72 research outputs found

    A study of recent contributions on simulation tools for Network-on-Chip (NoC)

    Get PDF
    The growth in the number of Intellectual Properties (IPs) or the number of cores on the same chip becomes a critical issue in System-on-Chip (SoC) due to the intra-communication problem between the chip elements. As a result, Network-on-Chip (NoC) has emerged as a new system architecture to overcome intra-communication issues. New approaches and methodologies have been developed by many researchers to improve NoC. Also, many NoC simulation tools have been proposed and adopted by both academia and industry. This paper presents a study of recent contributions on simulation tools for NoC. Furthermore, an overview of NoC is covered as well as a comparison between some NoC simulators to help facilitate research in on-chip communication

    A Simulation Tool Chain for Investigating Future V2X-based Automotive E/E Architectures

    Get PDF
    Due to the evermore rising number of functions, current E/E architectures are more and more a vulnerable source for faults and a barrier to innovation. This situation is aggravated by the integration of new technologies like Vehicle-to-X Communication (V2XC) which form the basis for a large number of future services and applications. At the same time, this “opening” of the E/E architecture to the outside world increases potential for non-deterministic disturbances. In order to overcome the limitations of current E/E architectures, application of new design principles and methodologies is necessary. Platform-based design (PBD) is a promising solution for the development of safety-critical functions, to increase reliability and to reduce development cost. Within this context, we propose a novel extensible tool chain that targets the facilitation of exploration, validation and verification of future V2X-based automotive E/E architectures. The tool chain supports composition of heterogeneous domain-specific models by integrating a heterogeneous modeling tool with a simulation middleware and serves as starting point for the investigation of PBD concepts in the V2X context. We believe that the tool chain can support modeling and validation of future V2X-based E/E architectures. In the final paper, we will evaluate the proposed approach by means of a case study regarding validation capabilities as well as execution performance

    Zuverlässige und Energieeffiziente gemischt-kritische Echtzeit On-Chip Systeme

    Get PDF
    Multi- and many-core embedded systems are increasingly becoming the target for many applications that require high performance under varying conditions. A resulting challenge is the control, and reliable operation of such complex multiprocessing architectures under changes, e.g., high temperature and degradation. In mixed-criticality systems where many applications with varying criticalities are consolidated on the same execution platform, fundamental isolation requirements to guarantee non-interference of critical functions are crucially important. While Networks-on-Chip (NoCs) are the prevalent solution to provide scalable and efficient interconnects for the multiprocessing architectures, their associated energy consumption has immensely increased. Specifically, hard real-time NoCs must manifest limited energy consumption as thermal runaway in such a core shared resource jeopardizes the whole system guarantees. Thus, dynamic energy management of NoCs, as opposed to the related work static solutions, is highly necessary to save energy and decrease temperature, while preserving essential temporal requirements. In this thesis, we introduce a centralized management to provide energy-aware NoCs for hard real-time systems. The design relies on an energy control network, developed on top of an existing switch arbitration network to allow isolation between energy optimization and data transmission. The energy control layer includes local units called Power-Aware NoC controllers that dynamically optimize NoC energy depending on the global state and applications’ temporal requirements. Furthermore, to adapt to abnormal situations that might occur in the system due to degradation, we extend the concept of NoC energy control to include the entire system scope. That is, online resource management employing hierarchical control layers to treat system degradation (imminent core failures) is supported. The mechanism applies system reconfiguration that involves workload migration. For mixed-criticality systems, it allows flexible boundaries between safety-critical and non-critical subsystems to safely apply the reconfiguration, preserving fundamental safety requirements and temporal predictability. Simulation and formal analysis-based experiments on various realistic usecases and benchmarks are conducted showing significant improvements in NoC energy-savings and in treatment of system degradation for mixed-criticality systems improving dependability over the status quo.Eingebettete Many- und Multi-core-Systeme werden zunehmend das Ziel für Anwendungen, die hohe Anfordungen unter unterschiedlichen Bedinungen haben. Für solche hochkomplexed Multi-Prozessor-Systeme ist es eine grosse Herausforderung zuverlässigen Betrieb sicherzustellen, insbesondere wenn sich die Umgebungseinflüsse verändern. In Systeme mit gemischter Kritikalität, in denen viele Anwendungen mit unterschiedlicher Kritikalität auf derselben Ausführungsplattform bedient werden müssen, sind grundlegende Isolationsanforderungen zur Gewährleistung der Nichteinmischung kritischer Funktionen von entscheidender Bedeutung. Während On-Chip Netzwerke (NoCs) häufig als skalierbare Verbindung für die Multiprozessor-Architekturen eingesetzt werden, ist der damit verbundene Energieverbrauch immens gestiegen. Daher sind dynamische Plattformverwaltungen, im Gegensatz zu den statischen, zwingend notwendig, um ein System an die oben genannten Veränderungen anzupassen und gleichzeitig Timing zu gewährleisten. In dieser Arbeit entwickeln wir energieeffiziente NoCs für harte Echtzeitsysteme. Das Design basiert auf einem Energiekontrollnetzwerk, das auf einem bestehenden Switch-Arbitration-Netzwerk entwickelt wurde, um eine Isolierung zwischen Energieoptimierung und Datenübertragung zu ermöglichen. Die Energiesteuerungsschicht umfasst lokale Einheiten, die als Power-Aware NoC-Controllers bezeichnet werden und die die NoC-Energie in Abhängigkeit vom globalen Zustand und den zeitlichen Anforderungen der Anwendungen optimieren. Darüber hinaus wird das Konzept der NoC-Energiekontrolle zur Anpassung an Anomalien, die aufgrund von Abnutzung auftreten können, auf den gesamten Systemumfang ausgedehnt. Online- Ressourcenverwaltungen, die hierarchische Kontrollschichten zur Behandlung Abnutzung (drohender Kernausfälle) einsetzen, werden bereitgestellt. Bei Systemen mit gemischter Kritikalität erlaubt es flexible Grenzen zwischen sicherheitskritischen und unkritischen Subsystemen, um die Rekonfiguration sicher anzuwenden, wobei grundlegende Sicherheitsanforderungen erhalten bleiben und Timing Vorhersehbarkeit. Experimente werden auf der Basis von Simulationen und formalen Analysen zu verschiedenen realistischen Anwendungsfallen und Benchmarks durchgeführt, die signifikanten Verbesserungen bei On-Chip Netzwerke-Energieeinsparungen und bei der Behandlung von Abnutzung für Systeme mit gemischter Kritikalität zur Verbesserung die Systemstabilität gegenüber dem bisherigen Status quo zeigen

    A Modified Diagonal Mesh Shuffle Exchange Interconnection Network

    Get PDF
    Interconnection network is an important part of the digital system. The interconnection mainly describes the topology of the network along with the routing algorithm and flow control mechanism. The topology of the network plays an important role on the performance of the system. Mesh interconnection network was the simplest topology, but has the limited bisection bandwidth on the other hand torus and diagonal mesh was having long links. The Modified diagonal mesh network tried to replace the torodial links but was having more average path length so in proposed topology we have tried to improve the average distance using shuffle exchange network over the boundary node. In this paper, we propose the architecture of Modified Diagonal Mesh Shuffle Exchange Interconnection Network. This Modified Diagonal Mesh Shuffle Exchange Interconnection network have been compared with four popular topologies that are simple 2D Mesh, 2D Torus, Diagonal Mesh and Modified Diagonal Mesh Interconnection Network on the four traffic patterns such as Bit Complement traffic, Neighbor traffic, Tornado traffic and Uniform traffic are used for comparisonand performance analysis. We have performed the analysis with a 5% and 10% of hotspot on the Uniform Traffic. The simulation results shows that the proposed topology is performed better on bit complement traffic and can also handle the other traffic up to certain level

    Fuse-N: Framework for unified simulation environment for network-on-chip

    Full text link
    Steady advancements in semiconductor technology over the past few decades have marked incipience of Multi-Processor System-on-Chip (MPSoCs). Owing to the inability of traditional bus-based communication system to scale well with improving microchip technologies, researchers have proposed Network-on-Chip (NoC) as the on-chip communication model. Current uni-processor centric modeling methodology does not address the new design challenges introduced by MPSoCs, thus calling for efficient simulation frameworks capable of capturing the interplay between the application, the architecture, and the network. Addressing these new challenges requires a framework that assists the designer at different abstraction levels of system design; This thesis concentrates on developing a framework for unified simulation environment for NoCs (fuse-N) which simplifies the design space exploration for NoCs by offering a comprehensive simulation support. The framework synthesizes the network infrastructure and the communication model and optimizes application mapping for design constraints. The proposed framework is a hardware-software co-design implementation using SystemC 2.1 and C++. Simulation results show the architectural, network and resource allocation behavior and highlight the quantitative relationships between various design choices; Also, a novel off-line non-preemptive static Traffic Aware Scheduling (TAS) policy is proposed for hard NoC platforms. The proposed scheduling policy maps the application onto the NoC architecture keeping track of the network traffic, which is generated with every resource and communication path allocation. TAS has been evaluated for various design metrics such as application completion time, resource utilization and task throughput. Simulation results show significant improvements over traditional approaches

    Scalability of broadcast performance in wireless network-on-chip

    Get PDF
    Networks-on-Chip (NoCs) are currently the paradigm of choice to interconnect the cores of a chip multiprocessor. However, conventional NoCs may not suffice to fulfill the on-chip communication requirements of processors with hundreds or thousands of cores. The main reason is that the performance of such networks drops as the number of cores grows, especially in the presence of multicast and broadcast traffic. This not only limits the scalability of current multiprocessor architectures, but also sets a performance wall that prevents the development of architectures that generate moderate-to-high levels of multicast. In this paper, a Wireless Network-on-Chip (WNoC) where all cores share a single broadband channel is presented. Such design is conceived to provide low latency and ordered delivery for multicast/broadcast traffic, in an attempt to complement a wireline NoC that will transport the rest of communication flows. To assess the feasibility of this approach, the network performance of WNoC is analyzed as a function of the system size and the channel capacity, and then compared to that of wireline NoCs with embedded multicast support. Based on this evaluation, preliminary results on the potential performance of the proposed hybrid scheme are provided, together with guidelines for the design of MAC protocols for WNoC.Peer ReviewedPostprint (published version

    Quarc: an architecture for efficient on-chip communication

    Get PDF
    The exponential downscaling of the feature size has enforced a paradigm shift from computation-based design to communication-based design in system on chip development. Buses, the traditional communication architecture in systems on chip, are incapable of addressing the increasing bandwidth requirements of future large systems. Networks on chip have emerged as an interconnection architecture offering unique solutions to the technological and design issues related to communication in future systems on chip. The transition from buses as a shared medium to networks on chip as a segmented medium has given rise to new challenges in system on chip realm. By leveraging the shared nature of the communication medium, buses have been highly efficient in delivering multicast communication. The segmented nature of networks, however, inhibits the multicast messages to be delivered as efficiently by networks on chip. Relying on extensive research on multicast communication in parallel computers, several network on chip architectures have offered mechanisms to perform the operation, while conforming to resource constraints of the network on chip paradigm. Multicast communication in majority of these networks on chip is implemented by establishing a connection between source and all multicast destinations before the message transmission commences. Establishing the connections incurs an overhead and, therefore, is not desirable; in particular in latency sensitive services such as cache coherence. To address high performance multicast communication, this research presents Quarc, a novel network on chip architecture. The Quarc architecture targets an area-efficient, low power, high performance implementation. The thesis covers a detailed representation of the building blocks of the architecture, including topology, router and network interface. The cost and performance comparison of the Quarc architecture against other network on chip architectures reveals that the Quarc architecture is a highly efficient architecture. Moreover, the thesis introduces novel performance models of complex traffic patterns, including multicast and quality of service-aware communication

    Modeling a Photonic Network for Exascale Computing

    Get PDF
    Photonics technology has become a promising and viable alternative for both on-chip and off-chip computer networks of future Exascale systems. Nevertheless, this technology is not mature enough yet in this context, so research efforts focusing on photonic networks are still required to achieve realistic suitable network implementations. In this context, system-level photonic network simulators can help to guide designers to assess the multiple design choices. Most current research is done on electrical network simulators, whose components work widely different from photonics components. Moreover, photonics technology adds new components that are not present in electrical networks. This paper discusses how a photonics simulation tool can be built by extending an electrical simulation framework. We summarize and compare the working behavior of both technologies -electrical and photonics, and discuss the rationale behind the proposed extensions. Among others, the devised extensions model optical routers, wavelength-division multiplexing, circuit switching, and specific routing algorithms. This work is aimed to provide support to investigate off- chip optical networks in the context of the European Exascale System Interconnect and Storage project (ExaNeSt) project. The experiments presented in this paper study multiple realistic photonic networks configurations and have been performed with excerpts of real traces. Experimental results show that, compared to electrical networks, optical networks can reduce the execution time of the workload by several orders of magnitude. Our study reveals that future optical technologies presenting a 3.2 Tbps aggregate link bandwidth will not provide additional performance benefits over state-of-the-art 1.6 Tbps optical links across the studied workloads, but 1.6 Tbps network links are enough to achieve the highest optical performance on computer networks. Regarding the link configuration, the bandwidth per optical channel is the parameter with highest impact on the network delay and so on the execution time, while for a given optical bandwidth per channel the better strategy is to reduce the phit size.This work was supported by the ExaNest project, funded by the European Union’s Horizon 2020 research and innovation programme under grant agreement No 671553, and by the Spanish Ministerio de Economía y Competitividad (MINECO) and Plan E funds under Grant TIN2015-66972-C5-1-R.Duro Gómez, J.; Petit Martí, SV.; Sahuquillo Borrás, J.; Gómez Requena, ME. (2017). Modeling a Photonic Network for Exascale Computing. IEEE Computer Society. https://doi.org/10.1109/HPCS.2017.8
    • …
    corecore