14,789 research outputs found

    Channel Selection for Network-assisted D2D Communication via No-Regret Bandit Learning with Calibrated Forecasting

    Full text link
    We consider the distributed channel selection problem in the context of device-to-device (D2D) communication as an underlay to a cellular network. Underlaid D2D users communicate directly by utilizing the cellular spectrum but their decisions are not governed by any centralized controller. Selfish D2D users that compete for access to the resources construct a distributed system, where the transmission performance depends on channel availability and quality. This information, however, is difficult to acquire. Moreover, the adverse effects of D2D users on cellular transmissions should be minimized. In order to overcome these limitations, we propose a network-assisted distributed channel selection approach in which D2D users are only allowed to use vacant cellular channels. This scenario is modeled as a multi-player multi-armed bandit game with side information, for which a distributed algorithmic solution is proposed. The solution is a combination of no-regret learning and calibrated forecasting, and can be applied to a broad class of multi-player stochastic learning problems, in addition to the formulated channel selection problem. Analytically, it is established that this approach not only yields vanishing regret (in comparison to the global optimal solution), but also guarantees that the empirical joint frequencies of the game converge to the set of correlated equilibria.Comment: 31 pages (one column), 9 figure

    Learning Equilibria with Partial Information in Decentralized Wireless Networks

    Full text link
    In this article, a survey of several important equilibrium concepts for decentralized networks is presented. The term decentralized is used here to refer to scenarios where decisions (e.g., choosing a power allocation policy) are taken autonomously by devices interacting with each other (e.g., through mutual interference). The iterative long-term interaction is characterized by stable points of the wireless network called equilibria. The interest in these equilibria stems from the relevance of network stability and the fact that they can be achieved by letting radio devices to repeatedly interact over time. To achieve these equilibria, several learning techniques, namely, the best response dynamics, fictitious play, smoothed fictitious play, reinforcement learning algorithms, and regret matching, are discussed in terms of information requirements and convergence properties. Most of the notions introduced here, for both equilibria and learning schemes, are illustrated by a simple case study, namely, an interference channel with two transmitter-receiver pairs.Comment: 16 pages, 5 figures, 1 table. To appear in IEEE Communication Magazine, special Issue on Game Theor

    Spatio-temporal Edge Service Placement: A Bandit Learning Approach

    Full text link
    Shared edge computing platforms deployed at the radio access network are expected to significantly improve quality of service delivered by Application Service Providers (ASPs) in a flexible and economic way. However, placing edge service in every possible edge site by an ASP is practically infeasible due to the ASP's prohibitive budget requirement. In this paper, we investigate the edge service placement problem of an ASP under a limited budget, where the ASP dynamically rents computing/storage resources in edge sites to host its applications in close proximity to end users. Since the benefit of placing edge service in a specific site is usually unknown to the ASP a priori, optimal placement decisions must be made while learning this benefit. We pose this problem as a novel combinatorial contextual bandit learning problem. It is "combinatorial" because only a limited number of edge sites can be rented to provide the edge service given the ASP's budget. It is "contextual" because we utilize user context information to enable finer-grained learning and decision making. To solve this problem and optimize the edge computing performance, we propose SEEN, a Spatial-temporal Edge sErvice placemeNt algorithm. Furthermore, SEEN is extended to scenarios with overlapping service coverage by incorporating a disjunctively constrained knapsack problem. In both cases, we prove that our algorithm achieves a sublinear regret bound when it is compared to an oracle algorithm that knows the exact benefit information. Simulations are carried out on a real-world dataset, whose results show that SEEN significantly outperforms benchmark solutions

    Dynamic Multi-Arm Bandit Game Based Multi-Agents Spectrum Sharing Strategy Design

    Full text link
    For a wireless avionics communication system, a Multi-arm bandit game is mathematically formulated, which includes channel states, strategies, and rewards. The simple case includes only two agents sharing the spectrum which is fully studied in terms of maximizing the cumulative reward over a finite time horizon. An Upper Confidence Bound (UCB) algorithm is used to achieve the optimal solutions for the stochastic Multi-Arm Bandit (MAB) problem. Also, the MAB problem can also be solved from the Markov game framework perspective. Meanwhile, Thompson Sampling (TS) is also used as benchmark to evaluate the proposed approach performance. Numerical results are also provided regarding minimizing the expectation of the regret and choosing the best parameter for the upper confidence bound
    • …
    corecore