17 research outputs found

    Chromatic numbers of Cayley graphs of abelian groups: A matrix method

    Full text link
    In this paper, we take a modest first step towards a systematic study of chromatic numbers of Cayley graphs on abelian groups. We lose little when we consider these graphs only when they are connected and of finite degree. As in the work of Heuberger and others, in such cases the graph can be represented by an m×rm\times r integer matrix, where we call mm the dimension and rr the rank. Adding or subtracting rows produces a graph homomorphism to a graph with a matrix of smaller dimension, thereby giving an upper bound on the chromatic number of the original graph. In this article we develop the foundations of this method. In a series of follow-up articles using this method, we completely determine the chromatic number in cases with small dimension and rank; prove a generalization of Zhu's theorem on the chromatic number of 66-valent integer distance graphs; and provide an alternate proof of Payan's theorem that a cube-like graph cannot have chromatic number 3.Comment: 17 page

    Subject index volumes 1–92

    Get PDF

    This Week's Finds in Mathematical Physics (1-50)

    Full text link
    These are the first 50 issues of This Week's Finds of Mathematical Physics, from January 19, 1993 to March 12, 1995. These issues focus on quantum gravity, topological quantum field theory, knot theory, and applications of nn-categories to these subjects. However, there are also digressions into Lie algebras, elliptic curves, linear logic and other subjects. They were typeset in 2020 by Tim Hosgood. If you see typos or other problems please report them. (I already know the cover page looks weird).Comment: 242 page
    corecore