5 research outputs found

    Detection of coronary artery disease with an electronic stethoscope

    Get PDF

    Assessment of Dual-Tree Complex Wavelet Transform to improve SNR in collaboration with Neuro-Fuzzy System for Heart Sound Identification

    Get PDF
    none6siThe research paper proposes a novel denoising method to improve the outcome of heartsound (HS)-based heart-condition identification by applying the dual-tree complex wavelet transform (DTCWT) together with the adaptive neuro-fuzzy inference System (ANFIS) classifier. The method consists of three steps: first, preprocessing to eliminate 50 Hz noise; second, applying four successive levels of DTCWT to denoise and reconstruct the time-domain HS signal; third, to evaluate ANFIS on a total of 2735 HS recordings from an international dataset (PhysioNet Challenge 2016). The results show that the signal-to-noise ratio (SNR) with DTCWT was significantly improved (p < 0.001) as compared to original HS recordings. Quantitatively, there was an 11% to many decibel (dB)-fold increase in SNR after DTCWT, representing a significant improvement in denoising HS. In addition, the ANFIS, using six time-domain features, resulted in 55–86% precision, 51–98% recall, 53–86% f-score, and 54–86% MAcc compared to other attempts on the same dataset. Therefore, DTCWT is a successful technique in removing noise from biosignals such as HS recordings. The adaptive property of ANFIS exhibited capability in classifying HS recordings.Special Issue “Biomedical Signal Processing”, Section BioelectronicsopenBassam Al-Naami, Hossam Fraihat, Jamal Al-Nabulsi, Nasr Y. Gharaibeh, Paolo Visconti, Abdel-Razzak Al-HinnawiAl-Naami, Bassam; Fraihat, Hossam; Al-Nabulsi, Jamal; Gharaibeh, Nasr Y.; Visconti, Paolo; Al-Hinnawi, Abdel-Razza

    Risk Estimation of Coronary Artery Disease using Phonocardiography

    Get PDF

    Wrist-based Phonocardiogram Diagnosis Leveraging Machine Learning

    Get PDF
    With the tremendous growth of technology and the fast pace of life, the need for instant information has become an everyday necessity, more so in emergency cases when every minute counts towards saving lives. mHealth has been the adopted approach for quick diagnosis using mobile devices. However, it has been challenging due to the required high quality of data, high computation load, and high-power consumption. The aim of this research is to diagnose the heart condition based on phonocardiogram (PCG) analysis using Machine Learning techniques assuming limited processing power, in order to be encapsulated later in a mobile device. The diagnosis of PCG is performed using two techniques; 1. parametric estimation with multivariate classification, particularly discriminant function. Which will be explored at length using different number of descriptive features. The feature extraction will be performed using Wavelet Transform (Filter Bank). 2. Artificial Neural Networks, and specifically Pattern Recognition. This will also use decomposed version of PCG using Wavelet Transform (Filter Bank). The results showed 97.33% successful diagnosis using the first technique using PCG with a 19 dB Signal-to-Noise-Ratio. When the signal was decomposed into four sub-bands using a Filter Bank of the second order. Each sub-band was described using two features; the signal’s mean and covariance. Additionally, different Filter Bank orders and number of features are explored and compared. Using the second technique the diagnosis resulted in a 100% successful classification with 83.3% trust level. The results are assessed, and new improvements are recommended and discussed as part of future work.Teknologian valtavan kehittymisen ja nopean elämänrytmin myötä välittömästi saatu tieto on noussut jokapäiväiseksi välttämättömyydeksi, erityisesti hätätapauksissa, joissa jokainen säästetty minuutti on tärkeää ihmishenkien pelastamiseksi. Mobiiliterveys, eli mHealth, on yleisesti valjastettu käyttöön nopeaksi diagnoosimenetelmäksi mobiililaitteiden avulla. Käyttö on kuitenkin ollut haastavaa korkean datan laatuvaatimuksen ja suurten tiedonkäsittelyvaatimuksien, nopean laskentatehon ja sekä suuren virrankulutuksen vuoksi. Tämän tutkimuksen tavoitteena oli diagnosoida sydänsairauksia fonokardiogrammianalyysin (PCG) perusteella käyttämällä koneoppimistekniikoita niin, että käytettävä laskentateho rajoitetaan vastaamaan mobiililaitteiden kapasiteettia. PCG-diagnoosi tehtiin käyttäen kahta tekniikkaa 1. Parametrinen estimointi käyttäen moniulotteista luokitusta, erityisesti signaalien erotteluanalyysin avulla. Tätä asiaa tutkittiin syvällisesti käyttäen erilaisia tilastotieteellisesti kuvailevia piirteitä. Piirteiden irrotus suoritettiin käyttäen Wavelet-muunnosta ja suodatinpankkia. 2. Keinotekoisia neuroverkkoja ja erityisesti hahmontunnistusta. Tässä menetelmässä käytetään myös PCG-signaalin hajoitusta ja Wavelet-muunnos -suodatinpankkia. Tulokset osoittivat, että PCG 19dB:n signaali-kohina-suhteella voi johtaa 97,33% onnistuneeseen diagnoosiin käytettäessä ensimmäistä tekniikkaa. Signaalin hajottaminen neljään alikaistaan suoritettiin käyttämällä toisen asteen suodatinpankkia. Jokainen alikaista kuvattiin käyttäen kahta piirrettä: signaalin keskiarvoa ja kovarianssia, näin saatiin yhteensä kahdeksan ominaisuutta kuvaamaan noin yhden minuutin näytettä PCG-signaalista. Lisäksi tutkittiin ja verrattiin eriasteisia suodattimia ja piirteitä. Toista tekniikkaa käyttäen diagnoosi johti 100% onnistuneeseen luokitteluun 83,3% luotettavuustasolla. Tuloksia käsitellään ja pohditaan, sekä tehdään niistä johtopäätöksiä. Lopuksi ehdotetaan ja suositellaan käytettyihin menetelmiin uusia parannuksia jatkotutkimuskohteiksi.fi=vertaisarvioitu|en=peerReviewed
    corecore