset to optimize variant autoencoder (VAE), cycle-consistent 

adversarial network (CycleGAN), and adaptive cycle-consistent adversarial network (Ad 

CycleGAN). Then we will compare the quality of the synthetic images respectively 
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generated by these three models with the above-mentioned quantitative metrics. Finally, 

the results will be interpreted and summarized. 

5.1 Material and Methods 

We use an open-source dataset containing 24 thousand parasitemic (malaria positive) 

and normal (malaria negative) segmented blood cell images (ratio 1:1) hosted by National 

Library of Medicine (NLM) as we did our previous work [3]. The dataset is accessible at 

ftp://lhcftp.nlm.nih.gov/Open-Access-Datasets/Malaria/NIH-NLM-ThinBloodSmearsPf/ 

for the development of an Android based automatic malaria screener [303]. One benefit of 

using the Cycle GAN architecture is that the model can be optimized by a relatively small 

dataset (e.g., hundreds of images). To save the runtime, we randomly choose 18,000 images 

(9,000 from each class) for the Cycle GAN optimization and the rest images for the 

following tests. Given the original image size, they are resized to 32-by-32-by-3 to fit the 

model input. And the models are respectively optimized by 600 epochs on the Google 

Colab Pro Cloud GPU support. The average optimization runtime of a single epoch is 2 

seconds for the VAE model, 35 seconds for the CycleGAN model, and 40 seconds for the 

Ad CycleGAN model. A sample of the real blood cell images is illustrated in Figure 28. 

 

   Figure 28: Original Blood Cell Images. 
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From Figure 28, we find that it is difficult to discriminate the uninfected blood cells 

(malaria negative) from the parasitemic cells (malaria positive) without medical expertise 

because the images from both classes have similar background color and randomly dyed 

dots inside the cells. Since our hypothesis is that the malaria positive cell images and the 

malaria negative cell images belongs to two separable distribution domains. Therefore, we 

can use the VAE to learn the distribution parameters of the malaria positive images, and 

we can also use the CycleGAN or Ad CycleGAN to learn the mapping parameters between 

the two domains. 

5.2 Experiment Results and Interpretation 

We implement the VAE models as mentioned above and optimized them with 

different weights of KL divergence. Finally, we conclude the VAE generates the best 

synthetic images when the KL divergence weight is 0.01. The model used the Adam 

(adaptive moment estimation) optimizer with the initial learning rate started with 

2 × 10−4. The VAE model is optimized with 600 epochs with the mini-batch size of 512.  

The synthetic images generated by the trained VAE are shown in Figure 29. 

 

   Figure 29: Synthetic Blood Cell Images by VAE. 
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In the next experiments, we respectively optimized the CycleGAN and the Ad 

CycleGAN, with λ=80.0, σ=60.0, φ=0.1, and κ=20, which means the criterion loss is 

added to the total generator loss term very 20 steps during the model optimization. The 

models are optimized by the Adam optimizer with the initial learning rate of 2×10-4 for 

600 epochs. The mini-batch size is 128. The synthetic blood cell images respectively 

generated by the CycleGAN and by the Ad CycleGAN are shown in Figure 30 and 

Figure 31. 

The quantitative measures for the quality of the synthetic images are listed in Table 

6, the FID score and the classification accuracy to the due category of the synthetic images 

are listed in Table 7. 

 

   Figure 30: Synthetic Blood Cell Images by CycleGAN. 
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   Figure 31: Synthetic Blood Cell Images by Ad CycleGAN. 

 

Image source MSE  

(±std) 

RMSE 

(±std) 

PSNR 

(±std) 

UIQI 

(±std) 

SCC 

(±std) 

SAM 

(±std) 

VIF 

(±std) 
VAE 7288.789 

(2213.888) 

84.401 

(12.854) 

9.707 

(1.353) 

0.678 

(0.071) 

0.100 

(0.051) 

0.390 

(0.095) 

0.070 

(0.007) 

CycleGAN 

(𝑿𝑿 → 𝒀𝒀) 

1660.815 

(873.898) 

39.45 

(10.206) 

16.496 

(2.238) 

0.937 

(0.045) 

0.335 

(0.065) 

0.174 

(0.029) 

0.262 

(0.049) 

CycleGAN 

(𝒀𝒀 → 𝒀𝒀) 
619.545 

(531.475) 

23.425 

(8.413) 

21.189 

(2.685) 

0.981 

(0.022) 

0.609 

(0.044) 

0.109 

(0.018) 

0.421 

(0.057) 

Ad CycleGAN 

(𝑿𝑿 → 𝒀𝒀) 

598.751 

(358.173) 

23.709 

(6.049) 

20.871 

(1.968) 

0.980 

(0.022) 

0.524 

(0.051) 

0.136 

(0.028) 

0.304 

(0.083) 

Ad CycleGAN 

(𝒀𝒀 → 𝒀𝒀) 

710.698 

(578.58) 

25.280 

(8.462) 

20.466 

(2.492) 

0.977 

(0.038) 

0.556 

(0.056) 

0.128 

(0.024) 

0.346 

(0.057) 

Table 6: Quantitative Measure of the Blood Cell Synthetic Images. 
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Image source FID (±std) Accuracy 

VAE 8.552 × 10−5 (7.989 × 10−6) 0.0 

CycleGAN 

(𝑿𝑿 → 𝒀𝒀) 

2.356 × 10−6 (1.828× 10−7) 0.7929 

CycleGAN 

(𝒀𝒀 → 𝒀𝒀) 

4.443× 10−6 (4.402× 10−7) 0.9570 

Ad CycleGAN 

(𝑿𝑿 → 𝒀𝒀) 

4.241× 10−6 (1.948× 10−7) 0.9961 

Ad CycleGAN 

(𝒀𝒀 → 𝒀𝒀) 

9.324× 10−6 (2.991× 10−7) 1.0 

Table 7:  FID score of Classification Accuracy of the Blood Cell Synthetic Images. 

From Figure 30 and Figure 31, we observe that both the conventional CycleGAN and 

the new Ad CycleGAN can synthesize high quality blood cell images with good visual 

fidelity and diversity compared to those generated by variant autoencoder (VAE).  When 

taking a closer look, the images generated by CycleGAN seem to contain less artifacts 

compared those generated by Ad CycleGAN, but this subjective observation is reversed by 

the quantitative measures in Table 7 

The quantitative scores in Table 7 also confirm that the quality of the synthetic 

images by CycleGAN and Ad CycleGAN is superior to those by VAE, where the mean 

squared error (MSE) and root mean squared error (RMSE) between the input real images 

and the output synthetic images by the CycleGAN and Ad CycleGAN is much smaller than 

the VAE. Among the rest quantitative measures including Peak Signal-to-Noise Ratio 

(PSNR), Universal Quality Image Index (UIQI), Spatial Correlation Coefficient (SCC), 

Spectral Angle Mapper (SAM), and Visual Information Fidelity (VIF), the scores to the 

synthetic images by CycleGAN and Ad CycleGAN are much higher than those by VAE. 

All these indicate that the GAN models (CycleGAN and Ad CycleGAN) generate much 

better synthetic images compared to VAE. Another observation on the synthetic images 

respectively by the two GAN models finds that the new Ad CycleGAN has more stable 

image quality output compared to the original CycleGAN model. We used both the normal 
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images (belong to domain X) and malaria infected images (belong to domain Y) to 

synthetize the malaria infected blood cell images. The new Ad CycleGAN generates better 

synthetic images when we use the normal images to synthesize malaria infected images, 

i.e., to perform 𝑋𝑋 → 𝑌𝑌 translation, though the synthetic image by the original CycleGAN 

through real malaria infected images has comparable quality compared to those by Ad 

CycleGAN. 

The FID score is a harmonious measure for both image fidelity and diversity by GAN 

models as we have discussed in Chapter 2 section 2.1.5. From Table 8 we observe the FID 

score of the synthetic images by the GAN models lower than those by the VAE. This 

phenomenon does not tell us the images by the VAE are better. However, it indicates the 

images by the GAN models are more homogenous to the real malaria infected images. The 

images synthesized by the Ad CycleGAN from normal images (i.e., to perform 𝑋𝑋 → 𝑌𝑌 

translation) and those synthesized by the original CycleGAN from malaria infected images 

(i.e., to perform 𝑌𝑌 → 𝑌𝑌 identical conversion) both have high FID compared to the rest two 

groups by GANs. This result indicates that the Ad CycleGAN has superior performance 

for image translation that the original CycleGAN. In addition, the classification accuracy 

of the synthetic images by Ad CycleGAN is higher than both the CycleGAN and VAE. 

This result clearly proves that the newly proposed Ad CycleGAN has superior capacity to 

perform image translation to the target category compared to both the original CycleGAN 

and VAE. 

Next, we compare the optimization process of the new Ad CycleGAN with the 

original CycleGAN. We add a periodic criterion loss to the total generator loss once every 

20 steps during the optimization. At the top of Figure 32. we can observe a clear fluctuation 

from the beginning to approximate epoch 300, where the criterion loss acts as extra 

momentum for the discriminator loss. The criterion loss for X also has periodic surges 

which indicates the quality of the synthetic images are not stable at the beginning. 

Fortunately, the trend changes to be stable when the decay factor controls the influence of 

the criterion loss to a proper range. 
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   Figure 32: Optimization Process of Ad CycleGAN and CycleGAN for Blood Cell Images. 

On the other hand, the discriminator loss of the origin CycleGAN becomes stable 

early at approximately epoch 100. It implies the magnitude of gradients for GAN update 

become low at the early stage thus the entire GAN optimization is slowed down. The effect 

of the so-called adversarial equilibrium has two folds. First, when the training reaches the 
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adversarial equilibrium, the gradients remain low thus the optimization process becomes 

very slow. The GAN mainly learns the details of the image patterns under a stand profile. 

In this experiment, the GAN learns the blood cell contours approximately at the first 100 

epochs, and after that its updates is slow down and start to focus on the details inside the 

blood cell. However, the low gradients after the adversarial equilibrium become so low 

that if some errors occur, it is very difficult for the GAN to walk out the wrong path to 

further learn the correct patterns. This phenomenon is reflected in the change of the 

criterion loss X and Y at the bottom of Figure 32 where the original CycleGAN is optimized 

without the loss from the pretrained criterion. The criterion loss cannot be effective 

controlled throughout the whole optimization and sometimes it divergent because there is 

no control to ensure the synthetic images to go to the correct category. On the other hand, 

the criterion loss has its side effect to the GAN optimization if its magnitude cannot be 

controlled is an acceptable range as shown in the optimization process of the Ad 

CycleGAN. Therefore, it is crucial to set a proper decay factor 𝜑𝜑 combining with the 

periodic factor 𝜅𝜅 to control the weight of the criterion loss throughout the Ad CycleGAN 

optimization process. 

5.3 Summary 

In this chapter, we present the experiment of Ad CycleGAN for malaria infected 

blood cell synthesis and image translation between normal blood cells and malaria infected 

blood cells. The results are compared with the synthetic images by the original CycleGAN 

and the VAE. Except for the subjective evaluation by human eyes, the quantitative metrics 

including MSE, RMSE, PSNR, UIQI, SCC, SAM, and VIF are used to measure the fidelity 

and quality of the synthetic images using the real input images as reference. The MSE, 

RMSE, and SAM of the images by the Ad CycleGAN and the original CycleGAN is 

significantly lower than the MSE and RMSE of those by VAE (𝑒𝑒 < 0.01), and the rest 

scores (PSNR, UIQI, SCC, VIF) of the images by Ad CycleGAN and CycleGAN are higher 

than those by VAE (𝑒𝑒 < 0.01). These results confirm that GAN including the new Ad 
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CycleGAN and the original CycleGAN produce synthetic malaria infected blood cell 

images with superior quality over those by VAE.  

When we compare the images respectively by the new Ad CycleGAN and the 

original CycleGAN, we find that the synthetic images by Ad CycleGAN have comparable 

image quality with the original CycleGAN for image synthesis. Particularly, when the new 

Ad CycleGAN model perform image domain translation from normal blood cell images to 

malaria infected blood cell images, i.e., 𝑋𝑋 → 𝑌𝑌 translation, the output has the lowest MSE 

and comparable effects in other qualitative metrics image quality with those simply doing 

identical translation within the same domain, i.e.,   𝑌𝑌 → 𝑌𝑌 translation. In addition, 99.61% 

synthetic images by the Ad CycleGAN from 𝑋𝑋 → 𝑌𝑌 translation are correctly classified, 

which is the highest accuracy compared to the outputs by the original CycleGAN. This 

finding is also supported by the optimization procession shown in Figure 32, where the 

criterion loss values are better convergent than those in the training of the original 

CycleGAN in the late stage of GAN optimization. 

Finally, we need to explain the difference between the 𝑋𝑋 → 𝑌𝑌 image translation and the 

𝑌𝑌 → 𝑌𝑌 image augmentation. The former one is the optimization objective of the GAN to 

let the architecture to learn the mapping between two image domains. In this experiment, 

when the GAN receives real images of normal blood cell as inputs, it should produce 

synthetic images belonging to the malaria infected blood cells with both high fidelity and 

good diversity. This process covers both the image synthesis process and the image 

translation process. On the other hand, the 𝑌𝑌 → 𝑌𝑌 image augmentation only receives real 

images of malaria blood cells and then synthetize the images to the same image domain, 

i.e., also belonging to the malaria infected images. Thus, the 𝑌𝑌 → 𝑌𝑌 augmentation process 

only the image synthesis task. On the above experiments in this chapter, the new Ad 

CycleGAN model well perform both the image translation and augmentation given the 

pretrained criterion to ensure the output synthetic images falling into the target category. 
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Chapter 6 Ad CycleGAN for Radiologic Image Synthesis 

In this chapter, we present the series of experiments on newly proposed Ad 

CycleGAN to synthesize radiologic images. Compared to histologic images as color 

images, radiologic images are considered as grey-scale images with complex visual 

patterns and texture presented by the pixel tensity. Chest radiography is perhaps one of the 

simplest radiologic images because the pixel intensity only presents the density of the 

human tissue when the X-Ray goes through the human body. The advantage of X-Ray 

images is the easy accessibility of the regular X-Ray equipment. The GAN research on X-

Ray images is still beneficial for rare disease and emergency management. For example, 

when new disease and conditions occur, the GAN model can act as a reliable method for 

data augmentation for imbalanced medical image dataset. As we have discussed in previous 

chapters, using general purpose dataset such as ImageNet cannot well train the low-level 

filters of the DNNs to capture the visual significant patterns from medical images. New 

approach such as introducing augmented dataset with high fidelity synthetic images can be 

a feasible alternation to improve the DNN performance.  

In our experiments in this chapter, we implement the Ad CycleGAN to synthesize 

COVID-19 positive chest X-ray images. Chest X-ray radiography with real-time 

polymerase chain reaction (RT-PCR) test are commonly used fast screening methods for 

coronavirus disease 2019 (COVID-19) since the start of the pandemic [304]. The COVID-

19 positive cases have special bilateral or unilateral multiple mottling and ground-glass 

opacity patterns on the chest X-ray and CT images [305]. These patterns can be detected 

by deep neural network (DNN) image classifiers integrated to the compute-aided health 

systems for early screening. Since the RT-PCR usually takes a few hours for the result, 

using the DNN image detection method can separate the highly suspicious cases earlier 

and reduce the risk of secondary infection. Many successful studies on developing the 

DNN models either for COVID-19 chest X-ray or CT image detection have been published 

[306]. However, a recent study revealed the seemly high-performance DNN models for 

COVID-19 chest X-Ray image detection are vulnerable to network attacks4. One 
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constraint is that the DNNs are optimized by extremely imbalanced datasets where the 

COVID-19 images only occupy 5% to 6% of the total image samples [306]. Another 

drawback is that the specific medical image patterns are different from general-purposed 

images such as those in the ImageNet dataset. As the result, when using transfer learning 

with DNN models trained by the ImageNet to fine tune a new model for the radiography 

images, the pretrained feature extractors usually cannot effectively capture the medical 

significant patterns through the complex architecture but simply develop meaningless 

combinations for the final decision. These factors all contribute to the vulnerability of the 

current DNN models. 

6.1 Material and Methods 

As a new solution for the DNN training with imbalanced datasets, we use the Ad 

CycleGAN to generate synthetic COVID-19 chest X-ray images from normal images. 

Cycle GAN is the state-of-the-art conditional generative adversarial network (CGAN) for 

unpaired image to image translation. The new Ad CycleGAN uses a pretrained criterion to 

further control the synthetic images falling into the correct category (i.e., COVID-19 

positive X-ray images). We use a COVID-19 image dataset acquired from the Kaggle 

COVID-19 Radiography Database: 

https://www.kaggle.com/datasets/tawsifurrahman/covid19-radiography-database 

 It consists of 219 COVID-19 positive images, and 1,064 normal chest X-ray for the 

experiments described in this chapter. Figure 33 illustrates an example of chest X-ray 

images collection in the dataset. 

https://www.kaggle.com/datasets/tawsifurrahman/covid19-radiography-database
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   Figure 33: Original Chest X-ray Images. 

Note that the original chest X-ray dataset contains three categories of images: normal 

chest X-ray images (labeled as Normal), Covid-19 positive chest X-ray images (labeled as 

COVID), and viral pneumonia chest X-ray images (labeled as Viral). Our task is to 

implement the generative models to synthesize COVID-19 positive images and to perform 

images translation from normal chest X-ray images to COVID-19 positive images, 

therefore, we discard the viral pneumonia images during model optimization. Three models 

are optimized in the experiments as we do in Chapter 5: a variant autoencoder (VAE), the 

Cycle-Consistent Adversarial Network (CycleGAN) and the newly proposed Adaptive Ad 

Cycle-Consistent Adversarial Network (Ad CycleGAN) with pretrained criterion.   

Given the hardware condition, the images are resized to 64-by-64, 3 channel as the 

input dimensions. Because we have only 219 real COVID-19 X-ray images, 50 of the 

COVID-19 images are randomly selected and withheld for testing, the rest 169 real images 
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are duplicated 6 times to match 1,014 normal X-ray images for model optimization. The 

VAE, CycleGAN, and Ad CycleGAN models are respectively optimized by 600 epochs on 

the Google Colab platform with GPU. The average runtime is about 30 seconds per epoch 

with the mini-batch size of 64. 

6.2 Experiment Results and Interpretation 

The synthetic X-ray images generated by the trained VAE after trained by 600 

epochs with the KL divergence weight of 0.01 are shown in Figure 34. It indicates that 

the VAE learns the overall contour of the thoracic cavity with clear landmarks of the 

important organs such as the heart, the lungs, and the diaphragm. 

In addition, the VAE also performs image conversion. For example, some input 

images aligned on the sagittal plane will be automatically converted to coronal axis 

alignment as shown on the bottom right of Figure 34. However, the synthetic image 

quality by the VAE is low by human eyes, which also reflects in the quantitative metrics. 

 

   Figure 34: Synthetic COVID-19 Chest X-ray Images by VAE. 



 

109 

In the next experiments, we respectively optimized the CycleGAN and the Ad 

CycleGAN with similar parameter configurations as in Chapter 5, with 𝜆𝜆 = 80.0, 𝜎𝜎 =60.0, 

𝜑𝜑 = 0.1, and 𝜅𝜅 = 20. It means that the criterion loss is added to the total generator loss 

term very 20 steps during the model optimization. The models are optimized by the Adam 

optimizer with the initial learning rate of 2 × 10−4 for 600 epochs. The mini-batch size is 

64. The synthetic chest X-ray images respectively generated by the CycleGAN and by the 

Ad CycleGAN are shown in Figure 35 and Figure 36. The quantitative measures for the 

quality of the synthetic images are listed in Table 8, the FID score, and the classification 

accuracy to the due category of the synthetic images are listed in Table 9. 

 

   Figure 35: Synthetic Chest X-ray Images by CycleGAN. 
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   Figure 36: Synthetic Chest X-ray Images by Ad CycleGAN. 

Image source MSE  

(±std) 

RMSE 

(±std) 

PSNR 

(±std) 

UIQI 

(±std) 

SCC 

(±std) 

SAM 

(±std) 

VIF 

(±std) 
VAE 5102.752 

(4957.601) 

63.103 

(33.476) 

13.414 

(4.813) 

0.715 

(0.225) 

0.003 

(0.017) 

0.185 

(0.035) 

0.189 

(0.050) 

CycleGAN 

(𝑿𝑿 → 𝒀𝒀) 

3608.976 

(1398.376) 

58.776 

(12.420) 

12.976 

(2.106) 

0.816 

(0.086) 

0.052 

(0.027) 

0.386 

(0.088) 

0.120 

(0.051) 

CycleGAN 

(𝒀𝒀 → 𝒀𝒀) 
409.005 

(495.043) 

17.558 

(10.035) 

24.436 

(4.398) 

0.975 

(0.029) 

0.410 

(0.086) 

0.081 

(0.038) 

0.558 

(0.050) 

Ad CycleGAN 

(𝑿𝑿 → 𝒀𝒀) 

3744.764 

(1561.575) 

59.969 

(12.183) 

12.747 

(1.740) 

0.813 

(0.095) 

0.017 

(0.024) 

0.422 

(0.095) 

0.075 

(0.040) 

Ad CycleGAN 

(𝒀𝒀 → 𝒀𝒀) 

435.849 

(461.599) 

18.731 

(9.218) 

23.590 

(3.863) 

0.973 

(0.036) 

0.443 

(0.083) 

0.093 

(0.039) 

0.525 

(0.056) 

Table 8: Quantitative Measure of the Chest X-ray Synthetic Images. 
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Image source FID (±std) Accuracy 

VAE 1.568 × 10−3 (1.024 × 10−3) 0.0 

CycleGAN 

(𝑿𝑿 → 𝒀𝒀) 

5.267 × 10−5 (9.605× 10−6) 0.9375 

CycleGAN 

(𝒀𝒀 → 𝒀𝒀) 

6.311× 10−4 (1.251× 10−4) 1.0 

Ad CycleGAN 

(𝑿𝑿 → 𝒀𝒀) 

3.603× 10−4 (6.446× 10−5) 0.9531 

Ad CycleGAN 

(𝒀𝒀 → 𝒀𝒀) 

1.191× 10−5 (4.162× 10−6) 1.0 

Table 9: FID score of Classification Accuracy of the Chest X-ray Synthetic Images. 

From Figure 35 and Figure 36, we observe that both the orginal CycleGAN and the 

new Ad CycleGAN can synthesize high quality chest X-ray images with superior visual 

fidelity and diversity over those generated by variant autoencoder (VAE).  Another finding 

is that both CycleGAN and Ad CycleGAN not only perform the image synthesis / 

translation, but also convert the input images aligned on the sagittal axis to the synthetic 

images aligned on the coronal axis. When compared with the quantitative metrics, the 

synthetic images generated either by the CycleGAN or by the Ad CycleGAN have lower 

MSE and RMSE between the input real images and the output synthetic images than those 

by VAE. While comparing the image quality, the synthetic images through the image 

augmentation process (i.e., 𝑌𝑌 → 𝑌𝑌) have higher scores in the PSNR, UIQI, and VIF than 

those by VAE, which indicates the GANs have better capacity for image synthesis and 

augmentation. However, the synthetic images through image translation process (i.e., 𝑋𝑋 →

𝑌𝑌) have lower scores and some of them even worse than VAE. It implies the GANs cannot 

translate high quality synthetic images probably due to insufficient training samples.  

When we look at the FID measure, we find that the synthetic images by VAE have 

higher FID score than those by GANs. As we have discussed in Chapter 5, the FID score 

is a harmonious measure for both image fidelity and diversity. Lower FID score actually 
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implies the images generated by the GANs are more homogenous and are considered 

belonging to the same category by the pretrained DNN. When comparing the classification 

accuracy, the synthetic images by the Ad CycleGAN has higher accuracy of 95.31% than 

those by the original CycleGAN with the accuracy of 93.75% (𝑒𝑒 < 0.05). This result 

indicates that the criterion in the Ad CycleGAN architecture is effective to exert control on 

the synthetic images falling into the correct category. In general, the synthetic images 

through the image augmentation process (i.e., 𝑌𝑌 → 𝑌𝑌) have better quality than the images 

synthesized through the image translation process (i.e., 𝑋𝑋 → 𝑌𝑌). It can be caused by the 

limit number of real COVID-19 images in the training dataset so that both the criterion and 

the Ad CycleGAN architecture cannot be thoroughly optimized. 

Next, we compare the optimization process of the new Ad CycleGAN with the 

original CycleGAN. We add a periodic criterion loss to the total generator loss once every 

20 steps during the optimization. At the top of Figure 37. we can observe a clear fluctuation 

from the beginning to approximate epoch 400, where the criterion loss acts as extra 

momentum for the discriminator loss. The discriminator loss of the Ad CycleGAN has a 

surging peak at about 430 epochs, and it is fortunate to reduce soon after a few epochs. It 

can be attributed to the decay factor that controls the influence of the criterion loss to a 

proper range.  In comparison, the optimization of the CycleGAN is relatively smooth, 

where the loss value becomes stable after about 200 epochs of optimization. 
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   Figure 37: Optimization Process of Ad CycleGAN and CycleGAN for X-ray Images. 

6.3 Summary 

In this chapter, we present the experiment of Ad CycleGAN for COVID-19 positive 

chest X-ray synthesis and image translation between normal images and COVID-19 

positive images. The results are compared with the synthetic images by the original 

CycleGAN and the VAE. The experiments are performed in the similar procedure as the 

experiments for synthesis malaria blood cell images in Chapter 5.  

The experiment results have the same conclusion as in Chapter 5 that the GAN 

models produce higher quality synthetic images than VAE. However, the images 

synthesized from real COVID-19 X-ray images through the image augmentation process 

(i.e., 𝑌𝑌 → 𝑌𝑌) have better quality than those synthesized from normal X-ray images through 

the image translation process (i.e., 𝑋𝑋 → 𝑌𝑌). This result is inconsistent with the findings from 

the experiments in Chapter 5. It can be explained by the insufficiency of real COVID-19 

image samples in the training dataset and we have done some image replication to match 

the data sample number of the normal images.  
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On the other hand, the high accuracy of the synthetic images by the Ad CycleGAN 

model confirms that the adaptive criterion design can effectively control the image 

category given the context of how the criterion was optimized. The Ad CycleGAN can be 

considered as a new approach of conditional GAN which can extend the control power 

upon the synthetic image domain. 
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Chapter 7 Summaries 

This thesis feasibility of applying the state-of-the-art DNN-based generative model 

for medical image synthesis. At the beginning, we introduce the research motivation 

contribution of our work. Then we introduce the basic knowledge of deep neural networks 

(DNNs), the concepts of multiple type of DNN variations particularly the DNNs for image 

processing. Following the introduction of DNN, we further explain the main applications 

of DNN for medical images, including medical significant pattern detection and 

recognition, image segmentation, image registration and automatic alignment, computer-

aided diagnosis and medical decision making, image retrieval, physical stimulation, and 

image reconstruction. Based on understanding DNN for medical use, we move to the topics 

of generative adversarial network, or GAN, different type of GAN models, and the main 

tasks that GAN perform in medical research.  

After the introduction of the background knowledge, we focus on the details of GAN 

for medical image synthesis. The GANs for image synthesis or translation nowadays 

include Pix2Pix and CycleGAN, or any customized GANs with similar architecture. In 

order to analyze the research progress of GAN for medical image applications, we conduct 

a quantitative survey on GAN for medical image processing where 165 highly relevant 

research papers are collected and categorized into five content topics: image reconstruction 

and enhancement, image synthesis and augmentation, image translation, image 

segmentation, and other medical applications. The survey provides an outline of GAN 

research since the year 2017. It concludes that there are great achievements on GAN in the 

above five research aspects, and it also finds that there is no similar research on using 

adaptive pretrained criterion combined with CycleGAN to control the synthetic images 

falling into the desired category. Unlike the general-purpose image synthesis and 

translation, the difference between normal medical images and images with significant 

diagnostic patterns is so trivial that it is difficult to be captured by GANs. Thus, the newly 

proposed Ad CycleGAN architecture has the potential to extend the GAN medical 

applications to a new domain. This is the novelty and main contribution of this work to the 
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research community and to the industry in the future. Two experiments are then performed 

to compare the performance of Ad CycleGAN with both the original CycleGAN and 

variant autoencoder (VAE). The details of the experiments and the results interpretations 

are discussed in Chapter 5 and Chapter 6. 

7.1 Practical Impact of the Proposed Approaches 

The Ad CycleGAN is an improved architecture based on the CycleGAN. The Ad 

CycleGAN follows the GAN optimization strategy originated from the Wasserstein GAN 

(WGAN) [28], where the objective function is not to estimate the probability of the 

synthetic images considered as real images, but to “rate” the synthetic images as a critic. 

Under this framework, the GAN optimization process can be combined with the opinions 

by multiple critics from different aspects, thus the zero-sum adversarial game rule proposed 

by Goodfellow et al. [7] has been changed to a multi-domain task. Furthermore, the Ad 

CycleGAN does not need to encode the labels into the training data therefore it simplifies 

the computation runtime for GAN optimizations. In our experiments in Chapter 5 and 

Chapter 6, a single training epoch of the GAN optimization takes less than one minute, and 

the Ad CycleGAN models can produce high quality synthetic images compared to the 

VAE. The most significant merit of the Ad CycleGAN is that it improves the image 

classification accuracy to the target image category. In our literature review, most of the 

applications of GAN is to use this generative model for image data augmentation, but there 

is no guarantee that the generated images falling into the correct category. Therefore, the 

introduction of the pretrained criterion becomes a unique impact of the Ad CycleGAN to 

the GAN based architectures. 

On the other hand, the Ad CycleGAN can perform both image augmentation and 

image translation. Image augmentation means the input real images belongs to the same 

category as the expect synthetic outputs, e.g., from normal images to normal images with 

acceptable diversity, or from disease positive images to disease positive images with 

acceptable diversity. From the quantitative survey, we find that most of the GAN studies 

on medical images are focusing on image augmentation. The GAN models generate 
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multiple synthetic samples including synthetic images for direct DNN optimization, image 

mask for improving image segmentation, and image feature maps for medical diagnosis 

and decision making. The applications of image translation are mainly for converting the 

images from one format to another format, such as from MR images to CT images, from 

ultrasound images to CT images, or between two histological dyeing methods. However, 

all the available applications have not explored the task of converting images from the 

normal / healthy domain to a specific disease domain, which is crucial in medical research. 

The experiment result described in Chapter 5 concludes that the Ad CycleGAN can 

synthesize high quality malaria infected blood cell images which are superior to those 

synthesized by original CycleGAN and the VAE generative model. The malaria infected 

blood cell images can be regarded as normal blood cell with a malaria plasmodium inside, 

or the visual patterns of normal blood cell plus the malaria patterns. Therefore, the images 

from both domains are considered homogenous as human blood cells which are likely to 

be classified to the identical category by some general-purpose models. This feature is 

confirmed by the low FID score of the synthetic images. The experiment result described 

in Chapter 6 on the other hand, shows the Ad CyleGAN can only translate better quality 

images than the VAE, but they are not as good as those by the image augmentation path 

(i.e., 𝑌𝑌 → 𝑌𝑌). This outcome is confirmed by all the quantitative metrics where the output 

synthetic images through image augmentation (i.e., 𝑌𝑌 → 𝑌𝑌) by either Ad CycleGAN or 

original CycleGAN are in better quality. However, the synthetic images through the image 

translation path (i.e., 𝑋𝑋 → 𝑌𝑌) has higher classification accuracy than those translated by the 

original CycleGAN. 

The findings in the experiments and the discussion above all indicates than the 

proposed Ad CycleGAN can well perform the medical image translation tasks. This unique 

feature is hopefully to solve the common class imbalance issues because the medical 

images containing rare or new disease information are both difficult to acquire and 

expensive for expert annotation. A typical example is the COVID-19 pandemic, when a 

large amount of GAN based studies are published since 2020. The successful applications 
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of GAN for COVID-19 pattern detection and segmentation shows the feasibility to widely 

use DNN for computer assisted disease diagnosis and public health management.   

7.2 Study Limitations 

Though the experiment results presented in Chapter 5 and Chapter 6 indicates that 

the proposed Ad CycleGAN can effectively synthesize medical images to the designated 

categories, this new model still has some limitations. 

First, the optimization of Ad CycleGAN is computationally intensive. The 

development of Ad CycleGAN requires good hardware support such as high-performance 

GPU and RAM. In the experiments described above, a single optimization of an Ad 

CycleGAN model need at least 8 to 10 hours even with GPU support. The requirement of 

RAM depends on the size of the training dataset, but the minimum requirement for RAM 

is at least 10 GB. Since the optimization is mainly on the cloud platforms such as Google 

Cloud Platform (GCP) and Amazon Web Service (AWS), and the requirement of RAM 

usually increments as it progresses, there is always the risk of environment crash during 

the optimization. 

Second, the tuning of the total loss function for the Ad CycleGAN is intuitive and 

experience based. Efforts to develop a mathematically explainable algorithm to 

dynamically adjust the corresponding weights for different terms of the total loss is needed 

to further improve the robustness of the optimization procedure. 

Third, the performance of the Ad CycleGAN is highly relied on the size of total 

training samples. It is verified by the experiment results where the Ad CycleGAN for blood 

cell image synthesis is much better than the chest X-Ray images synthesis, because the 

training dataset of blood cell images is much larger. 

The above limitations are to be improved by future work.    

7.3 Summary of Ad CycleGAN 

The proposed adaptive cycle-consistent adversarial network, or Ad CycleGAN in this 

thesis is a new extension of the cycle-consistent adversarial network (CycleGAN). 
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CycleGAN is one type of the conditional GANs provides state-of-the-art image translation 

between two image domains. The advantage of CycleGAN is that it does not require paired 

images to learn the mapping between two fixed images like in the Pix2Pix architecture. In 

other words, it provides the flexibility for capturing the images patterns randomly. Another 

advantage of the CycleGAN architecture is that the model does not need to synthesize 

images from a latent space of random distribution but based on the sample distribution of 

real images. This feature is particularly helpful for medical images.  

On the other hand, the normal medical images and the images containing disease or 

pathological patterns can be considered homogenous. In other words, the disease images 

can be interpreted as normal image plus disease specific patterns. The original design of 

the CycleGAN model uses the adversarial loss, the cycle loss and the identity loss as the 

objectives to respectively estimate the difference of the two images domains, the image 

shape and contour, and the image colors. It is effective for general images where the visual 

difference between the two domains is obvious. However, the homogenesis makes the 

difference between two medical image domains so close that the original CycleGAN model 

will suffer from insufficient gradients or gradient vanishing problem during the 

optimization. The new Ad CycleGAN model can effectively solve this problem as the new 

source of loss objective functions are added. In our experience for Ad CycleGAN, two 

criterion loss terms are introduced and combined as the total criterion loss. The total 

criterion loss will be added to the total adversarial loss for GAN optimization. The idea of 

the external criterion loss originates from the Wasserstein metric introduced by Arjovsky 

M et al. with the Wasserstein GAN or WGAN architecture. The distance between the 

probability distributions of the image domains can be measured by the earth mover's 

distance (EMD). Statistically, the distributions of the two image domains can be 

represented by two clusters of points 𝑒𝑒𝑖𝑖 and 𝑞𝑞𝑗𝑗. The distance between the two clusters {𝑒𝑒𝑖𝑖} 

and {𝑞𝑞𝑗𝑗} over the region 𝐷𝐷  defined by ℝ𝑑𝑑 . With the earth mover’s language, we can 

interpret the distributions as two ways of piling up a certain amount of earth over the region 

𝐷𝐷 . The EMD is the optimal way to move one pile of the earth to another pile (i.e., 
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converting the distribution of  {𝑒𝑒𝑖𝑖} to {𝑞𝑞𝑗𝑗} through 𝐷𝐷 or vice versa). The EMD is defined 

as the distance magnitude between the two image domains normalized by the total flow 𝐹𝐹: 

         𝐸𝐸𝑀𝑀𝐷𝐷(𝑙𝑙,𝑄𝑄) =
∑ ∑ 𝑓𝑓𝑖𝑖,𝑗𝑗𝑑𝑑𝑖𝑖,𝑗𝑗𝑛𝑛

𝑗𝑗=1
𝑚𝑚
𝑖𝑖=1

∑ ∑ 𝑓𝑓𝑖𝑖,𝑗𝑗𝑛𝑛
𝑗𝑗=1

𝑚𝑚
𝑖𝑖=1

= 𝑠𝑠𝑠𝑠𝑓𝑓𝛾𝛾∈Π(𝑃𝑃,𝑄𝑄)𝔼𝔼(𝑥𝑥,𝑦𝑦)~𝛾𝛾[‖𝑥𝑥 − 𝑦𝑦‖]                          (7.1) 

where 𝑓𝑓𝑖𝑖,𝑗𝑗 is the flow between 𝑒𝑒𝑖𝑖 and 𝑞𝑞𝑗𝑗, and 𝑑𝑑𝑖𝑖,𝑗𝑗 is the ground distance between 𝑒𝑒𝑖𝑖 and 

𝑞𝑞𝑗𝑗. Π(P, Q) is the set of all joint distributions with the marginals P and Q. The 

introduction of EMD as the objective, the GAN optimization process is converted to a 

linear optimization problem as: 

                       𝑎𝑎𝑜𝑜𝑙𝑙𝑚𝑚𝑠𝑠𝑠𝑠𝐹𝐹 ∑ ∑ 𝑓𝑓𝑖𝑖,𝑗𝑗𝑑𝑑𝑖𝑖,𝑗𝑗𝑛𝑛
𝑗𝑗=1

𝑚𝑚
𝑖𝑖=1                                                         (7.2) 

where the task of the GAN discriminators is to act as a critique to evaluate the quality of 

the generated images by referring to the real images. Following this idea, we can easily 

add multiple sources of critics to the total EMD to control the parameters of the joint 

distribution Π(P, Q). 

The Ad CycleGAN is based on the above strategy by adding a pretrained criterion 𝐶𝐶, 

where is a pretrained DNN to evaluate whether the synthetic images belonging to the due 

category. The EMD objective provides the flexibility to congregate multiple critics to 

evaluate not only the quality but also the context of the images given any practical settings. 

The experiments described in Chapter 5 and Chapter 6 both confirm that the proposed Ad 

CycleGAN with external pretrained criterion can improve the classification accuracy of the 

synthetic images to satisfy the individualized requirements imposed by clinical 

circumstances. Therefore, we conclude that the proposed Ad CycleGAN architecture 

provides an ideal solution for medical images synthesis and image translation. It is 

particularly helpful to improve the performance of DNN for screening, automatic detection, 

and computer aided diagnosis and decision making for rare and new disease when the 

relevant image data are difficult to collect and annotated. 
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Chapter 8 Conclusions and Future Work 

This thesis presents the state-of-the-art research on generative adversarial network 

(GAN) on medical image processing. It proposed the adaptive cycle-consistent adversarial 

network, or Ad CycleGAN as a new GAN architecture for medical image synthesis and 

image translation. The Ad CycleGAN is an extension of the cycle-consistent adversarial 

network (CycleGAN), which is commonly used GAN architecture to perform image 

synthesis and image translation between unpaired images. The original CycleGAN can 

synthesize high quality images for general purposes, however, it becomes unreliable to 

synthesize medical images with significant diagnostic patterns because of the complexity 

of medical diagnosis. The new Ad CycleGAN significantly improves the synthetic 

accuracy of disease specific medical images from normal medical images by a pretrained 

external criterion to exert extra gradient to break the adversarial equilibrium during the 

GAN optimization. When the weight of the criterion is properly controlled by the factors 

such as the periodic factor and decay factor during the GAN optimization, the new Ad 

CycleGAN model can generate high quality synthetic medical images in multiple formats 

with higher accuracy compared to the other state-of-the-art generative DNN models such 

as CycleGAN and VAE. 

The future work on Ad CycleGAN has two folds. First, we need to further improve 

the EMD objective to ensure more control on the optimization process and minimize the 

side effects on the external criterion from synthesizing high quality images like reducing 

the occurrence of artifacts on the synthetic images. More extra criterion can also be added 

to the EMD to further control the characteristics of the generated images to the due domain. 

Second, we can develop more sophisticated GAN architecture to extend the Ad CycleGAN 

design for more tasks. For example, we can combine Ad CycleGAN with StyleGAN [307] 

to improve the synthetic image resolution alongside with image translation process. The 

Ad CycleGAN can be optimized with the Pix2Pix architecture to precisely allocate the 

location of the synthetic patterns. Therefore, the application of the Ad CycleGAN can be 

extended to medical image segmentation.  
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In addition, we also find some promising research topic GAN for medical usage. For 

example, Sarrut D et al. [161] and Zhan B et al. [210] respectively used GAN models based 

on the CT images to estimate the optimal dose of radiotherapy to individual patients.  Qiang 

N et al. [196] and Matsui T et al. [253] used the GAN models to generate MR image 

features that facilitate diagnosis. Chen MT et al. used GAN generated histological image 

features to estimate optical properties [255]. Vu QD et al. used GAN generated histological 

image features as parameters to quantify cancer tissue characteristics [259]. Das A et al. 

applied GAN generated histological image features to estimate breast cancer prognosis 

[261]. All these attempts open new perspectives to further apply GAN models to improve 

medical practices. 

Except for the applications to medical images, the GAN models are widely applied 

to analyze medical sequential data. The typical applications include synthesizing 

electrocardiogram (ECG) and electroencephalogram (EEG) data [277-280], and 

synthesizing genomic or proteomic sequence [281, 293, 294]. These types of research help 

to exploration the new domains of GAN applications but they are beyond the discussion of 

this thesis. Table 6 summaries the GAN applications mentioned in this section. Table 6 

summarise these GAN studies. 

In conclusion, GAN provides a promising solution for the data greedy feature of deep 

neural network. The proposed Ad CycleGAN model provides more authentic image to 

augment the training of DNN with high performance and robust. We believe this new 

technology will promote DNN related technologies for medical diagnosis and decision 

making, and it will ultimately help to enhance high-quality healthcare delivery. 
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Appendices 

This section contains the list of my publications during the PhD study period, and the 

python source codes for the implementations of the residual network-based classifiers, the 

convolutional variation autoencoder (CVA) models, and the Ad CycleGAN models 

respectively for malaria parasitemic blood cell images and COVID-19 chest X-Ray images. 

All the source codes are originally written in the Jupyter Interactive Notebook format, 

which can be directly accessed at: 

https://github.com/StanleyLiangYork/GAN_for_Medical_Image 

and run directly on Google Colab platform. 

There are seven appendices in this part.  

• Appendix A – Publications during Study Period 

• Appendix B - Residual Network for Malaria Parasitemic Blood Cell image 

Classification 

• Appendix C - Residual Network for COVID-19 Chest X-Ray Image Classification 

• Appendix D - Convolutional Variation Autoencoder for Malaria Parasitemic Blood 

Cell image Synthesis 

• Appendix E - Convolutional Variation Autoencoder for COVID-19 Chest X-Ray 

Image Synthesis 

• Appendix F - Ad Cycle GAN for Malaria Parasitemic Blood Cell image Synthesis 

• Appendix G - Ad Cycle GAN for COVID-19 Chest X-Ray Image Synthesis 

 

The readers who are interested in replicating the experiments are highly 

recommended run the GitHub version directly online with a Google Colab virtual machine 

with GPU support. Or you can also replicate all the experiments by accessing the datasets 

on the author’s Google Cloud Storage bucket following the URL provide in the source 

code. 

https://github.com/StanleyLiangYork/GAN_for_Medical_Image
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Appendix A: Publications during Study Period  

Journal Articles 

1. Liang Zhaohui, Liu Jun, Ou Aihua, Zhang Honglai, Li Ziping, Huang Jimmy 
Xiangji. Deep generative learning for automated EHR diagnosis of traditional 
Chinese medicine. Computer methods and programs in biomedicine. 2019; 174: 
17-23.  

2. Liang Zhaohui, Liu Jun, Huang Jimmy Xiangji, Zeng Xing. Fast Screening 
Technology for Drug Emergency Management: Predicting Suspicious SNPs for 
ADR with Information Theory-based Models. Combinatorial Chemistry & High 
Throughput Screening. 2018; 21(2): 93-99.  

3. Liang Zhaohui, Huang Jimmy Xiangji, Antani Sameer. Image Translation by Ad 
CycleGAN for COVID-19 X-ray Images: A New Approach for Controllable GAN. 
Sensors. 2022, 22(24): 9628. 

Conference Articles 

1. Liang Zhaohui, Huang Jimmy Xiangji. Emergency Department Wait Time 
Prediction based on Cyclical Features by Deep Neural Networks. In Proceedings of 
AMIA 2022 Clinical Informatics Conference. 2022, May 24-26, Houston, USA. 

2. Liang Zhaohui, Huang Jimmy Xiangji. CycleGAN with Dynamic Criterion for 
Malaria Blood Cell Image Synthetization. In Proceedings of AMIA 2022 
Informatics Summit. 2022, Mar 21-24, Chicago. USA. 

3. Liang Zhaohui, Huang Jimmy Xiangji. Adaptive Cycle-consistent Adversarial 
Network for Malaria Blood Cell Image Synthetization. In Proceedings of IEEE 
Applied Imagery Pattern Recognition Workshop (AIPR), 2021, Oct 12 -14, 
Washington DC, USA, pp.1-7. 

4. Liang Zhaohui, Huang Jimmy Xiangji. Cycle-Consistent Adversarial network with 
criterion for COVID-19 Chest X-ray Generation. In Proceedings of AMIA 2021 
Annual Symposium, 2021, Oct 30 – Nov 3, San Diego, pp. 1723. 

5. Liang Zhaohui, Huang Jimmy Xiangji, Li Jun, Chan Stephen. Enhancing automated 
COVID-19 chest X-ray diagnosis by image-to-image GAN translation. In 
Proceedings of IEEE International Conference on Bioinformatics and Biomedicine 
(BIBM). 2020, Dec 16-19, pp. 1068-1071. 

6. Liang Zhaohui, Liu Jun, Zhang Honglai, Huang Jimmy, Li Ziping, Chan Stephen. 
Patient Entity Recognition by Word Embedding Representation and Deep 
Learning. In Proceedings of IEEE International Conference on Bioinformatics and 
Biomedicine (BIBM). 2019, Nov 18-21, San Diego, CA, USA, pp. 1096-1099. 
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Appendix B: Residual Network for Malaria Parasitemic Blood Cell 
image Classification 

# -*- coding: utf-8 -*- 

"""Original file is located at 

    https://github.com/StanleyLiangYork/GAN_for_Medical_Image/blob/main/Cycle_GA

N_with_Criterion_malaria.ipynb 

""" 

!pip install tensorflow_addons 

 

import os 

import shutil 

import random 

import pandas as pd 

import numpy as np 

import seaborn as sns 

import tensorflow as tf 

import zipfile 

import random 

from PIL import Image 

from matplotlib import pyplot as plt 

import re 

import tensorflow.keras as tfk 
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import tensorflow.keras.layers as tfkl 

import tensorflow_hub as hub 

import cv2 

import tensorflow_addons as tfa 

import tensorflow_probability as tfp 

import pathlib 

 

print(f'Tensorflow Version: {tf.__version__}') 

 

"""Set a random seed for replication""" 

 

tf.random.set_seed(1000) 

 

"""Fetch the malaria dataset""" 

 

if not os.path.exists('malaria.zip'): 

  !wget https://storage.googleapis.com/pet-detect-239118/malaria.zip ./malaria.zip 

 

with zipfile.ZipFile('malaria.zip', 'r') as zipObj: 

   # Extract all the contents of zip file in current directory 

   zipObj.extractall() 
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"""Set the folder for the different image classes""" 

 

data_dir = './malaria' 

data_dir = pathlib.Path(data_dir) 

blood_imgs = list(data_dir.glob('*/*.png')) 

 

print(f'There are {len(blood_imgs)} in total.') 

 

positive_paths = [] 

negative_paths = [] 

for file in blood_imgs: 

  file = str(file) 

  parts = tf.strings.split(file, os.path.sep) 

  if parts[-2] == 'Parasitemic': 

    positive_paths.append('/content/'+file) 

  else: 

    negative_paths.append('/content/'+file) 

 

"""randomly select 2000 images from each class for test, note that we will use the images 

in the test dataset to train the GAN""" 

 

total = len(positive_paths) 
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test_idx = np.random.choice(total, 2000, replace=False) 

 

# move the images to their correspoding folders 

positive_paths = np.array(positive_paths) 

negative_paths = np.array(negative_paths) 

test_positive = np.take(positive_paths, test_idx, axis=0) 

train_positive = np.delete(positive_paths, test_idx, axis=0) 

test_negative = np.take(negative_paths, test_idx, axis=0) 

train_negative = np.delete(negative_paths, test_idx, axis=0) 

 

train_images = np.concatenate((train_positive, train_negative), axis=0) 

test_images = np.concatenate((test_positive, test_negative), axis=0) 

print(train_images.shape) 

print(test_images.shape) 

 

"""Setup the folders for the following tasks""" 

 

if not os.path.exists('train'): 

  os.mkdir('train') 

 

if not os.path.exists('test'): 

  os.mkdir('test') 
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os.mkdir('train/Parasitemic') 

os.mkdir('test/Parasitemic') 

os.mkdir('train/Uninfected') 

os.mkdir('test/Uninfected') 

 

for file in train_images: 

  parts = str.split(file, os.path.sep) 

  cp_path = parts[-2]+'/'+parts[-1] 

  root = '/content/train'+'/' 

  dest = root+cp_path 

  src = file 

  shutil.copy2(src, dest) 

 

for file in test_images: 

  parts = str.split(file, os.path.sep) 

  cp_path = parts[-2]+'/'+parts[-1] 

  root = '/content/test'+'/' 

  dest = root+cp_path 

  src = file 

  shutil.copy2(src, dest) 
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"""Set the helper functions for image processing""" 

 

def decode_img(img): 

  # convert the compressed string to a 3D uint8 tensor 

  img = tf.image.decode_png(img, channels=3) 

  # Use `convert_image_dtype` to convert to floats in the [0,1] range. 

  img = tf.image.convert_image_dtype(img, tf.float32) 

  # resize the image to the desired size. 

  return tf.image.resize(img, [32, 32]) 

 

def get_label(file_path): 

  parts = tf.strings.split(file_path, os.path.sep) 

  if parts[-2] == 'Parasitemic': 

    return tf.constant(1.0, dtype="float64") 

  else: 

    return tf.constant(0.0, dtype="float64") 

 

def process_path(file_path): 

  label = get_label(file_path) 

  # load the raw data from the file as a string 

  img = tf.io.read_file(file_path) 

  img = decode_img(img) 
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  # rescale from (0,255) to (-1,1) 

  img = (img - 127.5) / 127.5 

  return img, label 

 

# setup the dataset iterator for positive / negative  

BATCH_SIZE = 512 

train_BUFFER_SIZE = 20820 

test_BUFFER_SIZE = 4000 

 

train_dataset = tf.data.Dataset.list_files("/content/train/*/*.png") 

train_dataset = train_dataset.map(process_path, 

num_parallel_calls=tf.data.AUTOTUNE) 

train_dataset = train_dataset.shuffle(train_BUFFER_SIZE).batch(BATCH_SIZE) 

 

test_dataset = tf.data.Dataset.list_files("/content/test/*/*.png") 

test_dataset = test_dataset.map(process_path, num_parallel_calls=tf.data.AUTOTUNE) 

test_dataset = test_dataset.shuffle(test_BUFFER_SIZE).batch(BATCH_SIZE) 

 

images, labels = next(iter(test_dataset)) 

print(images.shape) 

print(labels.shape) 
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plt.figure(figsize=(10,10)) 

title=['Parasitemic', 'Uninfected'] 

for i in range(6 * 6): 

  plt.subplot(6, 6, 1 + i) 

  plt.axis(False) 

  image = tf.keras.preprocessing.image.array_to_img(images[i]) 

  # plt.title(title[np.argmax(labels[i])]) 

  if labels[i] == 1: 

    plt.title(title[0]) 

  else: 

    plt.title(title[1]) 

  plt.imshow(image) 

plt.show() 

 

"""Define and train the classifier""" 

 

# function for creating an identity or projection residual module 

def residual_module(layer_in, n_filters): 

  merge_input = layer_in 

  # check if the number of filters needs to be increase, assumes channels last format 

  if layer_in.shape[-1] != n_filters: 
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    merge_input = tfkl.Conv2D(n_filters, (1,1), padding='same', activation='relu', 

kernel_initializer='he_normal')(layer_in) 

  # conv1 

  conv1 = tfkl.Conv2D(n_filters, (3,3), padding='same', activation='relu', 

kernel_initializer='he_normal')(layer_in) 

  # conv2 

  conv2 = tfkl.Conv2D(n_filters, (3,3), padding='same', activation='linear', 

kernel_initializer='he_normal')(conv1) 

  # add filters, assumes filters/channels last 

  layer_out = tfk.layers.Add()([conv2, merge_input]) 

  # activation function 

  layer_out = tfkl.Activation('relu')(layer_out) 

  return layer_out 

 

def define_classifier(input_dim=(32,32,3)): 

  input_layer = tfk.Input(shape=input_dim) 

  layer = tfkl.Lambda(lambda x: x*127.5+127.5)(input_layer) 

  layer = residual_module(layer, 64) 

  layer = tfkl.BatchNormalization()(layer) 

  layer = tfkl.MaxPooling2D()(layer) 

  layer = residual_module(layer, 64) 

  layer = tfkl.BatchNormalization()(layer) 
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  layer = tfkl.MaxPooling2D()(layer) 

  layer = residual_module(layer, 64) 

  layer = tfkl.BatchNormalization()(layer) 

  layer = tfkl.MaxPooling2D()(layer) 

  layer = tfkl.Flatten()(layer) 

  layer = tfkl.Dense(128, activation='tanh')(layer) 

  layer = tfkl.Dropout(0.4)(layer) 

  layer = tfkl.Dense(128, activation='tanh')(layer) 

  layer = tfkl.Dropout(0.4)(layer) 

  layer = tfkl.Dense(2)(layer) 

  model = tfk.models.Model(inputs=input_layer, outputs=layer) 

  return model 

 

classifier = define_classifier() 

classifier.summary() 

 

tfk.utils.plot_model(classifier, show_shapes=True, dpi=64) 

 

classifier.compile( 

    optimizer=tfk.optimizers.Adam(learning_rate=1e-4), 

    loss=tfk.losses.SparseCategoricalCrossentropy(from_logits=True), 

    metrics=['accuracy']) 
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callback = tf.keras.callbacks.EarlyStopping(monitor='val_loss', patience=20) 

 

history = classifier.fit(train_dataset, validation_data=test_dataset, epochs=100, 

callbacks=[callback], verbose=2) 

 

classifier.evaluate(test_dataset) 

 

plt.figure(figsize=(10, 8)) 

plt.subplot(2, 1, 1) 

plt.plot(history.history['loss'], label='Training Loss') 

plt.plot(history.history['val_loss'], label='Validation Loss') 

plt.ylim([0, 2.5]) 

plt.legend(loc='best') 

plt.title('Training and Validation Loss') 

 

plt.subplot(2, 1, 2) 

plt.plot(history.history['accuracy'], label='Training Accuracy') 

plt.plot(history.history['val_accuracy'], label='Validation Accuracy') 

plt.ylim([0, 1.2]) 

plt.plot() 

plt.legend(loc='best') 

plt.title('Training and Validation Accuracy') 
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plt.xlabel('epoch') 

 

"""Save the trained model, you can zip and copy it to you google drive by uncommenting 

the code below""" 

 

classifier.save('classify_malaria_32') 

 

!zip -r classify_malaria_32.zip classify_malaria_32 

 

from google.colab import drive 

drive.mount('/content/drive') 

 

import shutil 

 

source = "/content/classify_malaria_64.zip" 

destination = "/content/drive/MyDrive/classify_malaria_64.zip" 

shutil.copy2(source, destination) 
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Appendix C: Residual Network for COVID-19 Chest X-Ray Image 
Classification 

# -*- coding: utf-8 -*- 

"""Original file is located at 

    https://github.com/StanleyLiangYork/GAN_for_Medical_Image/blob/main/adaptive_c

ycle_gan_malaria.ipynb 

""" 

!pip install tensorflow_addons 

!pip install sewar 

from sewar.full_ref import mse, rmse, psnr, uqi, ssim, ergas, scc, rase, sam, msssim, vifp 

import os 

import shutil 

import random 

import pandas as pd 

import numpy as np 

import seaborn as sns 

import tensorflow as tf 

import zipfile 

import random 

from PIL import Image 

from matplotlib import pyplot as plt 

import re 
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import tensorflow.keras as tfk 

import tensorflow.keras.layers as tfkl 

import tensorflow_hub as hub 

import cv2 

import tensorflow_addons as tfa 

import tensorflow_probability as tfp 

 

print(f'Tensorflow Version: {tf.__version__}') 

 

"""Set the random seed for replication""" 

 

tf.random.set_seed(100) 

AUTOTUNE = tf.data.AUTOTUNE 

 

"""Fetch the COVID-19 X-Ray dataset""" 

 

if not os.path.exists('covid_set.zip'): 

  !wget https://storage.googleapis.com/pet-detect-239118/covid_set.zip ./covid_set.zip 

 

with zipfile.ZipFile('covid_set.zip') as ZipObj: 

  ZipObj.extractall() 
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"""Set the folders for the experiment""" 

 

root_dir = '/content/covid_set' 

paths = os.listdir(root_dir) 

 

covid = re.compile("COVID") 

normal = re.compile("NORMAL") 

viral = re.compile("Viral") 

 

covid_path = [] 

normal_path = [] 

viral_path = [] 

 

for path in paths: 

  if covid.match(path): 

    covid_path.append(path) 

  if normal.match(path): 

    normal_path.append(path) 

  if viral.match(path): 

    viral_path.append(path) 

 

val_covid_path = covid_path[:50] 
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covid_path = covid_path[50:] 

print(len(val_covid_path)) 

print(len(covid_path)) 

 

"""Since we have just a few COVID-19 X-ray images, we separate 50 images for 

validation, and the rest 169 for training""" 

 

for _ in range(5): 

  random_items = random.sample(covid_path, 169) 

  covid_path += random_items 

 

print(len(covid_path)) 

 

"""Randomly resample the images 

 

Build a balanced dataset, each class has 1014 images respectively 

""" 

 

for i, path in enumerate(covid_path): 

  covid_path[i] = root_dir + '/' + path 

 

for i, path in enumerate(normal_path): 
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  normal_path[i] = root_dir + '/' + path 

 

for i, path in enumerate(viral_path): 

  viral_path[i] = root_dir + '/' + path 

 

# 1014 + 50 = 1064 -- need 50 extra images from normal and from viral classes for the 

validation dataset 

covid_path = covid_path 

normal_path = normal_path[:1064] 

viral_path = viral_path[:1064] 

 

print(len(covid_path)) 

print(len(normal_path)) 

print(len(viral_path)) 

 

"""The helper function the resize and rescale the images.<p> 

labels: COVID-0, NORMAL-1, VIRAL-2 

""" 

 

def decode_img(img): 

  # convert the compressed string to a 3D uint8 tensor 

  img = tf.image.decode_png(img, channels=3) 
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  # Use `convert_image_dtype` to convert to floats in the [0,1] range. 

  img = tf.image.convert_image_dtype(img, tf.float32) 

  # resize the image to the desired size. 

  return tf.image.resize(img, [64, 64]) 

 

def get_label(file_path): 

  if tf.strings.regex_full_match(file_path, ".*COVID.*"): 

    return tf.constant(0.0, dtype="float32") 

  elif tf.strings.regex_full_match(file_path, ".*NORMAL.*"): 

    return tf.constant(1.0, dtype="float32") 

  else: 

    return tf.constant(2.0, dtype="float32") 

 

def process_path(file_path): 

  label = get_label(file_path) 

  # load the raw data from the file as a string 

  img = tf.io.read_file(file_path) 

  img = decode_img(img) 

 

  # rescale from (0,255) to (0,1) 

  # img = img / 255.0 

  img = (img - 127.5) / 127.5 
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  return img, label 

 

"""The three image datasets for each image class """ 

 

covid_ds = tf.data.Dataset.list_files(covid_path, shuffle=True) 

normal_ds = tf.data.Dataset.list_files(normal_path[:1014], shuffle=True) 

viral_ds = tf.data.Dataset.list_files(viral_path[:1014], shuffle=True) 

 

BATCH_SIZE = 64 

BUFFER_SIZE = 1014 

AUTOTUNE = tf.data.AUTOTUNE 

 

covid_ds = covid_ds.map(process_path, 

num_parallel_calls=AUTOTUNE).shuffle(BUFFER_SIZE).batch(BATCH_SIZE) 

normal_ds = normal_ds.map(process_path, 

num_parallel_calls=AUTOTUNE).shuffle(BUFFER_SIZE).batch(BATCH_SIZE) 

viral_ds = viral_ds.map(process_path, 

num_parallel_calls=AUTOTUNE).shuffle(BUFFER_SIZE).batch(BATCH_SIZE) 

 

train_path = covid_path + normal_path[:1014] + viral_path[:1014] 

val_path = val_covid_path + normal_path[1014:] + viral_path[1014:] 

print(len(train_path)) 
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print(len(val_path)) 

 

train_ds = tf.data.Dataset.list_files(train_path, shuffle=True) 

train_ds = train_ds.map(process_path, 

num_parallel_calls=AUTOTUNE).shuffle(3042).batch(BATCH_SIZE) 

val_ds = tf.data.Dataset.list_files(val_path, shuffle=True) 

val_ds = val_ds.map(process_path, 

num_parallel_calls=AUTOTUNE).shuffle(150).batch(BATCH_SIZE) 

 

images, labels = next(iter(train_ds)) 

 

"""visualize the images""" 

 

plt.figure(figsize=(12,12)) 

 

for i in range(4 * 4): 

  plt.subplot(4, 4, 1+i) 

  plt.axis(False) 

  image = tf.keras.preprocessing.image.array_to_img(images[i,:,:,:]) 

  plt.imshow(image) 

  if labels[i] == 0.0: 

    plt.title('COVID') 
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  if labels[i] == 1.0: 

    plt.title("Normal") 

  if labels[i] == 2.0: 

    plt.title("Viral") 

 

"""Train the classifier later as the criterion for the GAN""" 

 

# function for creating an identity or projection residual module 

def residual_module(layer_in, n_filters): 

  merge_input = layer_in 

  # check if the number of filters needs to be increase, assumes channels last format 

  if layer_in.shape[-1] != n_filters: 

    merge_input = tfkl.Conv2D(n_filters, (1,1), padding='same', activation='relu', 

kernel_initializer='he_normal')(layer_in) 

  # conv1 

  conv1 = tfkl.Conv2D(n_filters, (3,3), padding='same', activation='relu', 

kernel_initializer='he_normal')(layer_in) 

  # conv2 

  conv2 = tfkl.Conv2D(n_filters, (3,3), padding='same', activation='linear', 

kernel_initializer='he_normal')(conv1) 

  # add filters, assumes filters/channels last 

  layer_out = tfk.layers.Add()([conv2, merge_input]) 
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  # activation function 

  layer_out = tfkl.Activation('relu')(layer_out) 

  return layer_out 

 

def define_classifier(input_dim=(64,64,3)): 

  input_layer = tfk.Input(shape=input_dim) 

  layer = tfkl.Lambda(lambda x: x*127.5+127.5)(input_layer) 

  layer = residual_module(layer, 64) 

  layer = tfkl.BatchNormalization()(layer) 

  layer = tfkl.MaxPooling2D()(layer) 

  layer = residual_module(layer, 64) 

  layer = tfkl.BatchNormalization()(layer) 

  layer = tfkl.MaxPooling2D()(layer) 

  layer = residual_module(layer, 64) 

  layer = tfkl.BatchNormalization()(layer) 

  layer = tfkl.MaxPooling2D()(layer) 

  layer = residual_module(layer, 64) 

  layer = tfkl.BatchNormalization()(layer) 

  layer = tfkl.MaxPooling2D()(layer) 

  layer = tfkl.Flatten()(layer) 

  layer = tfkl.Dense(128, activation='tanh')(layer) 

  layer = tfkl.Dropout(0.4)(layer) 
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  layer = tfkl.Dense(3)(layer) 

  model = tfk.models.Model(inputs=input_layer, outputs=layer) 

  return model 

 

classifier = define_classifier() 

classifier.summary() 

 

"""Compile the classifer DNN with sparce categorical crossentropy as the loss function, 

the input label with shape (batch, 1), the DNN output with shape (batch, 3)""" 

 

classifier.compile( 

    optimizer=tfk.optimizers.Adam(learning_rate=1e-4), 

    loss=tfk.losses.SparseCategoricalCrossentropy(from_logits=True), 

    metrics=['accuracy']) 

callback = tf.keras.callbacks.EarlyStopping(monitor='val_loss', patience=10) 

 

"""Optimize with 100 epochs""" 

 

history = classifier.fit(train_ds, validation_data=val_ds, epochs=100, 

callbacks=[callback], verbose=2) 

 

# visualize the training procedure 
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plt.figure(figsize=(12, 8)) 

plt.subplot(2, 1, 1) 

plt.plot(history.history['loss'], label='Training Loss') 

plt.plot(history.history['val_loss'], label='Validation Loss') 

plt.ylim([0, 2.5]) 

plt.legend(loc='best') 

plt.title('Training and Validation Loss') 

 

plt.subplot(2, 1, 2) 

plt.plot(history.history['accuracy'], label='Training Accuracy') 

plt.plot(history.history['val_accuracy'], label='Validation Accuracy') 

plt.ylim([0, 1.2]) 

plt.plot() 

plt.legend(loc='best') 

plt.title('Training and Validation Accuracy') 

plt.xlabel('epoch') 

plt.savefig('train.png') 

 

# save and zip the classifier 

classifier.save('covid_classifier_64') 

!zip -r covid_classifier_64.zip covid_classifier_64 
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"""Now we setup the Cycle-GAN with criterion""" 

 

from zipfile import ZipFile 

 

with ZipFile('covid_classifier_64.zip', 'r') as zipObj: 

   # Extract all the contents of zip file in current directory 

   zipObj.extractall() 

 

# delete and reload the pretrained classifier 

# del classifier 

classifier = tfk.models.load_model('covid_classifier_64') 

classifier.trainable = False 

 

classifier.evaluate(train_ds) 

 

# check the pretrained classifier with the validation dataset 

classifier.evaluate(val_ds)  
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Appendix D: Convolutional Variation Autoencoder for Malaria 
Parasitemic Blood Cell image Synthesis 

# -*- coding: utf-8 -*- 

"""Original file is located at 

    https://github.com/StanleyLiangYork/GAN_for_Medical_Image/blob/main/CVA_mal

aria.ipynb 

""" 

 

!pip install tensorflow_addons 

!pip install -q tensorflow-probability 

 

# to generate gifs 

!pip install -q imageio 

!pip install -q git+https://github.com/tensorflow/docs 

 

from IPython import display 

from IPython.display import clear_output 

import os 

from zipfile import ZipFile 

import glob 

import imageio 

import matplotlib.pyplot as plt 
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import numpy as np 

import PIL 

import tensorflow as tf 

import tensorflow_probability as tfp 

import time 

import tensorflow_addons as tfa 

import pathlib 

from tensorflow.keras import layers 

 

tfd = tfp.distributions 

tfpl = tfp.layers 

tfk = tf.keras 

tfkl = tf.keras.layers 

 

AUTOTUNE = tf.data.AUTOTUNE 

print(f'Tensorflow Version: {tf.__version__}') 

 

"""load the malaria dataset""" 

 

if not os.path.exists('malaria.zip'): 

  !wget https://storage.googleapis.com/pet-detect-239118/malaria.zip ./malaria.zip 
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with ZipFile('malaria.zip', 'r') as zipObj: 

   # Extract all the contents of zip file in current directory 

   zipObj.extractall() 

 

data_dir = './malaria' 

data_dir = pathlib.Path(data_dir) 

blood_imgs = list(data_dir.glob('*/*.png')) 

 

print(f'There are {len(blood_imgs)} in total.') 

 

file_list = list(data_dir.glob('*/*.png')) 

positive_paths = [] 

negative_paths = [] 

for file in file_list: 

  file = str(file) 

  parts = tf.strings.split(file, os.path.sep) 

  if parts[-2] == 'Parasitemic': 

    positive_paths.append('/content/'+file) 

  else: 

    negative_paths.append('/content/'+file) 

 

total = len(positive_paths) 
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test_idx = np.random.choice(total, 4000, replace=False) 

print(f'Total image: {total*2}') 

 

positive_paths = np.array(positive_paths) 

negative_paths = np.array(negative_paths) 

test_positive = np.take(positive_paths, test_idx, axis=0) 

train_positive = np.delete(positive_paths, test_idx, axis=0) 

test_negative = np.take(negative_paths, test_idx, axis=0) 

train_negative = np.delete(negative_paths, test_idx, axis=0) 

 

train_images = np.concatenate((train_positive, train_negative), axis=0) 

test_images = np.concatenate((test_positive, test_negative), axis=0) 

print(train_images.shape) 

print(test_images.shape) 

 

if not os.path.exists('train'): 

  os.mkdir('train') 

 

if not os.path.exists('test'): 

  os.mkdir('test') 

 

os.mkdir('train/Parasitemic') 
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os.mkdir('test/Parasitemic') 

os.mkdir('train/Uninfected') 

os.mkdir('test/Uninfected') 

 

import shutil 

 

for file in train_images: 

  parts = str.split(file, os.path.sep) 

  cp_path = parts[-2]+'/'+parts[-1] 

  root = '/content/train'+'/' 

  dest = root+cp_path 

  src = file 

  shutil.copy2(src, dest) 

 

for file in test_images: 

  parts = str.split(file, os.path.sep) 

  cp_path = parts[-2]+'/'+parts[-1] 

  root = '/content/test'+'/' 

  dest = root+cp_path 

  src = file 

  shutil.copy2(src, dest) 
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# Run this to reset the VAE run 

def decode_img(img): 

  # convert the compressed string to a 3D uint8 tensor 

  img = tf.image.decode_png(img, channels=3) 

  # Use `convert_image_dtype` to convert to floats in the [0,1] range. 

  img = tf.image.convert_image_dtype(img, tf.float32) 

  # resize the image to the desired size. 

  return tf.image.resize(img, [32, 32]) 

 

def get_label(file_path): 

  parts = tf.strings.split(file_path, os.path.sep) 

  if parts[-2] == 'Parasitemic': 

    return tf.constant(1.0, dtype="float32") 

  else: 

    return tf.constant(0.0, dtype="float32") 

 

def process_path(file_path): 

  label = get_label(file_path) 

  # load the raw data from the file as a string 

  img = tf.io.read_file(file_path) 

  img = decode_img(img) 

  # rescale from (0,255) to (0,1) 
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  img = (img / 127.5) - 1 

  # img = img / 255.0 

  return img, label 

 

def CVA_process_path(file_path): 

  label = get_label(file_path) 

  # load the raw data from the file as a string 

  img = tf.io.read_file(file_path) 

  img = decode_img(img) 

  # rescale from (0,255) to (0,1) 

  # img = (img / 127.5) - 1 

  img = img / 255.0 

  return img, label 

 

"""Set up the datasets""" 

 

BATCH_SIZE = 512 

BUFFER_SIZE = 2000 

 

train_dataset = tf.data.Dataset.list_files("/content/train/Parasitemic/*.png") 

train_dataset = train_dataset.map(CVA_process_path, 

num_parallel_calls=tf.data.AUTOTUNE) 
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# train_dataset = train_dataset.map(process_path, 

num_parallel_calls=tf.data.AUTOTUNE) 

train_dataset = train_dataset.shuffle(BUFFER_SIZE).batch(BATCH_SIZE) 

 

test_dataset = tf.data.Dataset.list_files("/content/test/Parasitemic/*.png") 

test_dataset = test_dataset.map(CVA_process_path, 

num_parallel_calls=tf.data.AUTOTUNE) 

# test_dataset = test_dataset.map(process_path, 

num_parallel_calls=tf.data.AUTOTUNE) 

test_dataset = test_dataset.shuffle(BUFFER_SIZE).batch(BATCH_SIZE) 

 

# VAE cost function as negative ELBO (Evidence Lower Bound Objective) 

 

def normal_log_pdf(sample, mean, sd, raxis=1): 

  log2pi = tf.math.log(2. * np.pi) 

  logvar = np.log((np.square(sd))) 

  return tf.reduce_sum( 

      -.5 * ((sample - mean) ** 2. * tf.exp(-logvar) + logvar + log2pi), 

      axis=raxis) 

 

def vae_cost(x_true, model, analytic_kl=True, kl_weight=0.01): 

  z_sample, mu, sd = model.encode(x_true) 



 

191 

  x_recons_logits = model.decoder(z_sample) 

  # compute cross entropy loss for each dimension of every datapoint 

  raw_cross_entropy = tf.nn.sigmoid_cross_entropy_with_logits(labels=x_true, 

logits=x_recons_logits) # bs*128*128*3 

  # compute cross entropy loss for all instances in mini-batch; shape=(batch_size,), the 

first term of the objective 

  neg_log_likelihood = tf.math.reduce_sum(raw_cross_entropy, axis=[1, 2, 3]) # the first 

term of the objective 

 

  # compute reverse KL divergence, either analytically or through MC approximation 

with one sample, the second term of the objective 

  if analytic_kl: 

    kl_divergence = - 0.5 * tf.math.reduce_sum(1 + tf.math.log(tf.math.square(sd)) - 

tf.math.square(mu) - tf.math.square(sd), axis=1)  # shape=(batch_size, ) 

  else: 

    logpz = normal_log_pdf(z_sample, 0., 1.)  # shape=(batch_size,) 

    logqz_x = normal_log_pdf(z_sample, mu, tf.math.square(sd))  # shape=(batch_size,) 

    kl_divergence = logqz_x - logpz 

  elbo = tf.math.reduce_mean(-kl_weight * kl_divergence - neg_log_likelihood)  # 

shape=() 

  return -elbo 
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# Adjust the KL divergence weight here 

# @tf.function 

def train_step(x_true, model, optimizer, analytic_kl=True, kl_weight=0.01): 

  with tf.GradientTape() as tape: 

    cost_mini_batch = vae_cost(x_true, model, analytic_kl, kl_weight) 

  gradients = tape.gradient(cost_mini_batch, model.trainable_variables) 

  optimizer.apply_gradients(zip(gradients, model.trainable_variables)) 

  return cost_mini_batch 

 

class Encoder_Z(tfk.layers.Layer): 

 

    def __init__(self, dim_z, name="encoder", **kwargs): 

        super(Encoder_Z, self).__init__(name=name, **kwargs) 

        self.dim_x = (32, 32, 3) 

        self.dim_z = dim_z 

 

    def build(self): 

        layers = [tfkl.InputLayer(input_shape=self.dim_x)] 

        layers.append(tfkl.Conv2D(filters=32, kernel_size=4, strides=(2, 2), 

padding='same')) # 16*16*32 

        layers.append(tfkl.LeakyReLU()) 
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        layers.append(tfkl.Conv2D(filters=64, kernel_size=4, strides=(2, 2), 

padding='same')) # 8*8*64 

        layers.append(tfkl.LeakyReLU()) 

        layers.append(tfkl.Conv2D(filters=128, kernel_size=4, strides=(2, 2), 

padding='same')) # 4*4*128 

        layers.append(tfkl.LeakyReLU()) 

        layers.append(tfkl.Flatten()) 

        layers.append(tfkl.Dense(self.dim_z * 2, 

                                 activation=None))  # *2 because number of parameters for both 

mean and (raw) standard deviation 

        return tfk.Sequential(layers) 

 

class Decoder_X(tfk.layers.Layer): 

 

    def __init__(self, dim_z, name="decoder", **kwargs): 

        super(Decoder_X, self).__init__(name=name, **kwargs) 

        self.dim_z = dim_z 

 

    def build(self): 

        layers = [tfkl.InputLayer(input_shape=(self.dim_z,))] 

        layers.append(tfkl.Dense(4 * 4 * 16, activation=None)) 

        layers.append(tfkl.Reshape((4, 4, 16))) 
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        layers.append(tfkl.Conv2DTranspose(filters=32, kernel_size=4, strides=2, 

padding='same')) # 8*8*32 

        layers.append(tfkl.LeakyReLU()) 

        layers.append(tfkl.Conv2DTranspose(filters=64, kernel_size=4, strides=2, 

padding='same')) # 16*16*64 

        layers.append(tfkl.LeakyReLU()) 

        layers.append(tfkl.Conv2DTranspose(filters=128, kernel_size=4, strides=2, 

padding='same')) # 32*32*128 

        layers.append(tfkl.LeakyReLU()) 

        layers.append(tfkl.Conv2DTranspose(filters=3, kernel_size=4, strides=1, 

padding='same')) 

 

        return tfk.Sequential(layers) 

 

class VAE(tfk.Model): 

 

    def __init__(self, dim_z, learning_rate, seed=2000, name="autoencoder", **kwargs): 

        super(VAE, self).__init__(name=name, **kwargs) 

        self.dim_x = (32, 32, 3) 

        self.dim_z = dim_z 

        self.learning_rate = learning_rate 

        self.seed = seed 
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        self.encoder = Encoder_Z(dim_z=self.dim_z).build() 

        self.decoder = Decoder_X(dim_z=self.dim_z).build() 

 

    @tf.function 

    def sample(self, eps=None): 

      if eps is None: 

        eps = tf.random.normal(shape=(100, self.dim_z)) 

      return self.decode(eps, apply_sigmoid=True) 

 

    def encode(self, x_input): 

        mu, rho = tf.split(self.encoder(x_input), num_or_size_splits=2, axis=1) 

        sd = tf.math.log(1 + tf.math.exp(rho)) 

        z_sample = mu + sd * tf.random.normal(shape=(self.dim_z,)) 

        return z_sample, mu, sd 

 

    def decode(self, z, apply_sigmoid=False): 

        logits = self.decoder(z) 

        if apply_sigmoid: 

          probs = tf.sigmoid(logits) 

          return probs 

        return logits 
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autoencoder = VAE(128, 2e-4) 

optimizer = tf.keras.optimizers.Adam(2e-4) 

 

def generate_and_save_images(model, epoch, test_sample): 

  z, mean, logvar = model.encode(test_sample) 

  predictions = model.sample(z) 

  fig = plt.figure(figsize=(8, 8)) 

 

  for i in range(16): 

    plt.subplot(4, 4, i + 1) 

    show_img = tf.keras.preprocessing.image.array_to_img(predictions[i, :, :, :]) 

    plt.imshow(show_img) 

    plt.axis('off') 

 

  # tight_layout minimizes the overlap between 2 sub-plots 

  plt.savefig('image_at_epoch_{:04d}.png'.format(epoch)) 

  plt.show() 

 

images, labels = next(iter(test_dataset)) 

images.shape 

 

z, mean, logvar = autoencoder.encode(images) 
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predictions = autoencoder.sample(z) 

fig = plt.figure(figsize=(8, 8)) 

 

for i in range(16): 

  plt.subplot(4, 4, i + 1) 

  if i % 2 == 0: 

    show_img = tf.keras.preprocessing.image.array_to_img(images[i, :, :, :]) 

    plt.title('Real Image') 

    plt.imshow(show_img) 

    plt.axis('off') 

  else: 

    show_img = tf.keras.preprocessing.image.array_to_img(predictions[i, :, :, :]) 

    plt.title('Decoded Image') 

    plt.imshow(show_img) 

    plt.axis(False) 

 

"""Train the CVA""" 

 

epochs = 600 

images, labels = next(iter(test_dataset)) 

test_sample = images 
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generate_and_save_images(autoencoder, 0, test_sample) 

vae_history = dict() 

vae_history['loss'] = [] 

vae_history['val_loss'] = [] 

 

for epoch in range(1, epochs + 1): 

 

  start_time = time.time() 

  loss = [] 

  for train_x, _ in train_dataset: 

    temp_loss = train_step(train_x, autoencoder, optimizer) 

    loss.append(temp_loss)    

 

  loss = np.array(loss) 

  end_time = time.time() 

  elbo = np.mean(loss) 

  vae_history['loss'].append(elbo) 

  print(f'epoch -- {epoch}: Loss: {elbo}') 

 

  val_loss = tf.keras.metrics.Mean() 

  for test_x, _ in test_dataset: 

    val_loss(vae_cost(test_x, autoencoder)) 
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  val_elbo = -val_loss.result() 

  vae_history['val_loss'].append(val_elbo) 

  display.clear_output(wait=False) 

  print('Epoch: {}, Test set ELBO: {}, time elapse for current epoch: {}' 

        .format(epoch, val_elbo, end_time - start_time)) 

  generate_and_save_images(autoencoder, epoch, test_sample) 

 

"""save the trained encoder and decoder""" 

 

autoencoder.encoder.save('CVA_encoder_32') 

autoencoder.decoder.save('CVA_decoder_32') 

!zip -r CVA_decoder_32.zip CVA_decoder_32 

!zip -r CVA_encoder_32.zip CVA_encoder_32 

 

plt.figure(figsize=(12, 8)) 

plt.plot(vae_history['loss'], label='Evidence Lower Bound loss') 

# plt.plot(vae_history['val_loss'], label='Validation ELBO loss') 

plt.legend(loc='best') 

plt.title('CVA training') 

plt.xlabel('epoch') 

 

show_images, labels = next(iter(test_dataset)) 
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plt.figure(figsize=(12,12)) 

 

for i in range(4 * 4): 

  plt.subplot(4, 4, 1+i) 

  plt.axis(False) 

  image = tf.keras.preprocessing.image.array_to_img(show_images[i,:,:,:]) 

  plt.imshow(image) 

  if labels[i] == 1.0: 

    plt.title('Parasitemic') 

  else: 

    plt.title('Uninfected') 

 

def CVA_rescale(image_tensor): 

  img = tf.multiply(image_tensor, 127.5) 

  img = tf.add(img, 127.5) 

  img = tf.divide(img, 255.0) 

  return img 

 

z, mean, logvar = autoencoder.encode(show_images) 

predictions = autoencoder.sample(z) 

fig = plt.figure(figsize=(8, 8)) 
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for i in range(16): 

  plt.subplot(4, 4, i + 1) 

  if i % 2 == 0: 

    show_img = tf.keras.preprocessing.image.array_to_img(show_images[i, :, :, :]) 

    plt.title('Real Image') 

    plt.imshow(show_img) 

    plt.axis('off') 

  else: 

    show_img = tf.keras.preprocessing.image.array_to_img(predictions[i, :, :, :]) 

    plt.title('Decoded Image') 

    plt.imshow(show_img) 

    plt.axis(False) 

 

!pip install sewar 

 

from sewar.full_ref import mse, rmse, psnr, uqi, ssim, ergas, scc, rase, sam, msssim, vifp 

 

input_images = [] 

generated_images = [] 

for i in range(show_images.shape[0]): 
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  input_images.append(tf.keras.preprocessing.image.array_to_img(show_images[i, :, :, 

:]).convert('L')) 

  generated_images.append(tf.keras.preprocessing.image.array_to_img(predictions[i, :, :, 

:]).convert('L')) 

 

MSE = [] 

RMSE = [] 

PSNR = [] 

UQI = [] 

SCC = [] 

RASE =[] 

SAM = [] 

VIF = [] 

 

for j in range(len(input_images)): 

  gen = tf.keras.preprocessing.image.img_to_array(generated_images[j]).astype('uint8') 

  org = tf.keras.preprocessing.image.img_to_array(input_images[j]).astype('uint8') 

  MSE.append(mse(gen,org)) 

  RMSE.append(rmse(gen, org)) 

  PSNR.append(psnr(gen, org)) 

  UQI.append(uqi(gen, org)) 

  SCC.append(scc(gen, org)) 
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  RASE.append(rase(gen, org)) 

  SAM.append(sam(gen, org)) 

  VIF.append(vifp(gen, org)) 

 

MSE = np.array(MSE) 

RMSE = np.array(RMSE) 

PSNR = np.array(PSNR) 

UQI = np.array(UQI) 

SCC = np.array(SCC) 

RASE = np.array(RASE) 

SAM = np.array(SAM) 

VIF = np.array(VIF) 

 

print(f"MSE ---- mean: {MSE.mean()}, std: {MSE.std()} ") 

print(f"RMSE: ---- mean: {RMSE.mean()}, std: {RMSE.std()} ") 

print(f"PSNR: ---- mean: {PSNR.mean()}, std: {PSNR.std()} ") 

print(f"UQI: ---- mean: {UQI.mean()}, std: {UQI.std()} ") 

print(f"SCC: ---- mean: {SCC.mean()}, std: {SCC.std()} ") 

print(f"RASE: ---- mean: {RASE.mean()}, std: {RASE.std()} ") 

print(f"SAM: ---- mean: {SAM.mean()}, std: {SAM.std()} ") 

print(f"VIF: ---- mean: {VIF.mean()}, std: {VIF.std()} ") 
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def get_accuracy(g_true, preds): 

  pred_idx = tf.argmax(preds, axis=1).numpy() 

  count = 0 

  for tab, pred in zip(g_true, pred_idx): 

    if tab == pred: 

      count += 1 

  return count / preds.shape[0] 

 

!wget https://storage.googleapis.com/pet-detect-239118/classify_malaria_32.zip 

./classify_malaria_32.zip 

 

with ZipFile('classify_malaria_32.zip', 'r') as zipObj: 

   # Extract all the contents of zip file in current directory 

   zipObj.extractall() 

 

classifier = tfk.models.load_model('classify_malaria_32') 

classifier.trainable = False 

 

preds = classifier(predictions) 

 

print(f"classify accuracy: {get_accuracy(labels, preds)}") 
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"""FID score""" 

 

from numpy import cov 

from numpy import trace 

from numpy import iscomplexobj 

from numpy import asarray 

from numpy.random import shuffle 

from scipy.linalg import sqrtm 

from tensorflow.keras.applications.inception_v3 import InceptionV3 

from tensorflow.keras.applications.inception_v3 import preprocess_input 

from tensorflow.keras.datasets.mnist import load_data 

 

# scale an array of images to a new size 

def scale_images(images, new_shape): 

  images_list = list() 

  for image in images: 

    # resize with nearest neighbor interpolation 

    new_image = tf.image.resize(image, new_shape) 

    # store 

    images_list.append(new_image) 

  return asarray(images_list) 
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# calculate frechet inception distance 

def calculate_fid(model, images1, images2): 

  # calculate activations 

  act1 = model.predict(images1) 

  act2 = model.predict(images2) 

  # calculate mean and covariance statistics 

  mu1, sigma1 = act1.mean(axis=0), cov(act1, rowvar=False) 

  mu2, sigma2 = act2.mean(axis=0), cov(act2, rowvar=False) 

  # calculate sum squared difference between means 

  ssdiff = np.sum((mu1 - mu2)**2.0) 

  # calculate sqrt of product between cov 

  covmean = sqrtm(sigma1.dot(sigma2)) 

  # check and correct imaginary numbers from sqrt 

  if iscomplexobj(covmean): 

    covmean = covmean.real 

  # calculate score 

  fid = ssdiff + trace(sigma1 + sigma2 - 2.0 * covmean) 

  return fid 

 

model = InceptionV3(include_top=False, pooling='avg', input_shape=(299,299,3)) 

FID = [] 

for images, labels in test_dataset: 
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  images1 = images 

  z, mean, logvar = autoencoder.encode(images1) 

  images2 = autoencoder.sample(z) 

  images1 = preprocess_input(images1) 

  images2 = preprocess_input(images2) 

  fid = calculate_fid(classifier, images1, images2) 

  FID.append(fid) 

 

FID = np.array(FID) 

print("CVA Malaria------") 

print(f'Adjusted FID Mean: {FID.mean()}, Std: {FID.std()}') 
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Appendix E: Convolutional Variation Autoencoder for COVID-19 
Chest X-Ray Image Synthesis 

# -*- coding: utf-8 -*- 

"""Original file is located at 

    https://github.com/StanleyLiangYork/GAN_for_Medical_Image/blob/main/CVA_mal

aria.ipynb 

""" 

 

!pip install tensorflow_addons 

!pip install -q tensorflow-probability 

 

# to generate gifs 

!pip install -q imageio 

!pip install -q git+https://github.com/tensorflow/docs 

 

from IPython import display 

from IPython.display import clear_output 

import os 

import glob 

import imageio 

import matplotlib.pyplot as plt 

import numpy as np 
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import PIL 

import tensorflow as tf 

import tensorflow_probability as tfp 

import time 

import tensorflow_addons as tfa 

import pathlib 

from tensorflow.keras import layers 

import shutil 

import pandas as pd 

import seaborn as sns 

import tensorflow as tf 

import random 

from PIL import Image 

from matplotlib import pyplot as plt 

import re 

 

tfd = tfp.distributions 

tfpl = tfp.layers 

tfk = tf.keras 

tfkl = tf.keras.layers 

 

AUTOTUNE = tf.data.AUTOTUNE 



 

210 

print(f'Tensorflow Version: {tf.__version__}') 

 

tf.random.set_seed(100) 

 

"""Fetch the COVID-19 data""" 

 

from zipfile import ZipFile 

 

if not os.path.exists('covid_set.zip'): 

  !wget https://storage.googleapis.com/pet-detect-239118/covid_set.zip ./covid_set.zip 

 

with ZipFile('covid_set.zip') as ZipObj: 

  ZipObj.extractall() 

 

"""Set up the folder for experiment""" 

 

root_dir = '/content/covid_set' 

paths = os.listdir(root_dir) 

 

covid = re.compile("COVID") 

normal = re.compile("NORMAL") 

viral = re.compile("Viral") 
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covid_path = [] 

normal_path = [] 

viral_path = [] 

 

for path in paths: 

  if covid.match(path): 

    covid_path.append(path) 

  if normal.match(path): 

    normal_path.append(path) 

  if viral.match(path): 

    viral_path.append(path) 

 

val_covid_path = covid_path[:50] 

covid_path = covid_path[50:] 

print(len(val_covid_path)) 

print(len(covid_path)) 

 

"""Build a balanced dataset, each class has 1014 images respectively <p>""" 

 

for _ in range(5): 

  random_items = random.sample(covid_path, 169) 
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  covid_path += random_items 

 

print(len(covid_path)) 

 

for i, path in enumerate(covid_path): 

  covid_path[i] = root_dir + '/' + path 

 

for i, path in enumerate(normal_path): 

  normal_path[i] = root_dir + '/' + path 

 

for i, path in enumerate(viral_path): 

  viral_path[i] = root_dir + '/' + path 

 

# 1014 + 50 = 1064 -- need 50 extra images from normal and from viral classes for the 

validation dataset 

covid_path = covid_path 

normal_path = normal_path[:1064] 

viral_path = viral_path[:1064] 

 

print(len(covid_path)) 

print(len(normal_path)) 

print(len(viral_path)) 
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# Run this to reset the VAE run 

def decode_img(img): 

  # convert the compressed string to a 3D uint8 tensor 

  img = tf.image.decode_png(img, channels=3) 

  # Use `convert_image_dtype` to convert to floats in the [0,1] range. 

  img = tf.image.convert_image_dtype(img, tf.float32) 

  # resize the image to the desired size. 

  return tf.image.resize(img, [64, 64]) 

 

def get_label(file_path): 

  if tf.strings.regex_full_match(file_path, ".*COVID.*"): 

    return tf.constant(0.0, dtype="float32") 

  elif tf.strings.regex_full_match(file_path, ".*NORMAL.*"): 

    return tf.constant(1.0, dtype="float32") 

  else: 

    return tf.constant(2.0, dtype="float32") 

 

def process_path(file_path): 

  label = get_label(file_path) 

  # load the raw data from the file as a string 

  img = tf.io.read_file(file_path) 
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  img = decode_img(img) 

  # rescale from (0,255) to (0,1) 

  img = (img - 127.5) / 127.5 

  return img, label 

 

def CVA_process_path(file_path): 

  label = get_label(file_path) 

  # load the raw data from the file as a string 

  img = tf.io.read_file(file_path) 

  img = decode_img(img) 

  img = img / 255.0 

  return img, label 

 

covid_ds = tf.data.Dataset.list_files(covid_path, shuffle=True) 

normal_ds = tf.data.Dataset.list_files(normal_path[:1014], shuffle=True) 

viral_ds = tf.data.Dataset.list_files(viral_path[:1014], shuffle=True) 

 

BATCH_SIZE = 64 

BUFFER_SIZE = 1014 

 

covid_ds = covid_ds.map(CVA_process_path, 

num_parallel_calls=AUTOTUNE).shuffle(BUFFER_SIZE).batch(BATCH_SIZE) 
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normal_ds = normal_ds.map(CVA_process_path, 

num_parallel_calls=AUTOTUNE).shuffle(BUFFER_SIZE).batch(BATCH_SIZE) 

viral_ds = viral_ds.map(CVA_process_path, 

num_parallel_calls=AUTOTUNE).shuffle(BUFFER_SIZE).batch(BATCH_SIZE) 

 

# VAE cost function as negative ELBO (Evidence Lower Bound Objective) 

 

def normal_log_pdf(sample, mean, sd, raxis=1): 

  log2pi = tf.math.log(2. * np.pi) 

  logvar = np.log((np.square(sd))) 

  return tf.reduce_sum( 

      -.5 * ((sample - mean) ** 2. * tf.exp(-logvar) + logvar + log2pi), 

      axis=raxis) 

 

def vae_cost(x_true, model, analytic_kl=True, kl_weight=0.01): 

  z_sample, mu, sd = model.encode(x_true) 

  x_recons_logits = model.decoder(z_sample) 

  # compute cross entropy loss for each dimension of every datapoint 

  raw_cross_entropy = tf.nn.sigmoid_cross_entropy_with_logits(labels=x_true, 

logits=x_recons_logits) # bs*128*128*3 

  # compute cross entropy loss for all instances in mini-batch; shape=(batch_size,), the 

first term of the objective 
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  neg_log_likelihood = tf.math.reduce_sum(raw_cross_entropy, axis=[1, 2, 3]) # the first 

term of the objective 

 

  # compute reverse KL divergence, either analytically or through MC approximation 

with one sample, the second term of the objective 

  if analytic_kl: 

    kl_divergence = - 0.5 * tf.math.reduce_sum(1 + tf.math.log(tf.math.square(sd)) - 

tf.math.square(mu) - tf.math.square(sd), axis=1)  # shape=(batch_size, ) 

  else: 

    logpz = normal_log_pdf(z_sample, 0., 1.)  # shape=(batch_size,) 

    logqz_x = normal_log_pdf(z_sample, mu, tf.math.square(sd))  # shape=(batch_size,) 

    kl_divergence = logqz_x - logpz 

  elbo = tf.math.reduce_mean(-kl_weight * kl_divergence - neg_log_likelihood)  # 

shape=() 

  return -elbo 

 

# Adjust the KL divergence weight here 

def train_step(x_true, model, optimizer, analytic_kl=True, kl_weight=0.01): 

  with tf.GradientTape() as tape: 

    cost_mini_batch = vae_cost(x_true, model, analytic_kl, kl_weight) 

  gradients = tape.gradient(cost_mini_batch, model.trainable_variables) 

  optimizer.apply_gradients(zip(gradients, model.trainable_variables)) 
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  return cost_mini_batch 

 

class Encoder_Z(tfk.layers.Layer): 

 

    def __init__(self, dim_z, name="encoder", **kwargs): 

        super(Encoder_Z, self).__init__(name=name, **kwargs) 

        self.dim_x = (64, 64, 3) 

        self.dim_z = dim_z 

 

    def build(self): 

        layers = [tfkl.InputLayer(input_shape=self.dim_x)] 

        layers.append(tfkl.Conv2D(filters=32, kernel_size=4, strides=(2, 2), 

padding='same')) # 32*32*32 

        layers.append(tfkl.LeakyReLU()) 

        layers.append(tfkl.Conv2D(filters=64, kernel_size=4, strides=(2, 2), 

padding='same')) # 16*16*64 

        layers.append(tfkl.LeakyReLU()) 

        layers.append(tfkl.Conv2D(filters=128, kernel_size=4, strides=(2, 2), 

padding='same')) # 8*8*128 

        layers.append(tfkl.LeakyReLU()) 

        layers.append(tfkl.Conv2D(filters=256, kernel_size=4, strides=(2, 2), 

padding='same')) # 4*4*256 
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        layers.append(tfkl.LeakyReLU()) 

        layers.append(tfkl.Flatten()) 

        layers.append(tfkl.Dense(self.dim_z * 2, 

                                 activation=None))  # *2 because number of parameters for both 

mean and (raw) standard deviation 

        return tfk.Sequential(layers) 

 

class Decoder_X(tfk.layers.Layer): 

 

    def __init__(self, dim_z, name="decoder", **kwargs): 

        super(Decoder_X, self).__init__(name=name, **kwargs) 

        self.dim_z = dim_z 

 

    def build(self): 

        layers = [tfkl.InputLayer(input_shape=(self.dim_z,))] 

        layers.append(tfkl.Dense(4 * 4 * 16, activation=None)) 

        layers.append(tfkl.Reshape((4, 4, 16))) 

        layers.append(tfkl.Conv2DTranspose(filters=32, kernel_size=4, strides=2, 

padding='same')) # 8*8*32 

        layers.append(tfkl.LeakyReLU()) 

        layers.append(tfkl.Conv2DTranspose(filters=64, kernel_size=4, strides=2, 

padding='same')) # 16*16*64 
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        layers.append(tfkl.LeakyReLU()) 

        layers.append(tfkl.Conv2DTranspose(filters=128, kernel_size=4, strides=2, 

padding='same')) # 32*32*128 

        layers.append(tfkl.LeakyReLU()) 

        layers.append(tfkl.Conv2DTranspose(filters=256, kernel_size=4, strides=2, 

padding='same')) # 64*64*256 

        layers.append(tfkl.LeakyReLU()) 

        layers.append(tfkl.Conv2DTranspose(filters=3, kernel_size=4, strides=1, 

padding='same')) 

 

        return tfk.Sequential(layers) 

 

class VAE(tfk.Model): 

 

    def __init__(self, dim_z, learning_rate, seed=2000, name="autoencoder", **kwargs): 

        super(VAE, self).__init__(name=name, **kwargs) 

        self.dim_x = (128, 128, 3) 

        self.dim_z = dim_z 

        self.learning_rate = learning_rate 

        self.seed = seed 

        self.encoder = Encoder_Z(dim_z=self.dim_z).build() 

        self.decoder = Decoder_X(dim_z=self.dim_z).build() 
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    @tf.function 

    def sample(self, eps=None): 

      if eps is None: 

        eps = tf.random.normal(shape=(100, self.dim_z)) 

      return self.decode(eps, apply_sigmoid=True) 

 

    def encode(self, x_input): 

        mu, rho = tf.split(self.encoder(x_input), num_or_size_splits=2, axis=1) 

        sd = tf.math.log(1 + tf.math.exp(rho)) 

        z_sample = mu + sd * tf.random.normal(shape=(self.dim_z,)) 

        return z_sample, mu, sd 

 

    def decode(self, z, apply_sigmoid=False): 

        logits = self.decoder(z) 

        if apply_sigmoid: 

          probs = tf.sigmoid(logits) 

          return probs 

        return logits 

 

autoencoder = VAE(128, 2e-4) 

optimizer = tf.keras.optimizers.Adam(2e-4) 
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def generate_and_save_images(model, epoch, test_sample): 

  z, mean, logvar = model.encode(test_sample) 

  predictions = model.sample(z) 

  fig = plt.figure(figsize=(8, 8)) 

 

  for i in range(16): 

    plt.subplot(4, 4, i + 1) 

    show_img = tf.keras.preprocessing.image.array_to_img(predictions[i, :, :, :]) 

    plt.imshow(show_img) 

    plt.axis('off') 

 

  # tight_layout minimizes the overlap between 2 sub-plots 

  plt.savefig('image_at_epoch_{:04d}.png'.format(epoch)) 

  plt.show() 

 

images, labels = next(iter(covid_ds)) 

images.shape 

 

z, mean, logvar = autoencoder.encode(images) 

predictions = autoencoder.sample(z) 

fig = plt.figure(figsize=(8, 8)) 
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for i in range(16): 

  plt.subplot(4, 4, i + 1) 

  if i % 2 == 0: 

    show_img = tf.keras.preprocessing.image.array_to_img(images[i, :, :, :]) 

    plt.title('Real Image') 

    plt.imshow(show_img) 

    plt.axis('off') 

  else: 

    show_img = tf.keras.preprocessing.image.array_to_img(predictions[i, :, :, :]) 

    plt.title('Decoded Image') 

    plt.imshow(show_img) 

    plt.axis(False) 

 

"""Train the CVA""" 

 

epochs = 600 

images, labels = next(iter(covid_ds)) 

test_sample = images 

 

generate_and_save_images(autoencoder, 0, test_sample) 

vae_history = dict() 
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vae_history['loss'] = [] 

# vae_history['val_loss'] = [] 

 

for epoch in range(1, epochs + 1): 

 

  start_time = time.time() 

  loss = [] 

  for train_x, _ in covid_ds: 

    temp_loss = train_step(train_x, autoencoder, optimizer) 

    loss.append(temp_loss)    

 

  loss = np.array(loss) 

  end_time = time.time() 

  elbo = np.mean(loss) 

  vae_history['loss'].append(elbo) 

  print(f'epoch -- {epoch}: Loss: {elbo}') 

 

  display.clear_output(wait=False) 

  print('Epoch: {}, ELBO: {}, time elapse for current epoch: {}' 

        .format(epoch, elbo, end_time - start_time)) 

  generate_and_save_images(autoencoder, epoch, test_sample) 
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autoencoder.encoder.save('CVA_encoder_64_600') 

autoencoder.decoder.save('CVA_decoder_64_600') 

!zip -r CVA_decoder_64_600.zip CVA_decoder_64_600 

!zip -r CVA_encoder_64_600.zip CVA_encoder_64_600 

 

plt.figure(figsize=(12, 8)) 

plt.plot(vae_history['loss'], label='Evidence Lower Bound loss') 

plt.legend(loc='best') 

plt.title('CVA training') 

plt.xlabel('epoch') 

 

def CVA_rescale(image_tensor): 

  img = tf.multiply(image_tensor, 127.5) 

  img = tf.add(img, 127.5) 

  img = tf.divide(img, 255.0) 

  return img 

 

z, mean, logvar = autoencoder.encode(images) 

predictions = autoencoder.sample(z) 

fig = plt.figure(figsize=(8, 8)) 

 

for i in range(16): 
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  plt.subplot(4, 4, i + 1) 

  if i % 2 == 0: 

    show_img = tf.keras.preprocessing.image.array_to_img(images[i, :, :, :]) 

    plt.title('Real Image') 

    plt.imshow(show_img) 

    plt.axis('off') 

  else: 

    show_img = tf.keras.preprocessing.image.array_to_img(predictions[i, :, :, :]) 

    plt.title('Decoded Image') 

    plt.imshow(show_img) 

    plt.axis(False) 

 

!pip install sewar 

 

from sewar.full_ref import mse, rmse, psnr, uqi, ssim, ergas, scc, rase, sam, msssim, vifp 

 

input_images = [] 

generated_images = [] 

for i in range(images.shape[0]): 

  input_images.append(tf.keras.preprocessing.image.array_to_img(images[i, :, :, 

:]).convert('L')) 
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  generated_images.append(tf.keras.preprocessing.image.array_to_img(predictions[i, :, :, 

:]).convert('L')) 

 

MSE = [] 

RMSE = [] 

PSNR = [] 

UQI = [] 

SCC = [] 

RASE =[] 

SAM = [] 

VIF = [] 

 

for j in range(len(images)): 

  gen = tf.keras.preprocessing.image.img_to_array(generated_images[j]).astype('uint8') 

  org = tf.keras.preprocessing.image.img_to_array(input_images[j]).astype('uint8') 

  MSE.append(mse(gen,org)) 

  RMSE.append(rmse(gen, org)) 

  PSNR.append(psnr(gen, org)) 

  UQI.append(uqi(gen, org)) 

  SCC.append(scc(gen, org)) 

  RASE.append(rase(gen, org)) 

  SAM.append(sam(gen, org)) 
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  VIF.append(vifp(gen, org)) 

 

MSE = np.array(MSE) 

RMSE = np.array(RMSE) 

PSNR = np.array(PSNR) 

UQI = np.array(UQI) 

SCC = np.array(SCC) 

RASE = np.array(RASE) 

SAM = np.array(SAM) 

VIF = np.array(VIF) 

 

print(f"MSE ---- mean: {MSE.mean()}, std: {MSE.std()} ") 

print(f"RMSE: ---- mean: {RMSE.mean()}, std: {RMSE.std()} ") 

print(f"PSNR: ---- mean: {PSNR.mean()}, std: {PSNR.std()} ") 

print(f"UQI: ---- mean: {UQI.mean()}, std: {UQI.std()} ") 

print(f"SCC: ---- mean: {SCC.mean()}, std: {SCC.std()} ") 

print(f"RASE: ---- mean: {RASE.mean()}, std: {RASE.std()} ") 

print(f"SAM: ---- mean: {SAM.mean()}, std: {SAM.std()} ") 

print(f"VIF: ---- mean: {VIF.mean()}, std: {VIF.std()} ") 

 

def get_accuracy(g_true, preds): 

  pred_idx = tf.argmax(preds, axis=1).numpy() 
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  count = 0 

  for tab, pred in zip(g_true, pred_idx): 

    if tab == pred: 

      count += 1 

  return count / preds.shape[0] 

 

with ZipFile('covid_classifier_64.zip', 'r') as zipObj: 

   # Extract all the contents of zip file in current directory 

   zipObj.extractall() 

 

classifier = tfk.models.load_model('covid_classifier_64') 

classifier.trainable = False 

 

preds = classifier(predictions) 

 

print(f"classify accuracy: {get_accuracy(labels, preds)}") 

 

from numpy import cov 

from numpy import trace 

from numpy import iscomplexobj 

from numpy import asarray 

from numpy.random import shuffle 
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from scipy.linalg import sqrtm 

from tensorflow.keras.applications.inception_v3 import InceptionV3 

from tensorflow.keras.applications.inception_v3 import preprocess_input 

from tensorflow.keras.datasets.mnist import load_data 

 

# scale an array of images to a new size 

def scale_images(images, new_shape): 

  images_list = list() 

  for image in images: 

    # resize with nearest neighbor interpolation 

    new_image = tf.image.resize(image, new_shape) 

    # store 

    images_list.append(new_image) 

  return asarray(images_list) 

 

# calculate frechet inception distance 

def calculate_fid(model, images1, images2): 

  # calculate activations 

  act1 = model.predict(images1) 

  act2 = model.predict(images2) 

  # calculate mean and covariance statistics 

  mu1, sigma1 = act1.mean(axis=0), cov(act1, rowvar=False) 
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  mu2, sigma2 = act2.mean(axis=0), cov(act2, rowvar=False) 

  # calculate sum squared difference between means 

  ssdiff = np.sum((mu1 - mu2)**2.0) 

  # calculate sqrt of product between cov 

  covmean = sqrtm(sigma1.dot(sigma2)) 

  # check and correct imaginary numbers from sqrt 

  if iscomplexobj(covmean): 

    covmean = covmean.real 

  # calculate score 

  fid = ssdiff + trace(sigma1 + sigma2 - 2.0 * covmean) 

  return fid 

 

model = InceptionV3(include_top=False, pooling='avg', input_shape=(299,299,3)) 

 

FID = [] 

 

for images, labels in covid_ds: 

  images1 = images 

  z, mean, logvar = autoencoder.encode(images1) 

  images2 = autoencoder.sample(z) 

  images1 = preprocess_input(images1) 

  images2 = preprocess_input(images2) 
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  fid = calculate_fid(classifier, images1, images2) 

  FID.append(fid) 

 

FID = np.array(FID) 

print("CVA Covid Chest X-ray ------") 

print(f'Adjusted FID Mean: {FID.mean()}, Std: {FID.std()}') 
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Appendix F: Ad Cycle GAN for Malaria Parasitemic Blood Cell image 
Synthesis 

# -*- coding: utf-8 -*- 

"""Original file is located at 

  https://github.com/StanleyLiangYork/GAN_for_Medical_Image/blob/main/adaptive_cy

cle_gan_malaria.ipynb 

 

Install the additional Tensorflow extension packages 

""" 

 

!pip install -q tensorflow-probability 

!pip install -q tensorflow_addons 

!pip install sewar 

 

import os 

import time 

import matplotlib.pyplot as plt 

from IPython.display import clear_output 

from IPython import display 

from zipfile import ZipFile 

import glob 

import imageio 
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import numpy as np 

import PIL 

import tensorflow as tf 

import tensorflow_probability as tfp 

import tensorflow_addons as tfa 

import pathlib 

import shutil 

from sewar.full_ref import mse, rmse, psnr, uqi, ssim, ergas, scc, rase, sam, msssim, vifp 

 

tfk = tf.keras 

tfkl = tf.keras.layers 

tfd = tfp.distributions 

tfpl = tfp.layers 

 

AUTOTUNE = tf.data.AUTOTUNE 

 

"""Prepare the malaria blood cell dataset""" 

 

if not os.path.exists('malaria.zip'): 

  !wget https://storage.googleapis.com/pet-detect-239118/malaria.zip ./malaria.zip 

 

with ZipFile('malaria.zip', 'r') as zipObj: 
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   # Extract all the contents of zip file in current directory 

   zipObj.extractall() 

 

data_dir = './malaria' 

data_dir = pathlib.Path(data_dir) 

blood_imgs = list(data_dir.glob('*/*.png')) 

 

print(f'There are {len(blood_imgs)} in total.') 

 

"""Separate the positive and negative images""" 

 

positive_paths = [] 

negative_paths = [] 

for file in blood_imgs: 

  file = str(file) 

  parts = tf.strings.split(file, os.path.sep) 

  if parts[-2] == 'Parasitemic': 

    positive_paths.append('/content/'+file) 

  else: 

    negative_paths.append('/content/'+file) 

 

"""take 8,000 images from each class""" 
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positive_paths = positive_paths[:8000] 

negative_paths = negative_paths[:8000] 

 

total = len(positive_paths) 

test_idx = np.random.choice(total, 1000, replace=False) 

 

positive_paths = np.array(positive_paths) 

negative_paths = np.array(negative_paths) 

test_positive = np.take(positive_paths, test_idx, axis=0) 

train_positive = np.delete(positive_paths, test_idx, axis=0) 

test_negative = np.take(negative_paths, test_idx, axis=0) 

train_negative = np.delete(negative_paths, test_idx, axis=0) 

 

train_images = np.concatenate((train_positive, train_negative), axis=0) 

test_images = np.concatenate((test_positive, test_negative), axis=0) 

print(train_images.shape) 

print(test_images.shape) 

 

"""copy the images to the correct folder""" 

 

if not os.path.exists('train'): 
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  os.mkdir('train') 

 

if not os.path.exists('test'): 

  os.mkdir('test') 

 

os.mkdir('train/Parasitemic') 

os.mkdir('test/Parasitemic') 

os.mkdir('train/Uninfected') 

os.mkdir('test/Uninfected') 

os.mkdir('gen_images') 

 

for file in train_images: 

  parts = str.split(file, os.path.sep) 

  cp_path = parts[-2]+'/'+parts[-1] 

  root = '/content/train'+'/' 

  dest = root+cp_path 

  src = file 

  shutil.copy2(src, dest) 

 

for file in test_images: 

  parts = str.split(file, os.path.sep) 

  cp_path = parts[-2]+'/'+parts[-1] 
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  root = '/content/test'+'/' 

  dest = root+cp_path 

  src = file 

  shutil.copy2(src, dest) 

 

"""Helper functions for making the dataset""" 

 

def decode_img(img): 

  # convert the compressed string to a 3D uint8 tensor 

  img = tf.image.decode_png(img, channels=3) 

  # Use `convert_image_dtype` to convert to floats in the [0,1] range. 

  img = tf.image.convert_image_dtype(img, tf.float32) 

  # resize the image to the desired size. 

  return tf.image.resize(img, [32, 32]) 

 

def get_label(file_path): 

  parts = tf.strings.split(file_path, os.path.sep) 

  if parts[-2] == 'Parasitemic': 

    return tf.constant(1.0, dtype="float64") 

  else: 

    return tf.constant(0.0, dtype="float64") 
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def process_path(file_path): 

  label = get_label(file_path) 

  # load the raw data from the file as a string 

  img = tf.io.read_file(file_path) 

  img = decode_img(img) 

  # rescale from (0,255) to (0,1) 

  # img = img / 255.0 

  img = (img - 127.5) / 127.5 

  return img, label 

 

"""Load the pretrained classifier""" 

 

!wget https://storage.googleapis.com/pet-detect-239118/classify_malaria_32.zip 

./classify_malaria_32.zip 

 

with ZipFile('classify_malaria_32.zip', 'r') as zipObj: 

   # Extract all the contents of zip file in current directory 

   zipObj.extractall() 

 

classifier = tfk.models.load_model('classify_malaria_32') 

classifier.trainable = False 
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"""Build the classify dataset for classification""" 

 

BATCH_SIZE = 256 

BUFFER_SIZE = 3000 

 

classify_dataset = tf.data.Dataset.list_files("/content/train/*/*.png") 

classify_dataset = classify_dataset.map(process_path, num_parallel_calls=AUTOTUNE) 

classify_dataset = classify_dataset.shuffle(BUFFER_SIZE).batch(BATCH_SIZE) 

 

test_dataset = tf.data.Dataset.list_files("/content/test/*/*.png") 

test_dataset = test_dataset.map(process_path, num_parallel_calls=AUTOTUNE) 

test_dataset = test_dataset.shuffle(BUFFER_SIZE).batch(BATCH_SIZE) 

 

show_images, labels = next(iter(classify_dataset)) 

 

plt.figure(figsize=(12,12)) 

 

for i in range(4 * 4): 

  plt.subplot(4, 4, 1+i) 

  plt.axis(False) 

  image = tf.keras.preprocessing.image.array_to_img(show_images[i,:,:,:]) 

  plt.imshow(image) 
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  if labels[i] == 1.0: 

    plt.title('Parasitemic') 

  else: 

    plt.title('Uninfected') 

 

classifier.evaluate(classify_dataset) 

 

classifier.evaluate(test_dataset) 

 

"""Load the pretrained VAE model """ 

 

if not os.path.exists('CVA_encoder2_32.zip'): 

  !wget https://storage.googleapis.com/pet-detect-239118/CVA_encoder2_32.zip 

./CVA_encoder2_32.zip 

 

with ZipFile('CVA_encoder2_32.zip', 'r') as zipObj: 

   # Extract all the contents of zip file in current directory 

   zipObj.extractall() 

 

if not os.path.exists('CVA_decoder2_32.zip'): 

  !wget https://storage.googleapis.com/pet-detect-239118/CVA_decoder2_32.zip 

./CVA_decoder2_32.zip 
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with ZipFile('CVA_decoder2_32.zip', 'r') as zipObj: 

   # Extract all the contents of zip file in current directory 

   zipObj.extractall() 

 

# VAE cost function as negative ELBO (Evidence Lower Bound Objective) 

 

def normal_log_pdf(sample, mean, sd, raxis=1): 

  log2pi = tf.math.log(2. * np.pi) 

  logvar = np.log((np.square(sd))) 

  return tf.reduce_sum( 

      -.5 * ((sample - mean) ** 2. * tf.exp(-logvar) + logvar + log2pi), 

      axis=raxis) 

 

def vae_cost(x_true, model, analytic_kl=True, kl_weight=0.01): 

  z_sample, mu, sd = model.encode(x_true) 

  x_recons_logits = model.decoder(z_sample) 

  # compute cross entropy loss for each dimension of every datapoint 

  raw_cross_entropy = tf.nn.sigmoid_cross_entropy_with_logits(labels=x_true, 

logits=x_recons_logits) # bs*64*64*3 

  # compute cross entropy loss for all instances in mini-batch; shape=(batch_size,), the 

first term of the objective 
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  neg_log_likelihood = tf.math.reduce_sum(raw_cross_entropy, axis=[1, 2, 3]) # the first 

term of the objective 

 

  # compute reverse KL divergence, either analytically or through MC approximation 

with one sample, the second term of the objective 

  if analytic_kl: 

    kl_divergence = - 0.5 * tf.math.reduce_sum(1 + tf.math.log(tf.math.square(sd)) - 

tf.math.square(mu) - tf.math.square(sd), axis=1)  # shape=(batch_size, ) 

  else: 

    logpz = normal_log_pdf(z_sample, 0., 1.)  # shape=(batch_size,) 

    logqz_x = normal_log_pdf(z_sample, mu, tf.math.square(sd))  # shape=(batch_size,) 

    kl_divergence = logqz_x - logpz 

  elbo = tf.math.reduce_mean(-kl_weight * kl_divergence - neg_log_likelihood)  # 

shape=() 

  return -elbo 

 

class VAE(tfk.Model): 

 

    def __init__(self, dim_z, learning_rate, seed=2000, name="autoencoder", **kwargs): 

        super(VAE, self).__init__(name=name, **kwargs) 

        self.dim_x = (32, 32, 3) 

        self.dim_z = dim_z 
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        self.learning_rate = learning_rate 

        self.seed = seed 

 

    @tf.function 

    def sample(self, eps=None): 

      if eps is None: 

        eps = tf.random.normal(shape=(100, self.dim_z)) 

      return self.decode(eps, apply_sigmoid=True) 

 

    def encode(self, x_input): 

        mu, rho = tf.split(self.encoder(x_input), num_or_size_splits=2, axis=1) 

        sd = tf.math.log(1 + tf.math.exp(rho)) 

        z_sample = mu + sd * tf.random.normal(shape=(self.dim_z,)) 

        return z_sample, mu, sd 

 

    def decode(self, z, apply_sigmoid=False): 

        logits = self.decoder(z) 

        if apply_sigmoid: 

          probs = tf.sigmoid(logits) 

          return probs 

        return logits 
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def generate_and_save_images(model, epoch, test_sample): 

  z, mean, logvar = model.encode(test_sample) 

  predictions = model.sample(z) 

  fig = plt.figure(figsize=(8, 8)) 

 

  for i in range(16): 

    plt.subplot(4, 4, i + 1) 

    show_img = tf.keras.preprocessing.image.array_to_img(predictions[i, :, :, :]) 

    plt.imshow(show_img) 

    plt.axis('off') 

 

  # tight_layout minimizes the overlap between 2 sub-plots 

  plt.savefig('image_at_epoch_{:04d}.png'.format(epoch)) 

  plt.show() 

 

CVA_model = VAE(128, 2e-4) 

CVA_model.encoder = tfk.models.load_model('CVA_encoder2_32') 

CVA_model.decoder = tfk.models.load_model('CVA_decoder2_32') 

 

# rescale the image tensor from [-1,1] to [0,1] 

# @tf.function 

def CVA_rescale(image_tensor): 
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  img = tf.multiply(image_tensor, 127.5) 

  img = tf.add(img, 127.5) 

  img = tf.divide(img, 255.0) 

  return img 

 

"""A dataset with parasitemic images only""" 

 

BATCH_SIZE = 256 

BUFFER_SIZE = 8000 

 

positive_dataset = tf.data.Dataset.list_files("/content/train/Parasitemic/*.png") 

positive_dataset = positive_dataset.map(process_path, num_parallel_calls=AUTOTUNE) 

positive_dataset = positive_dataset.shuffle(BUFFER_SIZE).batch(BATCH_SIZE) 

 

show_images, labels = next(iter(positive_dataset)) 

 

plt.figure(figsize=(12,12)) 

 

for i in range(4 * 4): 

  plt.subplot(4, 4, 1+i) 

  plt.axis(False) 

  image = tf.keras.preprocessing.image.array_to_img(show_images[i,:,:,:]) 



 

246 

  plt.imshow(image) 

  if labels[i] == 1.0: 

    plt.title('Parasitemic') 

  else: 

    plt.title('Uninfected') 

 

input_CVA = CVA_rescale(show_images) # rescale to [0,1] 

z, mean, logvar = CVA_model.encode(input_CVA) 

predictions = CVA_model.sample(z) 

fig = plt.figure(figsize=(8, 8)) 

 

for i in range(16): 

  plt.subplot(4, 4, i + 1) 

  if i % 2 == 0: 

    show_img = tf.keras.preprocessing.image.array_to_img(input_CVA[i, :, :, :]) 

    plt.title('Real Image') 

    plt.imshow(show_img) 

    plt.axis('off') 

  else: 

    show_img = tf.keras.preprocessing.image.array_to_img(predictions[i, :, :, :]) 

    plt.title('Decoded Image') 

    plt.imshow(show_img) 
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    plt.axis(False) 

 

input_images = [] 

generated_images = [] 

for i in range(input_CVA.shape[0]): 

  input_images.append(tf.keras.preprocessing.image.array_to_img(input_CVA[i, :, :, 

:]).convert('L')) 

  generated_images.append(tf.keras.preprocessing.image.array_to_img(predictions[i, :, :, 

:]).convert('L')) 

 

MSE = [] 

RMSE = [] 

PSNR = [] 

UQI = [] 

SCC = [] 

RASE =[] 

SAM = [] 

VIF = [] 

 

for j in range(len(input_images)): 

  gen = tf.keras.preprocessing.image.img_to_array(generated_images[j]).astype('uint8') 

  org = tf.keras.preprocessing.image.img_to_array(input_images[j]).astype('uint8') 
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  MSE.append(mse(gen,org)) 

  RMSE.append(rmse(gen, org)) 

  PSNR.append(psnr(gen, org)) 

  UQI.append(uqi(gen, org)) 

  SCC.append(scc(gen, org)) 

  RASE.append(rase(gen, org)) 

  SAM.append(sam(gen, org)) 

  VIF.append(vifp(gen, org)) 

 

MSE = np.array(MSE) 

RMSE = np.array(RMSE) 

PSNR = np.array(PSNR) 

UQI = np.array(UQI) 

SCC = np.array(SCC) 

RASE = np.array(RASE) 

SAM = np.array(SAM) 

VIF = np.array(VIF) 

 

print(f"MSE ---- mean: {MSE.mean()}, std: {MSE.std()} ") 

print(f"RMSE: ---- mean: {RMSE.mean()}, std: {RMSE.std()} ") 

print(f"PSNR: ---- mean: {PSNR.mean()}, std: {PSNR.std()} ") 

print(f"UQI: ---- mean: {UQI.mean()}, std: {UQI.std()} ") 
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print(f"SCC: ---- mean: {SCC.mean()}, std: {SCC.std()} ") 

print(f"RASE: ---- mean: {RASE.mean()}, std: {RASE.std()} ") 

print(f"SAM: ---- mean: {SAM.mean()}, std: {SAM.std()} ") 

print(f"VIF: ---- mean: {VIF.mean()}, std: {VIF.std()} ") 

 

def get_accuracy(g_true, preds): 

  pred_idx = tf.argmax(preds, axis=1).numpy() 

  count = 0 

  for tab, pred in zip(g_true, pred_idx): 

    if tab == pred: 

      count += 1 

  return count / preds.shape[0] 

 

class_loss = tfk.losses.SparseCategoricalCrossentropy(from_logits=True) 

 

"""Classify the CAV generated images""" 

 

preds = classifier(predictions) 

print(f"classify accuracy: {get_accuracy(labels, preds)}") 

 

"""Classify the real images""" 
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images, labels = next(iter(classify_dataset)) 

preds = classifier(images) 

print(f"classify accuracy: {get_accuracy(labels, preds)}") 

 

"""Set the two image domains""" 

 

def process_gan_path(file_path): 

  img = tf.io.read_file(file_path) 

  img = decode_img(img) 

  img = (img - 127.5) / 127.5 

  return img 

 

y_dataset = tf.data.Dataset.list_files("/content/train/Parasitemic/*.png") 

x_dataset = tf.data.Dataset.list_files("/content/train/Uninfected/*.png") 

 

BUFFER_SIZE = 8000 

BATCH_SIZE = 256 

 

x_dataset = x_dataset.map(process_gan_path, num_parallel_calls=AUTOTUNE) 

x_dataset = x_dataset.shuffle(BUFFER_SIZE).batch(BATCH_SIZE) 

y_dataset = y_dataset.map(process_gan_path, num_parallel_calls=AUTOTUNE) 

y_dataset = y_dataset.shuffle(BUFFER_SIZE).batch(BATCH_SIZE) 
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y_testset = tf.data.Dataset.list_files("/content/test/Parasitemic/*.png") 

x_testset = tf.data.Dataset.list_files("/content/test/Uninfected/*.png") 

 

y_testset = y_testset.map(process_gan_path, num_parallel_calls=AUTOTUNE) 

y_testset = y_testset.shuffle(2000).batch(256) 

x_testset = x_testset.map(process_gan_path, num_parallel_calls=AUTOTUNE) 

x_testset = x_testset.shuffle(2000).batch(256) 

 

"""# Set the Cycle GAN model 

 

Define the Generator and Discriminator 

""" 

 

# define the discriminator model 

def define_discriminator(image_shape=(32,32,3)): 

  init = tf.keras.initializers.TruncatedNormal(mean=0.0, stddev=0.02) 

  in_image = tf.keras.Input(shape=image_shape) 

  d = tf.keras.layers.Conv2D(64, (4,4), strides=(2,2), padding='same', 

kernel_initializer=init)(in_image) # 16*16*64 

  d = tf.keras.layers.LeakyReLU(alpha=0.2)(d) 
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  d = tf.keras.layers.Conv2D(128, (4,4), strides=(2,2), padding='same', 

kernel_initializer=init)(d) # 8*8*128 

  d = tfa.layers.InstanceNormalization(axis=-1, center=True, scale=True, 

beta_initializer="random_uniform", gamma_initializer="random_uniform")(d) 

  d = tf.keras.layers.LeakyReLU(alpha=0.2)(d) 

  d = tf.keras.layers.Conv2D(256, (4,4), strides=(2,2), padding='same', 

kernel_initializer=init)(d) # 4*4*256 

  d = tfa.layers.InstanceNormalization(axis=-1, center=True, scale=True, 

beta_initializer="random_uniform", gamma_initializer="random_uniform")(d) 

  d = tf.keras.layers.LeakyReLU(alpha=0.2)(d) 

  d = tf.keras.layers.Conv2D(512, (4,4), padding='same', kernel_initializer=init)(d) # 

4*4*512 

  d = tfa.layers.InstanceNormalization(axis=-1, center=True, scale=True, 

beta_initializer="random_uniform", gamma_initializer="random_uniform")(d) 

  d = tf.keras.layers.LeakyReLU(alpha=0.2)(d) 

  patch_out = tf.keras.layers.Conv2D(1, (4,4), padding='same', kernel_initializer=init)(d) 

# 4*4*1 

  model = tf.keras.Model(inputs=in_image, outputs=patch_out) 

  return model 

 

def downsample(filters, size, apply_batchnorm=True): 

  initializer = tf.random_normal_initializer(0., 0.02) 
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  result = tf.keras.Sequential() 

  result.add( 

      tfkl.Conv2D(filters, size, strides=2, padding='same', 

                             kernel_initializer=initializer, use_bias=False)) 

 

  if apply_batchnorm: 

    result.add(tfa.layers.InstanceNormalization(axis=-1, center=True, scale=True, 

beta_initializer="random_uniform", gamma_initializer="random_uniform")) 

 

  result.add(tf.keras.layers.LeakyReLU()) 

 

  return result 

 

def upsample(filters, size, apply_dropout=False): 

  initializer = tf.random_normal_initializer(0., 0.02) 

 

  result = tf.keras.Sequential() 

  result.add( 

    tfkl.Conv2DTranspose(filters, size, strides=2, 

                                    padding='same', 

                                    kernel_initializer=initializer, 
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                                    use_bias=False)) 

 

  result.add(tfa.layers.InstanceNormalization(axis=-1, center=True, scale=True, 

beta_initializer="random_uniform", gamma_initializer="random_uniform")) 

 

  if apply_dropout: 

      result.add(tf.keras.layers.Dropout(0.5)) 

 

  result.add(tf.keras.layers.ReLU()) 

 

  return result 

 

def define_generator(): 

  inputs = tf.keras.layers.Input(shape=[32, 32, 3]) 

 

  down_stack = [ 

    downsample(64, 4),  # (bs, 16, 16, 64) 

    downsample(128, 4),  # (bs, 8, 8, 128) 

    downsample(256, 4),  # (bs, 4, 4, 256) 

    downsample(512, 4),  # (bs, 2, 2, 512) 

    downsample(512, 4),  # (bs, 1, 1, 512) 

  ] 
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  up_stack = [ 

    upsample(512, 4),  # (bs, 2, 2, 512) 

    upsample(256, 4),  # (bs, 4, 4, 256) 

    upsample(128, 4),  # (bs, 8, 8, 256) 

    upsample(64, 4),  # (bs, 16, 16, 128) 

 

  ] 

 

  initializer = tf.random_normal_initializer(0., 0.02) 

  last = tf.keras.layers.Conv2DTranspose(3, 4, 

                                         strides=2, 

                                         padding='same', 

                                         kernel_initializer=initializer, 

                                         activation='tanh')  # (bs, 64, 64, 3) 

 

  x = inputs 

 

  # Downsampling through the model 

  skips = [] 

  for down in down_stack: 

    x = down(x) 
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    skips.append(x) 

 

  skips = reversed(skips[:-1]) 

 

  # Upsampling and establishing the skip connections 

  for up, skip in zip(up_stack, skips): 

    x = up(x) 

    x = tf.keras.layers.Concatenate()([x, skip]) 

 

  x = last(x) 

 

  return tf.keras.Model(inputs=inputs, outputs=x) 

 

image_shape = (32,32,3) 

 

generator_g = define_generator() 

generator_f = define_generator() 

discriminator_x = define_discriminator(image_shape) 

discriminator_y = define_discriminator(image_shape) 

 

discriminator_x.summary() 
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tf.keras.utils.plot_model(generator_g, show_shapes=True, dpi=64) 

 

# x -> y: normal -> infected - generator_g 

# y -> x: infected -> normal - generator_f 

 

x_images = next(iter(x_dataset)) 

y_images = next(iter(y_dataset)) 

 

to_para = generator_g(x_images) 

to_normal = generator_f(y_images) 

plt.figure(figsize=(6, 6)) 

 

imgs = [x_images, to_para, y_images, to_normal] 

title = ['Uninfected', 'To_parasitemic', 'parasitemic', 'To_Uninfected'] 

 

plt.imshow(tf.keras.preprocessing.image.array_to_img(imgs[0][0])) 

plt.suptitle("Mapping of generators before training", fontsize=14) 

for i in range(len(imgs)): 

  plt.subplot(2, 2, i+1) 

  plt.title(title[i]) 

  plt.axis(False) 

  if i % 2 == 0: 
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    plt.imshow(tf.keras.preprocessing.image.array_to_img(imgs[i][0])) 

  else: 

    plt.imshow(tf.keras.preprocessing.image.array_to_img(imgs[i][0])) 

plt.show() 

 

# the hotmap of untrained discriminator 

plt.figure(figsize=(8,8)) 

plt.subplot(121) 

plt.title('discriminate parasitemic') 

plt.axis(False) 

plt.imshow(discriminator_y(y_images)[0, ..., -1], cmap='RdBu_r') 

 

plt.subplot(122) 

plt.title('discriminate uninfected') 

plt.axis(False) 

plt.imshow(discriminator_x(x_images)[0, ..., -1], cmap='RdBu_r') 

plt.show() 

 

"""Setup the folder for generated images 

 

Define the loss functions for the GAN components 

""" 
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LAMBDA = 80 

# alternative: MSE 

loss_obj = tf.keras.losses.BinaryCrossentropy(from_logits=True) 

# loss_obj = tfk.losses.MeanSquaredError() 

 

def discriminator_loss(real, generated): 

  real_loss = loss_obj(tf.ones_like(real), real) 

  generated_loss = loss_obj(tf.zeros_like(generated), generated) 

  total_disc_loss = real_loss + generated_loss 

  return total_disc_loss * 0.5 

 

def generator_loss(generated): 

  return loss_obj(tf.ones_like(generated), generated) 

 

def calc_cycle_loss(real_image, cycled_image): 

  loss1 = tf.reduce_mean(tf.abs(real_image - cycled_image)) 

  return LAMBDA * loss1 

 

# prevser color 

def identity_loss(real_image, same_image): 

  loss = tf.reduce_mean(tf.abs(real_image - same_image)) 
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  return LAMBDA * loss * 0.8 

 

generator_g_optimizer = tf.keras.optimizers.Adam(2e-4, beta_1=0.5) 

generator_f_optimizer = tf.keras.optimizers.Adam(2e-4, beta_1=0.5) 

 

discriminator_x_optimizer = tf.keras.optimizers.Adam(2e-4, beta_1=0.5) 

discriminator_y_optimizer = tf.keras.optimizers.Adam(2e-4, beta_1=0.5) 

 

checkpoint_path = "./checkpoints/train" 

 

ckpt = tf.train.Checkpoint(generator_g=generator_g, 

                           generator_f=generator_f, 

                           discriminator_x=discriminator_x, 

                           discriminator_y=discriminator_y, 

                           generator_g_optimizer=generator_g_optimizer, 

                           generator_f_optimizer=generator_f_optimizer, 

                           discriminator_x_optimizer=discriminator_x_optimizer, 

                           discriminator_y_optimizer=discriminator_y_optimizer) 

 

ckpt_manager = tf.train.CheckpointManager(ckpt, checkpoint_path, max_to_keep=3) 

 

# if a checkpoint exists, restore the latest checkpoint. 
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if ckpt_manager.latest_checkpoint: 

  ckpt.restore(ckpt_manager.latest_checkpoint) 

  print ('Latest checkpoint restored!!') 

 

EPOCHS = 600 

 

def generate_images(model, test_input, epoch): 

  prediction = model(test_input) 

  idx = int(np.random.choice(16, 1, replace=False)) 

  plt.figure(figsize=(10, 10)) 

   

 

  display_list = [test_input[idx], prediction[idx]] 

  title = ['Input Image', 'Predicted Image'] 

 

  for i in range(2): 

    plt.subplot(1, 2, i+1) 

    plt.title(title[i]) 

    # getting the pixel values between [0, 1] to plot it. 

    plt.imshow(tf.keras.preprocessing.image.array_to_img(display_list[i])) 

    plt.axis('off') 

  plt.savefig('./gen_images/image_at_epoch_{:04d}.png'.format(epoch)) 
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  plt.show() 

 

def classify_para_loss(y, batch_size): 

  true_para = tf.ones([batch_size,1]) 

  pred = classifier(y) 

  return class_loss(true_para, pred) * 0.5 

 

def classify_normal_loss(x, batch_size): 

  true_normal = tf.zeros([batch_size,1]) 

  pred = classifier(x) 

  return class_loss(true_normal, pred) * 0.5 

 

# @tf.function 

def train_step(real_x, real_y, epoch, c_flag=True): 

  # persistent is set to True because the tape is used more than 

  # once to calculate the gradients. 

  batch_size = real_x.shape[0] 

  with tf.GradientTape(persistent=True) as tape: 

    # Generator G translates X -> Y 

    # Generator F translates Y -> X. 

 

    fake_y = generator_g(real_x, training=True) 
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    cycled_x = generator_f(fake_y, training=True) 

 

    fake_x = generator_f(real_y, training=True) 

    cycled_y = generator_g(fake_x, training=True) 

 

    # same_x and same_y are used for identity loss. 

    same_x = generator_f(real_x, training=True) 

    same_y = generator_g(real_y, training=True) 

 

    disc_real_x = discriminator_x(real_x, training=True) 

    disc_real_y = discriminator_y(real_y, training=True) 

 

    disc_fake_x = discriminator_x(fake_x, training=True) 

    disc_fake_y = discriminator_y(fake_y, training=True) 

 

    # calculate the loss 

     

    gen_g_loss = generator_loss(disc_fake_y) 

    gen_f_loss = generator_loss(disc_fake_x) 

 

    c_loss_x = classify_normal_loss(same_x, batch_size) + 

classify_normal_loss(cycled_x, batch_size) 
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    c_loss_x = c_loss_x * 0.1 

    c_loss_y = classify_para_loss(same_y, batch_size) + classify_para_loss(cycled_y, 

batch_size) 

    c_loss_y = c_loss_y * 0.1 

    total_cycle_loss = calc_cycle_loss(real_x, cycled_x) + calc_cycle_loss(real_y, 

cycled_y) 

 

    # if epoch > 50 and epoch < 100: 

    #   c_loss_x = c_loss_x * 1.0 

    #   c_loss_y = c_loss_y * 1.0 

    #   total_cycle_loss = total_cycle_loss * 1.0 

 

    # if epoch >= 100 and epoch < 200: 

    #   c_loss_x = c_loss_x * 0.4 

    #   c_loss_y = c_loss_y * 0.4 

    #   total_cycle_loss = total_cycle_loss * 1.5 

 

    # if epoch >= 200 and epoch <= 400: 

    #   c_loss_x = c_loss_x * 0.2 

    #   c_loss_y = c_loss_y * 0.2 

    #   total_cycle_loss = total_cycle_loss * 2.0 
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    # Total generator loss = adversarial loss + cycle loss 

    if (c_flag): 

      total_gen_g_loss = gen_g_loss + total_cycle_loss + identity_loss(real_y, same_y) + 

c_loss_y 

      total_gen_f_loss = gen_f_loss + total_cycle_loss + identity_loss(real_x, same_x) + 

c_loss_x 

    else: 

      total_gen_g_loss = gen_g_loss + total_cycle_loss + identity_loss(real_y, same_y) 

      total_gen_f_loss = gen_f_loss + total_cycle_loss + identity_loss(real_x, same_x) 

 

    disc_x_loss = discriminator_loss(disc_real_x, disc_fake_x) 

    disc_y_loss = discriminator_loss(disc_real_y, disc_fake_y) 

 

   

  # Calculate the gradients for generator and discriminator 

  generator_g_gradients = tape.gradient(total_gen_g_loss,  

                                        generator_g.trainable_variables) 

  generator_f_gradients = tape.gradient(total_gen_f_loss,  

                                        generator_f.trainable_variables) 

 

  discriminator_x_gradients = tape.gradient(disc_x_loss,  
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                                            discriminator_x.trainable_variables) 

  discriminator_y_gradients = tape.gradient(disc_y_loss,  

                                            discriminator_y.trainable_variables) 

 

  # Apply the gradients to the optimizer 

  generator_g_optimizer.apply_gradients(zip(generator_g_gradients,  

                                            generator_g.trainable_variables)) 

 

  generator_f_optimizer.apply_gradients(zip(generator_f_gradients,  

                                            generator_f.trainable_variables)) 

 

  discriminator_x_optimizer.apply_gradients(zip(discriminator_x_gradients, 

                                                discriminator_x.trainable_variables)) 

 

  discriminator_y_optimizer.apply_gradients(zip(discriminator_y_gradients, 

                                                discriminator_y.trainable_variables)) 

   

  return c_loss_x, c_loss_y, total_cycle_loss, total_gen_g_loss, total_gen_f_loss, 

disc_x_loss, disc_y_loss 

 

import time 

from IPython.display import clear_output 
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from IPython import display 

 

history = {} 

history['class_loss_x'] = [] 

history['class_loss_y'] = [] 

history['cycle_loss'] = [] 

history['total_gen_g_loss'] = [] 

history['total_gen_f_loss'] = [] 

history['disc_loss_x'] = [] 

history['disc_loss_y'] = [] 

history['used_time'] = [] 

 

c_loss_x_mean = tfk.metrics.Mean() 

c_loss_y_mean = tfk.metrics.Mean() 

cycle_loss_mean = tfk.metrics.Mean() 

total_gen_g_loss_mean = tfk.metrics.Mean() 

total_gen_f_loss_mean = tfk.metrics.Mean() 

disc_loss_x_mean = tfk.metrics.Mean() 

disc_loss_y_mean = tfk.metrics.Mean() 

uesed_time_mean = tfk.metrics.Mean() 

 

for epoch in range(600): 
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  start = time.time() 

  c_loss_x_mean.reset_state() 

  c_loss_y_mean.reset_state() 

  cycle_loss_mean.reset_state() 

  total_gen_g_loss_mean.reset_state() 

  total_gen_f_loss_mean.reset_state() 

  disc_loss_x_mean.reset_state() 

  disc_loss_y_mean.reset_state() 

  uesed_time_mean.reset_state() 

 

  n = 0 

  for image_x, image_y in tf.data.Dataset.zip((x_dataset, y_dataset)): 

    if (n % 10 == 0): 

      c_loss_x, c_loss_y, total_cycle_loss, total_gen_g_loss, total_gen_f_loss, disc_x_loss, 

disc_y_loss = train_step(image_x, image_y, epoch, c_flag=True) # chang c_flag to False 

if want to remove the criterion 

    else: 

      c_loss_x, c_loss_y, total_cycle_loss, total_gen_g_loss, total_gen_f_loss, disc_x_loss, 

disc_y_loss = train_step(image_x, image_y, epoch=epoch, c_flag=False) 

    c_loss_x_mean.update_state(c_loss_x) 

    c_loss_y_mean.update_state(c_loss_y) 

    cycle_loss_mean.update_state(total_cycle_loss) 
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    total_gen_g_loss_mean.update_state(total_gen_g_loss) 

    total_gen_f_loss_mean.update_state(total_gen_f_loss) 

    disc_loss_x_mean.update_state(disc_x_loss) 

    disc_loss_y_mean.update_state(disc_y_loss) 

    uesed_time_mean.update_state(time.time()-start) 

 

    if n % 10 == 0: 

      print ('.', end='') 

    n += 1 

 

  clear_output(wait=True) 

  # Using a consistent image (sample_horse) so that the progress of the model 

  # is clearly visible. 

  generate_images(generator_g, x_images, epoch) 

 

  if (epoch + 1) % 50 == 0: 

    ckpt_save_path = ckpt_manager.save() 

    print ('Saving checkpoint for epoch {} at {}'.format(epoch+1, 

                                                         ckpt_save_path)) 

  history['class_loss_x'].append(c_loss_x_mean.result().numpy()) 

  history['class_loss_y'].append(c_loss_y_mean.result().numpy()) 

  history['cycle_loss'].append(cycle_loss_mean.result().numpy()) 
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  history['total_gen_g_loss'].append(total_gen_g_loss_mean.result().numpy()) 

  history['total_gen_f_loss'].append(total_gen_f_loss_mean.result().numpy()) 

  history['disc_loss_x'].append(disc_loss_x_mean.result().numpy()) 

  history['disc_loss_y'].append(disc_loss_y_mean.result().numpy()) 

  history['used_time'].append(uesed_time_mean.result().numpy()) 

 

  print ('Time taken for epoch {} is {} sec\n'.format(epoch + 1, 

                                                      time.time()-start)) 

 

generator_g.save('malaria_CycleGAN') 

!zip -r malaria_CycleGAN.zip malaria_CycleGAN 

 

generator_f.save('normalcell_CycleGAN') 

!zip -r normalcell_CycleGAN.zip normalcell_CycleGAN 

 

!zip -r gen_images_cycleGAN.zip gen_images 

 

plt.figure(figsize=(15, 8)) 

 

plt.subplot(2, 2, 1) 

plt.plot(history['total_gen_g_loss'], label='Total Generator G loss') 

plt.plot(history['total_gen_f_loss'], label='Total Generator F loss') 
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plt.legend(loc='best') 

plt.title('Generator Loss') 

plt.xlabel('epoch') 

 

plt.subplot(2, 2, 2) 

 

plt.plot(history['disc_loss_y'], label='Total Discriminator Y loss') 

plt.plot(history['disc_loss_x'], label='Total Discriminator X loss') 

plt.legend(loc='best') 

plt.title('Discriminator Loss') 

plt.xlabel('epoch') 

 

plt.subplot(2, 2, 3) 

 

plt.plot(history['class_loss_x'], label='Criterion X loss') 

plt.legend(loc='best') 

plt.title('Criterion X loss') 

plt.xlabel('epoch') 

 

plt.subplot(2, 2, 4) 

plt.tight_layout() 

plt.plot(history['class_loss_y'], label='Criterion Y loss') 
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plt.legend(loc='best') 

plt.title('Criterion Y loss') 

plt.xlabel('epoch') 

 

plt.plot(history['cycle_loss'], label='Total cycle loss') 

plt.legend(loc='best') 

plt.title('Total cycle loss') 

plt.xlabel('epoch') 

 

plt.plot(history['used_time'], label='Runtime per epoch') 

plt.legend(loc='best') 

plt.title('Optimization runtime per epoch') 

plt.xlabel('epoch') 

plt.ylabel('second') 

 

"""X --> Y by Gen G""" 

 

n_images = next(iter(x_dataset)) 

gen_images = generator_g(n_images) 

 

plt.figure(figsize=(12,12)) 
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for i in range(4 * 4): 

  plt.subplot(4, 4, 1+i) 

  plt.axis(False) 

  if i % 2 == 0: 

    image = tf.keras.preprocessing.image.array_to_img(n_images[i,:,:,:]) 

    plt.imshow(image) 

    plt.title('Input') 

  else: 

    image = tf.keras.preprocessing.image.array_to_img(gen_images[i,:,:,:]) 

    plt.imshow(image) 

    plt.title('Generated') 

 

input_images = [] 

generated_images = [] 

for i in range(n_images.shape[0]): 

  input_images.append(tf.keras.preprocessing.image.array_to_img(n_images[i, :, :, 

:]).convert('L')) 

  generated_images.append(tf.keras.preprocessing.image.array_to_img(gen_images[i, :, :, 

:]).convert('L')) 

 

MSE = [] 

RMSE = [] 
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PSNR = [] 

UQI = [] 

SCC = [] 

RASE =[] 

SAM = [] 

VIF = [] 

 

for j in range(len(input_images)): 

  gen = tf.keras.preprocessing.image.img_to_array(generated_images[j]).astype('uint8') 

  org = tf.keras.preprocessing.image.img_to_array(input_images[j]).astype('uint8') 

  MSE.append(mse(gen,org)) 

  RMSE.append(rmse(gen, org)) 

  PSNR.append(psnr(gen, org)) 

  UQI.append(uqi(gen, org)) 

  SCC.append(scc(gen, org)) 

  RASE.append(rase(gen, org)) 

  SAM.append(sam(gen, org)) 

  VIF.append(vifp(gen, org)) 

 

MSE = np.array(MSE) 

RMSE = np.array(RMSE) 

PSNR = np.array(PSNR) 
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UQI = np.array(UQI) 

SCC = np.array(SCC) 

RASE = np.array(RASE) 

SAM = np.array(SAM) 

VIF = np.array(VIF) 

 

print(f"MSE ---- mean: {MSE.mean()}, std: {MSE.std()} ") 

print(f"RMSE: ---- mean: {RMSE.mean()}, std: {RMSE.std()} ") 

print(f"PSNR: ---- mean: {PSNR.mean()}, std: {PSNR.std()} ") 

print(f"UQI: ---- mean: {UQI.mean()}, std: {UQI.std()} ") 

print(f"SCC: ---- mean: {SCC.mean()}, std: {SCC.std()} ") 

print(f"RASE: ---- mean: {RASE.mean()}, std: {RASE.std()} ") 

print(f"SAM: ---- mean: {SAM.mean()}, std: {SAM.std()} ") 

print(f"VIF: ---- mean: {VIF.mean()}, std: {VIF.std()} ") 

 

preds = classifier(gen_images) 

true_labels = tf.ones([256,1]) 

print(f"classify accuracy: {get_accuracy(true_labels, preds)}") 

 

"""Y --> Y by Gen G""" 

 

n_images = next(iter(y_dataset)) 
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gen_images = generator_g(n_images) 

 

plt.figure(figsize=(12,12)) 

 

for i in range(4 * 4): 

  plt.subplot(4, 4, 1+i) 

  plt.axis(False) 

  if i % 2 == 0: 

    image = tf.keras.preprocessing.image.array_to_img(n_images[i,:,:,:]) 

    plt.imshow(image) 

    plt.title('Input') 

  else: 

    image = tf.keras.preprocessing.image.array_to_img(gen_images[i,:,:,:]) 

    plt.imshow(image) 

    plt.title('Generated') 

 

input_images = [] 

generated_images = [] 

for i in range(n_images.shape[0]): 

  input_images.append(tf.keras.preprocessing.image.array_to_img(n_images[i, :, :, 

:]).convert('L')) 
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  generated_images.append(tf.keras.preprocessing.image.array_to_img(gen_images[i, :, :, 

:]).convert('L')) 

 

MSE = [] 

RMSE = [] 

PSNR = [] 

UQI = [] 

SCC = [] 

RASE =[] 

SAM = [] 

VIF = [] 

 

for j in range(len(input_images)): 

  gen = tf.keras.preprocessing.image.img_to_array(generated_images[j]).astype('uint8') 

  org = tf.keras.preprocessing.image.img_to_array(input_images[j]).astype('uint8') 

  MSE.append(mse(gen,org)) 

  RMSE.append(rmse(gen, org)) 

  PSNR.append(psnr(gen, org)) 

  UQI.append(uqi(gen, org)) 

  SCC.append(scc(gen, org)) 

  RASE.append(rase(gen, org)) 

  SAM.append(sam(gen, org)) 
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  VIF.append(vifp(gen, org)) 

 

MSE = np.array(MSE) 

RMSE = np.array(RMSE) 

PSNR = np.array(PSNR) 

UQI = np.array(UQI) 

SCC = np.array(SCC) 

RASE = np.array(RASE) 

SAM = np.array(SAM) 

VIF = np.array(VIF) 

 

print(f"MSE ---- mean: {MSE.mean()}, std: {MSE.std()} ") 

print(f"RMSE: ---- mean: {RMSE.mean()}, std: {RMSE.std()} ") 

print(f"PSNR: ---- mean: {PSNR.mean()}, std: {PSNR.std()} ") 

print(f"UQI: ---- mean: {UQI.mean()}, std: {UQI.std()} ") 

print(f"SCC: ---- mean: {SCC.mean()}, std: {SCC.std()} ") 

print(f"RASE: ---- mean: {RASE.mean()}, std: {RASE.std()} ") 

print(f"SAM: ---- mean: {SAM.mean()}, std: {SAM.std()} ") 

print(f"VIF: ---- mean: {VIF.mean()}, std: {VIF.std()} ") 

 

preds = classifier(gen_images) 

true_labels = tf.ones([256,1]) 
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print(f"classify accuracy: {get_accuracy(true_labels, preds)}") 

 

"""Y --> X by Gen F""" 

 

n_images = next(iter(y_dataset)) 

gen_images = generator_f(n_images) 

 

plt.figure(figsize=(12,12)) 

 

for i in range(4 * 4): 

  plt.subplot(4, 4, 1+i) 

  plt.axis(False) 

  if i % 2 == 0: 

    image = tf.keras.preprocessing.image.array_to_img(n_images[i,:,:,:]) 

    plt.imshow(image) 

    plt.title('Input') 

  else: 

    image = tf.keras.preprocessing.image.array_to_img(gen_images[i,:,:,:]) 

    plt.imshow(image) 

    plt.title('Generated') 

 

input_images = [] 
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generated_images = [] 

for i in range(n_images.shape[0]): 

  input_images.append(tf.keras.preprocessing.image.array_to_img(n_images[i, :, :, 

:]).convert('L')) 

  generated_images.append(tf.keras.preprocessing.image.array_to_img(gen_images[i, :, :, 

:]).convert('L')) 

 

MSE = [] 

RMSE = [] 

PSNR = [] 

UQI = [] 

SCC = [] 

RASE =[] 

SAM = [] 

VIF = [] 

 

for j in range(len(input_images)): 

  gen = tf.keras.preprocessing.image.img_to_array(generated_images[j]).astype('uint8') 

  org = tf.keras.preprocessing.image.img_to_array(input_images[j]).astype('uint8') 

  MSE.append(mse(gen,org)) 

  RMSE.append(rmse(gen, org)) 

  PSNR.append(psnr(gen, org)) 
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  UQI.append(uqi(gen, org)) 

  SCC.append(scc(gen, org)) 

  RASE.append(rase(gen, org)) 

  SAM.append(sam(gen, org)) 

  VIF.append(vifp(gen, org)) 

 

MSE = np.array(MSE) 

RMSE = np.array(RMSE) 

PSNR = np.array(PSNR) 

UQI = np.array(UQI) 

SCC = np.array(SCC) 

RASE = np.array(RASE) 

SAM = np.array(SAM) 

VIF = np.array(VIF) 

 

print(f"MSE ---- mean: {MSE.mean()}, std: {MSE.std()} ") 

print(f"RMSE: ---- mean: {RMSE.mean()}, std: {RMSE.std()} ") 

print(f"PSNR: ---- mean: {PSNR.mean()}, std: {PSNR.std()} ") 

print(f"UQI: ---- mean: {UQI.mean()}, std: {UQI.std()} ") 

print(f"SCC: ---- mean: {SCC.mean()}, std: {SCC.std()} ") 

print(f"RASE: ---- mean: {RASE.mean()}, std: {RASE.std()} ") 

print(f"SAM: ---- mean: {SAM.mean()}, std: {SAM.std()} ") 
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print(f"VIF: ---- mean: {VIF.mean()}, std: {VIF.std()} ") 

 

preds = classifier(gen_images) 

true_labels = tf.zeros([256,1]) 

print(f"classify accuracy: {get_accuracy(true_labels, preds)}") 

 

"""X --> X by Gen F""" 

 

n_images = next(iter(x_dataset)) 

gen_images = generator_f(n_images) 

 

plt.figure(figsize=(12,12)) 

 

for i in range(4 * 4): 

  plt.subplot(4, 4, 1+i) 

  plt.axis(False) 

  if i % 2 == 0: 

    image = tf.keras.preprocessing.image.array_to_img(n_images[i,:,:,:]) 

    plt.imshow(image) 

    plt.title('Input') 

  else: 

    image = tf.keras.preprocessing.image.array_to_img(gen_images[i,:,:,:]) 
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    plt.imshow(image) 

    plt.title('Generated') 

 

input_images = [] 

generated_images = [] 

for i in range(n_images.shape[0]): 

  input_images.append(tf.keras.preprocessing.image.array_to_img(n_images[i, :, :, 

:]).convert('L')) 

  generated_images.append(tf.keras.preprocessing.image.array_to_img(gen_images[i, :, :, 

:]).convert('L')) 

 

MSE = [] 

RMSE = [] 

PSNR = [] 

UQI = [] 

SCC = [] 

RASE =[] 

SAM = [] 

VIF = [] 

 

for j in range(len(input_images)): 

  gen = tf.keras.preprocessing.image.img_to_array(generated_images[j]).astype('uint8') 
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  org = tf.keras.preprocessing.image.img_to_array(input_images[j]).astype('uint8') 

  MSE.append(mse(gen,org)) 

  RMSE.append(rmse(gen, org)) 

  PSNR.append(psnr(gen, org)) 

  UQI.append(uqi(gen, org)) 

  SCC.append(scc(gen, org)) 

  RASE.append(rase(gen, org)) 

  SAM.append(sam(gen, org)) 

  VIF.append(vifp(gen, org)) 

 

MSE = np.array(MSE) 

RMSE = np.array(RMSE) 

PSNR = np.array(PSNR) 

UQI = np.array(UQI) 

SCC = np.array(SCC) 

RASE = np.array(RASE) 

SAM = np.array(SAM) 

VIF = np.array(VIF) 

 

print(f"MSE ---- mean: {MSE.mean()}, std: {MSE.std()} ") 

print(f"RMSE: ---- mean: {RMSE.mean()}, std: {RMSE.std()} ") 

print(f"PSNR: ---- mean: {PSNR.mean()}, std: {PSNR.std()} ") 
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print(f"UQI: ---- mean: {UQI.mean()}, std: {UQI.std()} ") 

print(f"SCC: ---- mean: {SCC.mean()}, std: {SCC.std()} ") 

print(f"RASE: ---- mean: {RASE.mean()}, std: {RASE.std()} ") 

print(f"SAM: ---- mean: {SAM.mean()}, std: {SAM.std()} ") 

print(f"VIF: ---- mean: {VIF.mean()}, std: {VIF.std()} ") 

 

preds = classifier(gen_images) 

true_labels = tf.zeros([256,1]) 

print(f"classify accuracy: {get_accuracy(true_labels, preds)}") 

 

"""FID score""" 

 

from numpy import cov 

from numpy import trace 

from numpy import iscomplexobj 

from numpy import asarray 

from numpy.random import shuffle 

from scipy.linalg import sqrtm 

from tensorflow.keras.applications.inception_v3 import InceptionV3 

from tensorflow.keras.applications.inception_v3 import preprocess_input 

from tensorflow.keras.datasets.mnist import load_data 

from tensorflow.keras.datasets import cifar10 
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# scale an array of images to a new size 

def scale_images(images, new_shape): 

  images_list = list() 

  for image in images: 

    # resize with nearest neighbor interpolation 

    new_image = tf.image.resize(image, new_shape) 

    # store 

    images_list.append(new_image) 

  return asarray(images_list) 

 

# calculate frechet inception distance 

def calculate_fid(model, images1, images2): 

  # calculate activations 

  act1 = model.predict(images1) 

  act2 = model.predict(images2) 

  # calculate mean and covariance statistics 

  mu1, sigma1 = act1.mean(axis=0), cov(act1, rowvar=False) 

  mu2, sigma2 = act2.mean(axis=0), cov(act2, rowvar=False) 

  # calculate sum squared difference between means 

  ssdiff = np.sum((mu1 - mu2)**2.0) 

  # calculate sqrt of product between cov 
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  covmean = sqrtm(sigma1.dot(sigma2)) 

  # check and correct imaginary numbers from sqrt 

  if iscomplexobj(covmean): 

    covmean = covmean.real 

  # calculate score 

  fid = ssdiff + trace(sigma1 + sigma2 - 2.0 * covmean) 

  return fid 

 

model = InceptionV3(include_top=False, pooling='avg', input_shape=(299,299,3)) 

 

FID = [] 

for images in x_testset: 

  images1 = images 

  images2 = generator_g(images) 

  images1 = preprocess_input(images1) 

  images2 = preprocess_input(images2) 

  fid = calculate_fid(classifier, images1, images2) 

  FID.append(fid) 

 

FID = np.array(FID) 

print("Cycle GAN X to Y by Gen G ------") 

print(f'Adjusted FID Mean: {FID.mean()}, Std: {FID.std()}') 



 

288 

 

FID = [] 

for images in y_testset: 

  images1 = images 

  images2 = generator_g(images) 

  images1 = preprocess_input(images1) 

  images2 = preprocess_input(images2) 

  fid = calculate_fid(classifier, images1, images2) 

  FID.append(fid) 

 

FID = np.array(FID) 

print("Cycle GAN Y to Y by Gen G ------") 

print(f'Adjusted FID Mean: {FID.mean()}, Std: {FID.std()}') 

 

FID = [] 

for images in y_testset: 

  images1 = images 

  images2 = generator_f(images) 

  images1 = preprocess_input(images1) 

  images2 = preprocess_input(images2) 

  fid = calculate_fid(classifier, images1, images2) 

  FID.append(fid) 
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FID = np.array(FID) 

print("Cycle GAN Y to X by Gen F ------") 

print(f'Adjusted FID Mean: {FID.mean()}, Std: {FID.std()}') 

 

FID = [] 

for images in x_testset: 

  images1 = images 

  images2 = generator_f(images) 

  images1 = preprocess_input(images1) 

  images2 = preprocess_input(images2) 

  fid = calculate_fid(classifier, images1, images2) 

  FID.append(fid) 

 

FID = np.array(FID) 

print("Cycle GAN X to X by Gen F ------") 

print(f'Adjusted FID Mean: {FID.mean()}, Std: {FID.std()}') 
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Appendix G: Ad Cycle GAN for COVID-19 Chest X-Ray Synthesis 

# -*- coding: utf-8 -*- 

""" 

Original file is located at 

    https://github.com/StanleyLiangYork/GAN_for_Medical_Image/blob/main/Cycle_GA

N_with_Criterion_COVID_19.ipynb 

""" 

!pip install tensorflow_addons 

!pip install sewar 

 

from sewar.full_ref import mse, rmse, psnr, uqi, ssim, ergas, scc, rase, sam, msssim, vifp 

import os 

import shutil 

import random 

import pandas as pd 

import numpy as np 

import seaborn as sns 

import tensorflow as tf 

import zipfile 

import random 

from PIL import Image 

from matplotlib import pyplot as plt 
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import re 

import tensorflow.keras as tfk 

import tensorflow.keras.layers as tfkl 

import tensorflow_hub as hub 

import cv2 

import tensorflow_addons as tfa 

import tensorflow_probability as tfp 

 

print(f'Tensorflow Version: {tf.__version__}') 

 

"""Set the random seed for replication""" 

 

tf.random.set_seed(100) 

AUTOTUNE = tf.data.AUTOTUNE 

 

"""Fetch the COVID-19 X-Ray dataset""" 

 

if not os.path.exists('covid_set.zip'): 

  !wget https://storage.googleapis.com/pet-detect-239118/covid_set.zip ./covid_set.zip 

 

with zipfile.ZipFile('covid_set.zip') as ZipObj: 

  ZipObj.extractall() 
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"""Set the folders for the experiment""" 

 

root_dir = '/content/covid_set' 

paths = os.listdir(root_dir) 

 

covid = re.compile("COVID") 

normal = re.compile("NORMAL") 

viral = re.compile("Viral") 

 

covid_path = [] 

normal_path = [] 

viral_path = [] 

 

for path in paths: 

  if covid.match(path): 

    covid_path.append(path) 

  if normal.match(path): 

    normal_path.append(path) 

  if viral.match(path): 

    viral_path.append(path) 
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val_covid_path = covid_path[:50] 

covid_path = covid_path[50:] 

print(len(val_covid_path)) 

print(len(covid_path)) 

 

"""Since we have just a few COVID-19 X-ray images, we separate 50 images for 

validation, and the rest 169 for training""" 

 

for _ in range(5): 

  random_items = random.sample(covid_path, 169) 

  covid_path += random_items 

 

print(len(covid_path)) 

 

"""Randomly resample the images 

 

Build a balanced dataset, each class has 1014 images respectively 

""" 

 

for i, path in enumerate(covid_path): 

  covid_path[i] = root_dir + '/' + path 
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for i, path in enumerate(normal_path): 

  normal_path[i] = root_dir + '/' + path 

 

for i, path in enumerate(viral_path): 

  viral_path[i] = root_dir + '/' + path 

 

# 1014 + 50 = 1064 -- need 50 extra images from normal and from viral classes for the 

validation dataset 

covid_path = covid_path 

normal_path = normal_path[:1064] 

viral_path = viral_path[:1064] 

 

print(len(covid_path)) 

print(len(normal_path)) 

print(len(viral_path)) 

 

"""The helper function the resize and rescale the images.<p> 

labels: COVID-0, NORMAL-1, VIRAL-2 

""" 

 

def decode_img(img): 

  # convert the compressed string to a 3D uint8 tensor 
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  img = tf.image.decode_png(img, channels=3) 

  # Use `convert_image_dtype` to convert to floats in the [0,1] range. 

  img = tf.image.convert_image_dtype(img, tf.float32) 

  # resize the image to the desired size. 

  return tf.image.resize(img, [64, 64]) 

 

def get_label(file_path): 

  if tf.strings.regex_full_match(file_path, ".*COVID.*"): 

    return tf.constant(0.0, dtype="float32") 

  elif tf.strings.regex_full_match(file_path, ".*NORMAL.*"): 

    return tf.constant(1.0, dtype="float32") 

  else: 

    return tf.constant(2.0, dtype="float32") 

 

def process_path(file_path): 

  label = get_label(file_path) 

  # load the raw data from the file as a string 

  img = tf.io.read_file(file_path) 

  img = decode_img(img) 

 

  # rescale from (0,255) to (0,1) 

  # img = img / 255.0 
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  img = (img - 127.5) / 127.5 

  return img, label 

 

"""The three image datasets for each image class """ 

 

covid_ds = tf.data.Dataset.list_files(covid_path, shuffle=True) 

normal_ds = tf.data.Dataset.list_files(normal_path[:1014], shuffle=True) 

viral_ds = tf.data.Dataset.list_files(viral_path[:1014], shuffle=True) 

 

BATCH_SIZE = 64 

BUFFER_SIZE = 1014 

AUTOTUNE = tf.data.AUTOTUNE 

 

covid_ds = covid_ds.map(process_path, 

num_parallel_calls=AUTOTUNE).shuffle(BUFFER_SIZE).batch(BATCH_SIZE) 

normal_ds = normal_ds.map(process_path, 

num_parallel_calls=AUTOTUNE).shuffle(BUFFER_SIZE).batch(BATCH_SIZE) 

viral_ds = viral_ds.map(process_path, 

num_parallel_calls=AUTOTUNE).shuffle(BUFFER_SIZE).batch(BATCH_SIZE) 

 

train_path = covid_path + normal_path[:1014] + viral_path[:1014] 

val_path = val_covid_path + normal_path[1014:] + viral_path[1014:] 
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print(len(train_path)) 

print(len(val_path)) 

 

train_ds = tf.data.Dataset.list_files(train_path, shuffle=True) 

train_ds = train_ds.map(process_path, 

num_parallel_calls=AUTOTUNE).shuffle(3042).batch(BATCH_SIZE) 

val_ds = tf.data.Dataset.list_files(val_path, shuffle=True) 

val_ds = val_ds.map(process_path, 

num_parallel_calls=AUTOTUNE).shuffle(150).batch(BATCH_SIZE) 

 

images, labels = next(iter(train_ds)) 

 

"""visualize the images""" 

 

plt.figure(figsize=(12,12)) 

 

for i in range(4 * 4): 

  plt.subplot(4, 4, 1+i) 

  plt.axis(False) 

  image = tf.keras.preprocessing.image.array_to_img(images[i,:,:,:]) 

  plt.imshow(image) 

  if labels[i] == 0.0: 
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    plt.title('COVID') 

  if labels[i] == 1.0: 

    plt.title("Normal") 

  if labels[i] == 2.0: 

    plt.title("Viral") 

 

"""Train the classifier later as the criterion for the GAN""" 

 

# function for creating an identity or projection residual module 

def residual_module(layer_in, n_filters): 

  merge_input = layer_in 

  # check if the number of filters needs to be increase, assumes channels last format 

  if layer_in.shape[-1] != n_filters: 

    merge_input = tfkl.Conv2D(n_filters, (1,1), padding='same', activation='relu', 

kernel_initializer='he_normal')(layer_in) 

  # conv1 

  conv1 = tfkl.Conv2D(n_filters, (3,3), padding='same', activation='relu', 

kernel_initializer='he_normal')(layer_in) 

  # conv2 

  conv2 = tfkl.Conv2D(n_filters, (3,3), padding='same', activation='linear', 

kernel_initializer='he_normal')(conv1) 

  # add filters, assumes filters/channels last 
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  layer_out = tfk.layers.Add()([conv2, merge_input]) 

  # activation function 

  layer_out = tfkl.Activation('relu')(layer_out) 

  return layer_out 

 

def define_classifier(input_dim=(64,64,3)): 

  input_layer = tfk.Input(shape=input_dim) 

  layer = tfkl.Lambda(lambda x: x*127.5+127.5)(input_layer) 

  layer = residual_module(layer, 64) 

  layer = tfkl.BatchNormalization()(layer) 

  layer = tfkl.MaxPooling2D()(layer) 

  layer = residual_module(layer, 64) 

  layer = tfkl.BatchNormalization()(layer) 

  layer = tfkl.MaxPooling2D()(layer) 

  layer = residual_module(layer, 64) 

  layer = tfkl.BatchNormalization()(layer) 

  layer = tfkl.MaxPooling2D()(layer) 

  layer = residual_module(layer, 64) 

  layer = tfkl.BatchNormalization()(layer) 

  layer = tfkl.MaxPooling2D()(layer) 

  layer = tfkl.Flatten()(layer) 

  layer = tfkl.Dense(128, activation='tanh')(layer) 
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  layer = tfkl.Dropout(0.4)(layer) 

  layer = tfkl.Dense(3)(layer) 

  model = tfk.models.Model(inputs=input_layer, outputs=layer) 

  return model 

 

classifier = define_classifier() 

classifier.summary() 

 

"""Compile the classifer DNN with sparce categorical crossentropy as the loss function, 

the input label with shape (batch, 1), the DNN output with shape (batch, 3)""" 

 

classifier.compile( 

    optimizer=tfk.optimizers.Adam(learning_rate=1e-4), 

    loss=tfk.losses.SparseCategoricalCrossentropy(from_logits=True), 

    metrics=['accuracy']) 

callback = tf.keras.callbacks.EarlyStopping(monitor='val_loss', patience=10) 

 

"""Optimize with 100 epochs""" 

 

history = classifier.fit(train_ds, validation_data=val_ds, epochs=100, 

callbacks=[callback], verbose=2) 
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# visualize the training procedure 

plt.figure(figsize=(12, 8)) 

plt.subplot(2, 1, 1) 

plt.plot(history.history['loss'], label='Training Loss') 

plt.plot(history.history['val_loss'], label='Validation Loss') 

plt.ylim([0, 2.5]) 

plt.legend(loc='best') 

plt.title('Training and Validation Loss') 

 

plt.subplot(2, 1, 2) 

plt.plot(history.history['accuracy'], label='Training Accuracy') 

plt.plot(history.history['val_accuracy'], label='Validation Accuracy') 

plt.ylim([0, 1.2]) 

plt.plot() 

plt.legend(loc='best') 

plt.title('Training and Validation Accuracy') 

plt.xlabel('epoch') 

plt.savefig('train.png') 

 

# save and zip the classifier 

classifier.save('covid_classifier_64') 

!zip -r covid_classifier_64.zip covid_classifier_64 
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"""Now we setup the Cycle-GAN with criterion""" 

 

from zipfile import ZipFile 

 

with ZipFile('covid_classifier_64.zip', 'r') as zipObj: 

   # Extract all the contents of zip file in current directory 

   zipObj.extractall() 

 

# delete and reload the pretrained classifier 

# del classifier 

classifier = tfk.models.load_model('covid_classifier_64') 

classifier.trainable = False 

 

classifier.evaluate(train_ds) 

 

# check the pretrained classifier with the validation dataset 

classifier.evaluate(val_ds) 

 

# set up the criterion loss object 

class_loss = tfk.losses.SparseCategoricalCrossentropy(from_logits=True) 
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def get_accuracy(g_true, preds): 

  pred_idx = tf.argmax(preds, axis=1).numpy() 

  count = 0 

  for tab, pred in zip(g_true, pred_idx): 

    if tab == pred: 

      count += 1 

  return count / preds.shape[0] 

 

preds = classifier(images) 

 

result = get_accuracy(labels, preds) 

print(result) 

 

loss = class_loss(labels, preds) 

print(loss) 

 

# define the discriminator model 

def define_discriminator(image_shape=(64,64,3)): 

  init = tf.keras.initializers.TruncatedNormal(mean=0.0, stddev=0.02) 

  in_image = tf.keras.Input(shape=image_shape) 

  d = tf.keras.layers.Conv2D(64, (4,4), strides=(2,2), padding='same', 

kernel_initializer=init)(in_image) # 32*32*64 
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  d = tf.keras.layers.LeakyReLU(alpha=0.2)(d) 

  d = tf.keras.layers.Conv2D(128, (4,4), strides=(2,2), padding='same', 

kernel_initializer=init)(d) # 16*16*128 

  d = tfa.layers.InstanceNormalization(axis=-1, center=True, scale=True, 

beta_initializer="random_uniform", gamma_initializer="random_uniform")(d) 

  d = tf.keras.layers.LeakyReLU(alpha=0.2)(d) 

  d = tf.keras.layers.Conv2D(256, (4,4), strides=(2,2), padding='same', 

kernel_initializer=init)(d) # 8*8*256 

  d = tfa.layers.InstanceNormalization(axis=-1, center=True, scale=True, 

beta_initializer="random_uniform", gamma_initializer="random_uniform")(d) 

  d = tf.keras.layers.LeakyReLU(alpha=0.2)(d) 

  d = tf.keras.layers.Conv2D(512, (4,4), strides=(2,2), padding='same', 

kernel_initializer=init)(d) # 4*4*512 

  d = tfa.layers.InstanceNormalization(axis=-1, center=True, scale=True, 

beta_initializer="random_uniform", gamma_initializer="random_uniform")(d) 

  d = tf.keras.layers.LeakyReLU(alpha=0.2)(d) 

  patch_out = tf.keras.layers.Conv2D(1, (4,4), padding='same', kernel_initializer=init)(d) 

# 4*4*1 

  model = tf.keras.Model(inputs=in_image, outputs=patch_out) 

  return model 

 

def downsample(filters, size, apply_batchnorm=True): 
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  initializer = tf.random_normal_initializer(0., 0.02) 

 

  result = tf.keras.Sequential() 

  result.add( 

      tfkl.Conv2D(filters, size, strides=2, padding='same', 

                             kernel_initializer=initializer, use_bias=False)) 

 

  if apply_batchnorm: 

    result.add(tfa.layers.InstanceNormalization(axis=-1, center=True, scale=True, 

beta_initializer="random_uniform", gamma_initializer="random_uniform")) 

 

  result.add(tf.keras.layers.LeakyReLU()) 

 

  return result 

 

def upsample(filters, size, apply_dropout=False): 

  initializer = tf.random_normal_initializer(0., 0.02) 

 

  result = tf.keras.Sequential() 

  result.add( 

    tfkl.Conv2DTranspose(filters, size, strides=2, 

                                    padding='same', 
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                                    kernel_initializer=initializer, 

                                    use_bias=False)) 

 

  result.add(tfa.layers.InstanceNormalization(axis=-1, center=True, scale=True, 

beta_initializer="random_uniform", gamma_initializer="random_uniform")) 

 

  if apply_dropout: 

      result.add(tf.keras.layers.Dropout(0.5)) 

 

  result.add(tf.keras.layers.ReLU()) 

 

  return result 

 

def define_generator(): 

  inputs = tf.keras.layers.Input(shape=[64, 64, 3]) 

 

  down_stack = [ 

    downsample(64, 4),  # (bs, 32, 32, 64) 

    downsample(128, 4),  # (bs, 16, 16, 128) 

    downsample(256, 4),  # (bs, 8, 8, 256) 

    downsample(512, 4),  # (bs, 4, 4, 512) 

    downsample(512, 4),  # (bs, 2, 2, 512) 



 

307 

    downsample(512, 4),  # (bs, 1, 1, 512) 

  ] 

 

  up_stack = [ 

    upsample(512, 4),  # (bs, 2, 2, 1024) 

    upsample(512, 4),  # (bs, 4, 4, 1024) 

    upsample(256, 4),  # (bs, 8, 8, 512) 

    upsample(128, 4),  # (bs, 16, 16, 256) 

    upsample(64, 4),  # (bs, 32, 32, 128) 

  ] 

 

  initializer = tf.random_normal_initializer(0., 0.02) 

  last = tf.keras.layers.Conv2DTranspose(3, 4, 

                                         strides=2, 

                                         padding='same', 

                                         kernel_initializer=initializer, 

                                         activation='tanh')  # (bs, 128, 128, 3) 

 

  x = inputs 

 

  # Downsampling through the model 

  skips = [] 
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  for down in down_stack: 

    x = down(x) 

    skips.append(x) 

 

  skips = reversed(skips[:-1]) 

 

  # Upsampling and establishing the skip connections 

  for up, skip in zip(up_stack, skips): 

    x = up(x) 

    x = tf.keras.layers.Concatenate()([x, skip]) 

 

  x = last(x) 

 

  return tf.keras.Model(inputs=inputs, outputs=x) 

 

image_shape = (64,64,3) 

 

generator_g = define_generator() 

generator_f = define_generator() 

discriminator_x = define_discriminator(image_shape) 

discriminator_y = define_discriminator(image_shape) 
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discriminator_x.summary() 

 

tfk.utils.plot_model(generator_g, show_shapes=True, dpi=64) 

 

# x -> y: normal -> covid - generator_g 

# y -> x: covid -> normal - generator_f 

 

c_images, _ = next(iter(covid_ds)) 

n_images, _ = next(iter(normal_ds)) 

 

to_covid = generator_g(n_images) 

to_normal = generator_f(c_images) 

plt.figure(figsize=(6, 6)) 

 

imgs = [n_images, to_covid, c_images, to_normal] 

title = ['Normal', 'To_Covid', 'Covid', 'To_normal'] 

 

plt.imshow(tf.keras.preprocessing.image.array_to_img(imgs[0][0])) 

plt.suptitle("Mapping of generators before training", fontsize=14) 

for i in range(len(imgs)): 

  plt.subplot(2, 2, i+1) 

  plt.title(title[i]) 
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  plt.axis(False) 

  if i % 2 == 0: 

    plt.imshow(tf.keras.preprocessing.image.array_to_img(imgs[i][0])) 

  else: 

    plt.imshow(tf.keras.preprocessing.image.array_to_img(imgs[i][0])) 

plt.show() 

 

# the hotmap of untrained discriminator 

plt.figure(figsize=(8,8)) 

plt.subplot(121) 

plt.title('discriminate positive') 

plt.axis(False) 

plt.imshow(discriminator_y(c_images)[0, ..., -1], cmap='RdBu_r') 

 

plt.subplot(122) 

plt.title('discriminate negative') 

plt.axis(False) 

plt.imshow(discriminator_x(n_images)[0, ..., -1], cmap='RdBu_r') 

plt.show() 

 

"""Define the loss functions for the GAN components""" 

 



 

311 

LAMBDA = 80 

# alternative: MSE 

# loss_obj = tf.keras.losses.BinaryCrossentropy(from_logits=True) 

loss_obj = tfk.losses.MeanSquaredError() 

 

def discriminator_loss(real, generated): 

  real_loss = loss_obj(tf.ones_like(real), real) 

  generated_loss = loss_obj(tf.zeros_like(generated), generated) 

  total_disc_loss = real_loss + generated_loss 

  return total_disc_loss * 0.5 

 

def generator_loss(generated): 

  return loss_obj(tf.ones_like(generated), generated) 

 

def calc_cycle_loss(real_image, cycled_image): 

  loss1 = tf.reduce_mean(tf.abs(real_image - cycled_image)) 

 

  return LAMBDA * loss1 

 

# prevser color 

def identity_loss(real_image, same_image): 

  loss = tf.reduce_mean(tf.abs(real_image - same_image)) 
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  return LAMBDA * 0.5 * loss 

 

"""Set up the solver for the GAN components""" 

 

generator_g_optimizer = tf.keras.optimizers.Adam(2e-4, beta_1=0.5) 

generator_f_optimizer = tf.keras.optimizers.Adam(2e-4, beta_1=0.5) 

 

discriminator_x_optimizer = tf.keras.optimizers.Adam(2e-4, beta_1=0.5) 

discriminator_y_optimizer = tf.keras.optimizers.Adam(2e-4, beta_1=0.5) 

 

checkpoint_path = "./checkpoints/train" 

 

ckpt = tf.train.Checkpoint(generator_g=generator_g, 

                           generator_f=generator_f, 

                           discriminator_x=discriminator_x, 

                           discriminator_y=discriminator_y, 

                           generator_g_optimizer=generator_g_optimizer, 

                           generator_f_optimizer=generator_f_optimizer, 

                           discriminator_x_optimizer=discriminator_x_optimizer, 

                           discriminator_y_optimizer=discriminator_y_optimizer) 

 

ckpt_manager = tf.train.CheckpointManager(ckpt, checkpoint_path, max_to_keep=5) 
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# if a checkpoint exists, restore the latest checkpoint. 

if ckpt_manager.latest_checkpoint: 

  ckpt.restore(ckpt_manager.latest_checkpoint) 

  print ('Latest checkpoint restored!!') 

 

os.mkdir('gen_images') 

 

EPOCHS = 600 

 

def generate_images(model, test_input, epoch): 

  prediction = model(test_input) 

  idx = int(np.random.choice(16, 1, replace=False)) 

  plt.figure(figsize=(10, 10)) 

   

 

  display_list = [test_input[idx], prediction[idx]] 

  title = ['Input Image', 'Predicted Image'] 

 

  for i in range(2): 

    plt.subplot(1, 2, i+1) 

    plt.title(title[i]) 
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    # getting the pixel values between [0, 1] to plot it. 

    plt.imshow(tf.keras.preprocessing.image.array_to_img(display_list[i])) 

    plt.axis('off') 

  plt.savefig('./gen_images/image_at_epoch_{:04d}.png'.format(epoch)) 

  plt.show() 

 

def classify_normal_loss(y, batch_size): 

  true_normal = tf.ones([batch_size,1]) 

  pred_y = classifier(y) 

  return class_loss(true_normal, pred_y) 

 

def classify_covid_loss(x, batch_size): 

  true_covid = tf.zeros([batch_size,1]) 

  pred_x = classifier(x) 

  return class_loss(true_covid, pred_x) 

 

def train_step(real_x, real_y, epoch, c_flag=True): 

  # persistent is set to True because the tape is used more than 

  # once to calculate the gradients. 

  batch_size = real_x.shape[0] 

  with tf.GradientTape(persistent=True) as tape: 

    # Generator G translates X -> Y 
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    # Generator F translates Y -> X. 

 

    fake_y = generator_g(real_x, training=True) 

    cycled_x = generator_f(fake_y, training=True) 

 

    fake_x = generator_f(real_y, training=True) 

    cycled_y = generator_g(fake_x, training=True) 

 

    # same_x and same_y are used for identity loss. 

    same_x = generator_f(real_x, training=True) 

    same_y = generator_g(real_y, training=True) 

 

    disc_real_x = discriminator_x(real_x, training=True) 

    disc_real_y = discriminator_y(real_y, training=True) 

 

    disc_fake_x = discriminator_x(fake_x, training=True) 

    disc_fake_y = discriminator_y(fake_y, training=True) 

 

    # calculate the loss 

    gen_g_loss = generator_loss(disc_fake_y) 

    gen_f_loss = generator_loss(disc_fake_x) 
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    # calculate classifier loss 

    # true_normal = tf.ones([batch_size,]) 

    # true_covid = tf.zeros([batch_size,]) 

    pred_same_x = classifier(same_x) 

    pred_same_y = classifier(same_y) 

    pred_cycled_x = classifier(cycled_x) 

    pred_cycled_y = classifier(cycled_y) 

 

    c_loss_x = classify_normal_loss(same_x, batch_size) + 

classify_normal_loss(cycled_x, batch_size) 

    c_loss_x = c_loss_x * 0.05 

    c_loss_y = classify_covid_loss(same_y, batch_size) + classify_covid_loss(cycled_y, 

batch_size) 

    c_loss_y = c_loss_y * 0.05 

    total_cycle_loss = calc_cycle_loss(real_x, cycled_x) + calc_cycle_loss(real_y, 

cycled_y) 

 

    if (c_flag): 

      total_gen_g_loss = gen_g_loss + total_cycle_loss + identity_loss(real_y, same_y) + 

c_loss_y 

      total_gen_f_loss = gen_f_loss + total_cycle_loss + identity_loss(real_x, same_x) + 

c_loss_x 
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    else: 

      total_gen_g_loss = gen_g_loss + total_cycle_loss + identity_loss(real_y, same_y) 

      total_gen_f_loss = gen_f_loss + total_cycle_loss + identity_loss(real_x, same_x) 

 

    disc_x_loss = discriminator_loss(disc_real_x, disc_fake_x) 

    disc_y_loss = discriminator_loss(disc_real_y, disc_fake_y) 

 

  # Calculate the gradients for generator and discriminator 

  generator_g_gradients = tape.gradient(total_gen_g_loss,  

                                        generator_g.trainable_variables) 

  generator_f_gradients = tape.gradient(total_gen_f_loss,  

                                        generator_f.trainable_variables) 

 

  discriminator_x_gradients = tape.gradient(disc_x_loss,  

                                            discriminator_x.trainable_variables) 

  discriminator_y_gradients = tape.gradient(disc_y_loss,  

                                            discriminator_y.trainable_variables) 

 

  # Apply the gradients to the optimizer 

  generator_g_optimizer.apply_gradients(zip(generator_g_gradients,  

                                            generator_g.trainable_variables)) 
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  generator_f_optimizer.apply_gradients(zip(generator_f_gradients,  

                                            generator_f.trainable_variables)) 

 

  discriminator_x_optimizer.apply_gradients(zip(discriminator_x_gradients, 

                                                discriminator_x.trainable_variables)) 

 

  discriminator_y_optimizer.apply_gradients(zip(discriminator_y_gradients, 

                                                discriminator_y.trainable_variables)) 

   

  return c_loss_x, c_loss_y, total_cycle_loss, total_gen_g_loss, total_gen_f_loss, 

disc_x_loss, disc_y_loss 

 

"""Build the dataset for the GAN training""" 

 

def process_gan_path(file_path): 

  img = tf.io.read_file(file_path) 

  img = decode_img(img) 

  img = (img - 127.5) / 127.5 

  return img 

 

covid_dataset = tf.data.Dataset.list_files(covid_path, shuffle=True) 

normal_dataset = tf.data.Dataset.list_files(normal_path[:1014], shuffle=True) 
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BUFFER_SIZE = 1014 

BATCH_SIZE = 64 

 

covid_dataset = covid_dataset.map(process_gan_path, 

num_parallel_calls=AUTOTUNE).shuffle(BUFFER_SIZE).batch(BATCH_SIZE) 

normal_dataset = normal_dataset.map(process_gan_path, 

num_parallel_calls=AUTOTUNE).shuffle(BUFFER_SIZE).batch(BATCH_SIZE) 

 

import time 

from IPython.display import clear_output 

from IPython import display 

 

history = {} 

history['class_loss_x'] = [] 

history['class_loss_y'] = [] 

history['cycle_loss'] = [] 

history['total_gen_g_loss'] = [] 

history['total_gen_f_loss'] = [] 

history['disc_loss_x'] = [] 

history['disc_loss_y'] = [] 

history['used_time'] = [] 
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c_loss_x_mean = tfk.metrics.Mean() 

c_loss_y_mean = tfk.metrics.Mean() 

cycle_loss_mean = tfk.metrics.Mean() 

total_gen_g_loss_mean = tfk.metrics.Mean() 

total_gen_f_loss_mean = tfk.metrics.Mean() 

disc_loss_x_mean = tfk.metrics.Mean() 

disc_loss_y_mean = tfk.metrics.Mean() 

uesed_time_mean = tfk.metrics.Mean() 

 

for epoch in range(600): 

  start = time.time() 

  c_loss_x_mean.reset_state() 

  c_loss_y_mean.reset_state() 

  cycle_loss_mean.reset_state() 

  total_gen_g_loss_mean.reset_state() 

  total_gen_f_loss_mean.reset_state() 

  disc_loss_x_mean.reset_state() 

  disc_loss_y_mean.reset_state() 

  uesed_time_mean.reset_state() 

 

  n = 0 
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  for image_x, image_y in tf.data.Dataset.zip((normal_dataset, covid_dataset)): 

    if (n % 10 == 0): 

      c_loss_x, c_loss_y, total_cycle_loss, total_gen_g_loss, total_gen_f_loss, disc_x_loss, 

disc_y_loss = train_step(image_x, image_y, epoch, c_flag=True) # chang c_flag to False 

if want to remove the criterion 

    else: 

      c_loss_x, c_loss_y, total_cycle_loss, total_gen_g_loss, total_gen_f_loss, disc_x_loss, 

disc_y_loss = train_step(image_x, image_y, epoch, c_flag=False) 

    c_loss_x_mean.update_state(c_loss_x) 

    c_loss_y_mean.update_state(c_loss_y) 

    cycle_loss_mean.update_state(total_cycle_loss) 

    total_gen_g_loss_mean.update_state(total_gen_g_loss) 

    total_gen_f_loss_mean.update_state(total_gen_f_loss) 

    disc_loss_x_mean.update_state(disc_x_loss) 

    disc_loss_y_mean.update_state(disc_y_loss) 

    uesed_time_mean.update_state(time.time()-start) 

 

    if n % 10 == 0: 

      print ('.', end='') 

    n += 1 

 

  clear_output(wait=True) 
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  # Using a consistent image (sample_horse) so that the progress of the model 

  # is clearly visible. 

  if (epoch + 1) % 5 == 0: 

    generate_images(generator_g, n_images, epoch) 

 

  if (epoch + 1) % 100 == 0: 

    ckpt_save_path = ckpt_manager.save() 

    print ('Saving checkpoint for epoch {} at {}'.format(epoch+1, 

                                                         ckpt_save_path)) 

  history['class_loss_x'].append(c_loss_x_mean.result().numpy()) 

  history['class_loss_y'].append(c_loss_y_mean.result().numpy()) 

  history['cycle_loss'].append(cycle_loss_mean.result().numpy()) 

  history['total_gen_g_loss'].append(total_gen_g_loss_mean.result().numpy()) 

  history['total_gen_f_loss'].append(total_gen_f_loss_mean.result().numpy()) 

  history['disc_loss_x'].append(disc_loss_x_mean.result().numpy()) 

  history['disc_loss_y'].append(disc_loss_y_mean.result().numpy()) 

  history['used_time'].append(uesed_time_mean.result().numpy()) 

 

  print ('Time taken for epoch {} is {} sec\n'.format(epoch + 1, 

                                                      time.time()-start)) 

 

"""Visualize the loss values of the generators and discriminators""" 
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# save the trained  

generator_g.save('covid_generator_64') 

!zip -r covid_generator_64.zip covid_generator_64 

 

# save the trained  

generator_f.save('normal_generator_64') 

!zip -r normal_generator_64.zip normal_generator_64 

 

plt.figure(figsize=(15, 8)) 

 

plt.subplot(2, 2, 1) 

plt.plot(history['total_gen_g_loss'], label='Total Generator G loss') 

plt.plot(history['total_gen_f_loss'], label='Total Generator F loss') 

plt.legend(loc='best') 

plt.title('Generator Loss') 

plt.xlabel('epoch') 

 

plt.subplot(2, 2, 2) 

 

plt.plot(history['disc_loss_y'], label='Total Discriminator Y loss') 

plt.plot(history['disc_loss_x'], label='Total Discriminator X loss') 
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plt.legend(loc='best') 

plt.title('Discriminator Loss') 

plt.xlabel('epoch') 

 

plt.subplot(2, 2, 3) 

 

plt.plot(history['class_loss_x'], label='Criterion X loss') 

plt.legend(loc='best') 

plt.title('Criterion X loss') 

plt.xlabel('epoch') 

 

plt.subplot(2, 2, 4) 

plt.tight_layout() 

plt.plot(history['class_loss_y'], label='Criterion Y loss') 

plt.legend(loc='best') 

plt.title('Criterion Y loss') 

plt.xlabel('epoch') 

 

plt.plot(history['cycle_loss'], label='Total cycle loss') 

plt.legend(loc='best') 

plt.title('Total cycle loss') 

plt.xlabel('epoch') 
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plt.plot(history['used_time'], label='Runtime per epoch') 

plt.legend(loc='best') 

plt.title('Optimization runtime per epoch') 

plt.xlabel('epoch') 

plt.ylabel('second') 

 

"""X -- > Y""" 

 

n_images = next(iter(normal_dataset)) 

gen_images = generator_g(n_images) 

 

plt.figure(figsize=(12,12)) 

 

for i in range(4 * 4): 

  plt.subplot(4, 4, 1+i) 

  plt.axis(False) 

  if i % 2 == 0: 

    image = tf.keras.preprocessing.image.array_to_img(n_images[i,:,:,:]) 

    plt.imshow(image) 

    plt.title('Input') 

  else: 
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    image = tf.keras.preprocessing.image.array_to_img(gen_images[i,:,:,:]) 

    plt.imshow(image) 

    plt.title('Generated') 

 

input_images = [] 

generated_images = [] 

for i in range(n_images.shape[0]): 

  input_images.append(tf.keras.preprocessing.image.array_to_img(n_images[i, :, :, 

:]).convert('L')) 

  generated_images.append(tf.keras.preprocessing.image.array_to_img(gen_images[i, :, :, 

:]).convert('L')) 

 

MSE = [] 

RMSE = [] 

PSNR = [] 

UQI = [] 

SCC = [] 

RASE =[] 

SAM = [] 

VIF = [] 

 

for j in range(len(input_images)): 
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  gen = tf.keras.preprocessing.image.img_to_array(generated_images[j]).astype('uint8') 

  org = tf.keras.preprocessing.image.img_to_array(input_images[j]).astype('uint8') 

  MSE.append(mse(gen,org)) 

  RMSE.append(rmse(gen, org)) 

  PSNR.append(psnr(gen, org)) 

  UQI.append(uqi(gen, org)) 

  SCC.append(scc(gen, org)) 

  RASE.append(rase(gen, org)) 

  SAM.append(sam(gen, org)) 

  VIF.append(vifp(gen, org)) 

 

MSE = np.array(MSE) 

RMSE = np.array(RMSE) 

PSNR = np.array(PSNR) 

UQI = np.array(UQI) 

SCC = np.array(SCC) 

RASE = np.array(RASE) 

SAM = np.array(SAM) 

VIF = np.array(VIF) 

 

print(f"MSE ---- mean: {MSE.mean()}, std: {MSE.std()} ") 

print(f"RMSE: ---- mean: {RMSE.mean()}, std: {RMSE.std()} ") 
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print(f"PSNR: ---- mean: {PSNR.mean()}, std: {PSNR.std()} ") 

print(f"UQI: ---- mean: {UQI.mean()}, std: {UQI.std()} ") 

print(f"SCC: ---- mean: {SCC.mean()}, std: {SCC.std()} ") 

print(f"RASE: ---- mean: {RASE.mean()}, std: {RASE.std()} ") 

print(f"SAM: ---- mean: {SAM.mean()}, std: {SAM.std()} ") 

print(f"VIF: ---- mean: {VIF.mean()}, std: {VIF.std()} ") 

 

preds = classifier(gen_images) 

true_labels = tf.zeros([64,1]) 

print(f"classify accuracy: {get_accuracy(true_labels, preds)}") 

 

"""Y --> Y""" 

 

n_images = next(iter(covid_dataset)) 

gen_images = generator_g(n_images) 

 

plt.figure(figsize=(12,12)) 

 

for i in range(4 * 4): 

  plt.subplot(4, 4, 1+i) 

  plt.axis(False) 

  if i % 2 == 0: 
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    image = tf.keras.preprocessing.image.array_to_img(n_images[i,:,:,:]) 

    plt.imshow(image) 

    plt.title('Input') 

  else: 

    image = tf.keras.preprocessing.image.array_to_img(gen_images[i,:,:,:]) 

    plt.imshow(image) 

    plt.title('Generated') 

 

input_images = [] 

generated_images = [] 

for i in range(n_images.shape[0]): 

  input_images.append(tf.keras.preprocessing.image.array_to_img(n_images[i, :, :, 

:]).convert('L')) 

  generated_images.append(tf.keras.preprocessing.image.array_to_img(gen_images[i, :, :, 

:]).convert('L')) 

 

MSE = [] 

RMSE = [] 

PSNR = [] 

UQI = [] 

SCC = [] 

RASE =[] 
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SAM = [] 

VIF = [] 

 

for j in range(len(input_images)): 

  gen = tf.keras.preprocessing.image.img_to_array(generated_images[j]).astype('uint8') 

  org = tf.keras.preprocessing.image.img_to_array(input_images[j]).astype('uint8') 

  MSE.append(mse(gen,org)) 

  RMSE.append(rmse(gen, org)) 

  PSNR.append(psnr(gen, org)) 

  UQI.append(uqi(gen, org)) 

  SCC.append(scc(gen, org)) 

  RASE.append(rase(gen, org)) 

  SAM.append(sam(gen, org)) 

  VIF.append(vifp(gen, org)) 

 

MSE = np.array(MSE) 

RMSE = np.array(RMSE) 

PSNR = np.array(PSNR) 

UQI = np.array(UQI) 

SCC = np.array(SCC) 

RASE = np.array(RASE) 

SAM = np.array(SAM) 
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VIF = np.array(VIF) 

 

print(f"MSE ---- mean: {MSE.mean()}, std: {MSE.std()} ") 

print(f"RMSE: ---- mean: {RMSE.mean()}, std: {RMSE.std()} ") 

print(f"PSNR: ---- mean: {PSNR.mean()}, std: {PSNR.std()} ") 

print(f"UQI: ---- mean: {UQI.mean()}, std: {UQI.std()} ") 

print(f"SCC: ---- mean: {SCC.mean()}, std: {SCC.std()} ") 

print(f"RASE: ---- mean: {RASE.mean()}, std: {RASE.std()} ") 

print(f"SAM: ---- mean: {SAM.mean()}, std: {SAM.std()} ") 

print(f"VIF: ---- mean: {VIF.mean()}, std: {VIF.std()} ") 

 

preds = classifier(gen_images) 

true_labels = tf.zeros([64,1]) 

print(f"classify accuracy: {get_accuracy(true_labels, preds)}") 

 

"""Y -- X by GEN F""" 

 

n_images = next(iter(covid_dataset)) 

gen_images = generator_f(n_images) 

 

plt.figure(figsize=(12,12)) 
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for i in range(4 * 4): 

  plt.subplot(4, 4, 1+i) 

  plt.axis(False) 

  if i % 2 == 0: 

    image = tf.keras.preprocessing.image.array_to_img(n_images[i,:,:,:]) 

    plt.imshow(image) 

    plt.title('Input') 

  else: 

    image = tf.keras.preprocessing.image.array_to_img(gen_images[i,:,:,:]) 

    plt.imshow(image) 

    plt.title('Generated') 

 

input_images = [] 

generated_images = [] 

for i in range(n_images.shape[0]): 

  input_images.append(tf.keras.preprocessing.image.array_to_img(n_images[i, :, :, 

:]).convert('L')) 

  generated_images.append(tf.keras.preprocessing.image.array_to_img(gen_images[i, :, :, 

:]).convert('L')) 

 

MSE = [] 

RMSE = [] 
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PSNR = [] 

UQI = [] 

SCC = [] 

RASE =[] 

SAM = [] 

VIF = [] 

 

for j in range(len(input_images)): 

  gen = tf.keras.preprocessing.image.img_to_array(generated_images[j]).astype('uint8') 

  org = tf.keras.preprocessing.image.img_to_array(input_images[j]).astype('uint8') 

  MSE.append(mse(gen,org)) 

  RMSE.append(rmse(gen, org)) 

  PSNR.append(psnr(gen, org)) 

  UQI.append(uqi(gen, org)) 

  SCC.append(scc(gen, org)) 

  RASE.append(rase(gen, org)) 

  SAM.append(sam(gen, org)) 

  VIF.append(vifp(gen, org)) 

 

MSE = np.array(MSE) 

RMSE = np.array(RMSE) 

PSNR = np.array(PSNR) 



 

334 

UQI = np.array(UQI) 

SCC = np.array(SCC) 

RASE = np.array(RASE) 

SAM = np.array(SAM) 

VIF = np.array(VIF) 

 

print(f"MSE ---- mean: {MSE.mean()}, std: {MSE.std()} ") 

print(f"RMSE: ---- mean: {RMSE.mean()}, std: {RMSE.std()} ") 

print(f"PSNR: ---- mean: {PSNR.mean()}, std: {PSNR.std()} ") 

print(f"UQI: ---- mean: {UQI.mean()}, std: {UQI.std()} ") 

print(f"SCC: ---- mean: {SCC.mean()}, std: {SCC.std()} ") 

print(f"RASE: ---- mean: {RASE.mean()}, std: {RASE.std()} ") 

print(f"SAM: ---- mean: {SAM.mean()}, std: {SAM.std()} ") 

print(f"VIF: ---- mean: {VIF.mean()}, std: {VIF.std()} ") 

 

preds = classifier(gen_images) 

true_labels = tf.zeros([64,1]) 

print(f"classify accuracy: {get_accuracy(true_labels, preds)}") 

 

"""X --> X by GEN F""" 

 

n_images = next(iter(normal_dataset)) 
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gen_images = generator_f(n_images) 

 

plt.figure(figsize=(12,12)) 

 

for i in range(4 * 4): 

  plt.subplot(4, 4, 1+i) 

  plt.axis(False) 

  if i % 2 == 0: 

    image = tf.keras.preprocessing.image.array_to_img(n_images[i,:,:,:]) 

    plt.imshow(image) 

    plt.title('Input') 

  else: 

    image = tf.keras.preprocessing.image.array_to_img(gen_images[i,:,:,:]) 

    plt.imshow(image) 

    plt.title('Generated') 

 

input_images = [] 

generated_images = [] 

for i in range(n_images.shape[0]): 

  input_images.append(tf.keras.preprocessing.image.array_to_img(n_images[i, :, :, 

:]).convert('L')) 
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  generated_images.append(tf.keras.preprocessing.image.array_to_img(gen_images[i, :, :, 

:]).convert('L')) 

 

MSE = [] 

RMSE = [] 

PSNR = [] 

UQI = [] 

SCC = [] 

RASE =[] 

SAM = [] 

VIF = [] 

 

for j in range(len(input_images)): 

  gen = tf.keras.preprocessing.image.img_to_array(generated_images[j]).astype('uint8') 

  org = tf.keras.preprocessing.image.img_to_array(input_images[j]).astype('uint8') 

  MSE.append(mse(gen,org)) 

  RMSE.append(rmse(gen, org)) 

  PSNR.append(psnr(gen, org)) 

  UQI.append(uqi(gen, org)) 

  SCC.append(scc(gen, org)) 

  RASE.append(rase(gen, org)) 

  SAM.append(sam(gen, org)) 
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  VIF.append(vifp(gen, org)) 

 

MSE = np.array(MSE) 

RMSE = np.array(RMSE) 

PSNR = np.array(PSNR) 

UQI = np.array(UQI) 

SCC = np.array(SCC) 

RASE = np.array(RASE) 

SAM = np.array(SAM) 

VIF = np.array(VIF) 

 

print(f"MSE ---- mean: {MSE.mean()}, std: {MSE.std()} ") 

print(f"RMSE: ---- mean: {RMSE.mean()}, std: {RMSE.std()} ") 

print(f"PSNR: ---- mean: {PSNR.mean()}, std: {PSNR.std()} ") 

print(f"UQI: ---- mean: {UQI.mean()}, std: {UQI.std()} ") 

print(f"SCC: ---- mean: {SCC.mean()}, std: {SCC.std()} ") 

print(f"RASE: ---- mean: {RASE.mean()}, std: {RASE.std()} ") 

print(f"SAM: ---- mean: {SAM.mean()}, std: {SAM.std()} ") 

print(f"VIF: ---- mean: {VIF.mean()}, std: {VIF.std()} ") 

 

preds = classifier(gen_images) 

true_labels = tf.zeros([64,1]) 
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print(f"classify accuracy: {get_accuracy(true_labels, preds)}") 

 

"""FID""" 

 

from numpy import cov 

from numpy import trace 

from numpy import iscomplexobj 

from numpy import asarray 

from numpy.random import shuffle 

from scipy.linalg import sqrtm 

from tensorflow.keras.applications.inception_v3 import InceptionV3 

from tensorflow.keras.applications.inception_v3 import preprocess_input 

from tensorflow.keras.datasets.mnist import load_data 

from tensorflow.keras.datasets import cifar10 

 

# scale an array of images to a new size 

def scale_images(images, new_shape): 

  images_list = list() 

  for image in images: 

    # resize with nearest neighbor interpolation 

    new_image = tf.image.resize(image, new_shape) 

    # store 
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    images_list.append(new_image) 

  return asarray(images_list) 

 

# calculate frechet inception distance 

def calculate_fid(model, images1, images2): 

  # calculate activations 

  act1 = model.predict(images1) 

  act2 = model.predict(images2) 

  # calculate mean and covariance statistics 

  mu1, sigma1 = act1.mean(axis=0), cov(act1, rowvar=False) 

  mu2, sigma2 = act2.mean(axis=0), cov(act2, rowvar=False) 

  # calculate sum squared difference between means 

  ssdiff = np.sum((mu1 - mu2)**2.0) 

  # calculate sqrt of product between cov 

  covmean = sqrtm(sigma1.dot(sigma2)) 

  # check and correct imaginary numbers from sqrt 

  if iscomplexobj(covmean): 

    covmean = covmean.real 

  # calculate score 

  fid = ssdiff + trace(sigma1 + sigma2 - 2.0 * covmean) 

  return fid 
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model = InceptionV3(include_top=False, pooling='avg', input_shape=(299,299,3)) 

 

FID = [] 

 

for images in covid_dataset: 

  images1 = images 

  images2 = generator_g(images) 

  images1 = preprocess_input(images1) 

  images2 = preprocess_input(images2) 

  fid = calculate_fid(classifier, images1, images2) 

  FID.append(fid) 

 

FID = np.array(FID) 

print("Adaptive Cycle GAN Y to Y by Gen G------") 

print(f'Adjusted FID Mean: {FID.mean()}, Std: {FID.std()}') 

 

FID = [] 

 

for images in normal_dataset: 

  images1 = images 

  images2 = generator_g(images) 

  images1 = preprocess_input(images1) 
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  images2 = preprocess_input(images2) 

  fid = calculate_fid(classifier, images1, images2) 

  FID.append(fid) 

 

FID = np.array(FID) 

print("Adaptive Cycle GAN X to Y by Gen G------") 

print(f'Adjusted FID Mean: {FID.mean()}, Std: {FID.std()}') 

 

FID = [] 

 

for images in normal_dataset: 

  images1 = images 

  images2 = generator_f(images) 

  images1 = preprocess_input(images1) 

  images2 = preprocess_input(images2) 

  fid = calculate_fid(classifier, images1, images2) 

  FID.append(fid) 

 

FID = np.array(FID) 

print("Adaptive Cycle GAN X to X by Gen F------") 

print(f'Adjusted FID Mean: {FID.mean()}, Std: {FID.std()}') 
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FID = [] 

 

for images in covid_dataset: 

  images1 = images 

  images2 = generator_f(images) 

  images1 = preprocess_input(images1) 

  images2 = preprocess_input(images2) 

  fid = calculate_fid(classifier, images1, images2) 

  FID.append(fid) 

 

FID = np.array(FID) 

print("Adaptive Cycle GAN Y to X by Gen F------") 

print(f'Adjusted FID Mean: {FID.mean()}, Std: {FID.std()}') 
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