70,389 research outputs found

    Protection strategies for next generation passive optical networks -2

    Get PDF
    Next Generation Passive Optical Networks-2 (NGPON2) are being considered to upgrade the current PON technology to meet the ever increasing bandwidth requirements of the end users while optimizing the network operators' investment. Reliability performance of NG-PON2 is very important due to the extended reach and, consequently, large number of served customers per PON segment. On the other hand, the use of more complex and hence more failure prone components than in the current PON systems may degrade reliability performance of the network. Thus designing reliable NG-PON2 architectures is of a paramount importance. Moreover, for appropriately evaluating network reliability performance, new models are required. For example, the commonly used reliability parameter, i.e., connection availability, defined as the percentage of time for which a connection remains operable, doesn't reflect the network wide reliability performance. The network operators are often more concerned about a single failure affecting a large number of customers than many uncorrelated failures disconnecting fewer customers while leading to the same average failure time. With this view, we introduce a new parameter for reliability performance evaluation, referred to as the failure impact. In this paper, we propose several reliable architectures for two important NGPON2 candidates: wavelength division multiplexed (WDM) PON and time and wavelength division multiplexed (TWDM) PON. Furthermore, we evaluate protection coverage, availability, failure impact and cost of the proposed schemes in order to identify the most efficient protection architecture

    Individual differences trancend the rationality debate

    Get PDF
    Individual differences are indeed an important aid to our understanding of human cognition, but the importance of the rationality debate is open to question. An understanding of the process involved, and how and why differences occur, is fundamental to our understanding of human reasoning and decision making

    Robust Lattice Alignment for K-user MIMO Interference Channels with Imperfect Channel Knowledge

    Full text link
    In this paper, we consider a robust lattice alignment design for K-user quasi-static MIMO interference channels with imperfect channel knowledge. With random Gaussian inputs, the conventional interference alignment (IA) method has the feasibility problem when the channel is quasi-static. On the other hand, structured lattices can create structured interference as opposed to the random interference caused by random Gaussian symbols. The structured interference space can be exploited to transmit the desired signals over the gaps. However, the existing alignment methods on the lattice codes for quasi-static channels either require infinite SNR or symmetric interference channel coefficients. Furthermore, perfect channel state information (CSI) is required for these alignment methods, which is difficult to achieve in practice. In this paper, we propose a robust lattice alignment method for quasi-static MIMO interference channels with imperfect CSI at all SNR regimes, and a two-stage decoding algorithm to decode the desired signal from the structured interference space. We derive the achievable data rate based on the proposed robust lattice alignment method, where the design of the precoders, decorrelators, scaling coefficients and interference quantization coefficients is jointly formulated as a mixed integer and continuous optimization problem. The effect of imperfect CSI is also accommodated in the optimization formulation, and hence the derived solution is robust to imperfect CSI. We also design a low complex iterative optimization algorithm for our robust lattice alignment method by using the existing iterative IA algorithm that was designed for the conventional IA method. Numerical results verify the advantages of the proposed robust lattice alignment method

    Reaching Consensus Under a Deadline

    Full text link
    Committee decisions are complicated by a deadline, e.g., the next start of a budget, or the beginning of a semester. In committee hiring decisions, it may be that if no candidate is supported by a strong majority, the default is to hire no one - an option that may cost dearly. As a result, committee members might prefer to agree on a reasonable, if not necessarily the best, candidate, to avoid unfilled positions. In this paper, we propose a model for the above scenario - Consensus Under a Deadline (CUD)- based on a time-bounded iterative voting process. We provide convergence guarantees and an analysis of the quality of the final decision. An extensive experimental study demonstrates more subtle features of CUDs, e.g., the difference between two simple types of committee member behavior, lazy vs.~proactive voters. Finally, a user study examines the differences between the behavior of rational voting bots and real voters, concluding that it may often be best to have bots play on the voters' behalf

    Beliefs around luck : confirming the empirical conceptualization of beliefs around luck and the development of the Darke and Freedman beliefs around luck scale

    Get PDF
    The current study developed a multi-dimensional measure of beliefs around luck. Two studies introduced the Darke and Freedman beliefs around luck scale where the scale showed a consistent 4 component model (beliefs in luck, rejection of luck, being lucky, and being unlucky) across two samples (n = 250; n = 145). The scales also show adequate reliability statistics and validity by ways of comparison with other measures of beliefs around luck, peer and family ratings and expected associations with measures of personality, individual difference and well-being variables
    corecore