3,430 research outputs found

    Terahertz Security Image Quality Assessment by No-reference Model Observers

    Full text link
    To provide the possibility of developing objective image quality assessment (IQA) algorithms for THz security images, we constructed the THz security image database (THSID) including a total of 181 THz security images with the resolution of 127*380. The main distortion types in THz security images were first analyzed for the design of subjective evaluation criteria to acquire the mean opinion scores. Subsequently, the existing no-reference IQA algorithms, which were 5 opinion-aware approaches viz., NFERM, GMLF, DIIVINE, BRISQUE and BLIINDS2, and 8 opinion-unaware approaches viz., QAC, SISBLIM, NIQE, FISBLIM, CPBD, S3 and Fish_bb, were executed for the evaluation of the THz security image quality. The statistical results demonstrated the superiority of Fish_bb over the other testing IQA approaches for assessing the THz image quality with PLCC (SROCC) values of 0.8925 (-0.8706), and with RMSE value of 0.3993. The linear regression analysis and Bland-Altman plot further verified that the Fish__bb could substitute for the subjective IQA. Nonetheless, for the classification of THz security images, we tended to use S3 as a criterion for ranking THz security image grades because of the relatively low false positive rate in classifying bad THz image quality into acceptable category (24.69%). Interestingly, due to the specific property of THz image, the average pixel intensity gave the best performance than the above complicated IQA algorithms, with the PLCC, SROCC and RMSE of 0.9001, -0.8800 and 0.3857, respectively. This study will help the users such as researchers or security staffs to obtain the THz security images of good quality. Currently, our research group is attempting to make this research more comprehensive.Comment: 13 pages, 8 figures, 4 table

    Deep CNN Model for Non-Screen Content and Screen Content Image Quality Assessment

    Get PDF
    In the current world, user experience in various platforms matters a lot for different organizations. But providing a better experience can be challenging if the multimedia content on online platforms is having different kinds of distortions which impact the overall experience of the user. There can be various reasons behind distortions such as compression or minimal lighting condition while taking photos. In this work, a deep CNN-based Non-Screen Content and Screen Content NR-IQA framework is proposed which solves this issue in a more effective way. The framework is known as DNSSCIQ. Two different architectures are proposed based upon the input image type whether the input is a screen content or non-screen content image. This work attempts to solve this by evaluating the quality of such image

    A New Image Quality Database for Multiple Industrial Processes

    Full text link
    Recent years have witnessed a broader range of applications of image processing technologies in multiple industrial processes, such as smoke detection, security monitoring, and workpiece inspection. Different kinds of distortion types and levels must be introduced into an image during the processes of acquisition, compression, transmission, storage, and display, which might heavily degrade the image quality and thus strongly reduce the final display effect and clarity. To verify the reliability of existing image quality assessment methods, we establish a new industrial process image database (IPID), which contains 3000 distorted images generated by applying different levels of distortion types to each of the 50 source images. We conduct the subjective test on the aforementioned 3000 images to collect their subjective quality ratings in a well-suited laboratory environment. Finally, we perform comparison experiments on IPID database to investigate the performance of some objective image quality assessment algorithms. The experimental results show that the state-of-the-art image quality assessment methods have difficulty in predicting the quality of images that contain multiple distortion types
    • …
    corecore