270,138 research outputs found

    Transport and reduction of nitrate in clayey till underneath forest and arable land.

    Get PDF
    Transport and reduction of nitrate in a typically macroporous clayey till were examined at variable flow rate and nitrate flux. The experiments were carried out using saturated, large diameter (0.5 m), undisturbed soil columns (LUC), from a forest and nearby agricultural sites. Transport of nitrate was controlled by flow along the macropores (fractures and biopores) in the columns. Nitrate reduction (denitrification) determined under active flow mainly followed first order reactions with half-lives (t1/2) increasing with depth (1.5–3.5 m) from 7 to 35 days at the forest site and 1–7 h at the agricultural site. Nitrate reduction was likely due to microbial degradation of accumulated organic matter coupled with successive consumption of O2 and NO3− in the macropore water followed by reductive dissolution of Fe and Mn from minerals along the macropores. Concentrations of total organic carbon measured in soil samples were near identical at the two study sites and consequently not useful as indicator for the observed differences in nitrate reduction. Instead the high reduction rates at the agricultural site were positively correlated with elevated concentration of water-soluble organic carbon and nitrate-removing bacteria relative to the forest site. After high concentrations of water-soluble organic carbon in the columns from the agricultural site were leached they lost their elevated reduction rates, which, however, was successfully re-established by infiltration of new reactive organics represented by pesticides. Simulations using a calibrated discrete fracture matrix diffusion (DFMD) model could reasonably reproduce the denitrification and resulting flux of nitrate observed during variable flow rate from the columns

    Dissimilatory nitrogen reduction in intertidal sediments of a temperate estuary: small scale heterogeneity and novel nitrate-to-ammonium reducers

    Get PDF
    The estuarine nitrogen cycle can be substantially altered due to anthropogenic activities resulting in increased amounts of inorganic nitrogen (mainly nitrate). In the past, denitrification was considered to be the main ecosystem process removing reactive nitrogen from the estuarine ecosystem. However, recent reports on the contribution of dissimilatory nitrate reduction to ammonium (DNRA) to nitrogen removal in these systems indicated a similar or higher importance, although the ratio between both processes remains ambiguous. Compared to denitrification, DNRA has been underexplored for the last decades and the key organisms carrying out the process in marine environments are largely unknown. Hence, as a first step to better understand the interplay between denitrification, DNRA and reduction of nitrate to nitrite in estuarine sediments, nitrogen reduction potentials were determined in sediments of the Paulina polder mudflat (Westerschelde estuary). We observed high variability in dominant nitrogen removing processes over a short distance (1.6m) with nitrous oxide, ammonium and nitrite production rates differing significantly between all sampling sites. Denitrification occurred at all sites, DNRA was either the dominant process (two out of five sites) or absent, while nitrate reduction to nitrite was observed in most sites but never dominant. In addition, novel nitrate-to-ammonium reducers assigned to Thalassospira, Celenbacter, and Halomonas, for which DNRA was thus far unreported, were isolated, with DNRA phenotype reconfirmed through nrfA gene amplification. This study demonstrates high small scale heterogeneity among dissimilatory nitrate reduction processes in estuarine sediments and provides novel marine DNRA organisms that represent valuable alternatives to the current model organisms

    Competitive reaction modelling in aqueous systems. The case of contemporary reduction of dichromates and nitrates by nZVI

    Get PDF
    In various Countries, Cr(VI) still represents one of the groundwater pollutant of major concern, mainly due to its high toxicity, furthermore enhanced by the synergic effect in presence of other contaminants. As widely reported in the recent literature, nanoscale zero valent iron particles (nZVI-p) have been proved to be particularly effective in the removal of a wide range of contaminants from polluted waters. In this work, experimental tests of hexavalent chromium reduction in polluted groundwater in the presence of nitrate by nZVI-p are presented and discussed. The effect of different nitrate amounts on Cr(VI) reduction mechanism was investigated and the obtained results were successfully interpreted by the proposed kinetic model. nZVI-p produced by the classical borohydride reduction method were added in to synthetic solutions with the initial concentration of Cr(VI) set at 93, 62 and 31 mg L-1 and different nitrate contents in the range 10-100 mg L-1. According to the experimental results, nitrate showed an adverse effect on Cr(VI) reduction, depending on the nZVI/Cr(VI) and Cr(VI)/NO3 - ratio. The proposed kinetic model soundly grasps the competitive nature of the Cr(VI) reduction process when other chemical species are present in the treated solution

    Effect of operational parameters and Pd/In catalyst in the reduction of nitrate using copper electrode

    Get PDF
    Water with high concentration of nitrate may cause damage to health and to the environment. This study investigated how concentration, current density, flow, pH, the use of Pd/In catalyst and operating mode (constant current density and constant cell potential) have an influence in the electrochemical reduction of nitrate and in the formation of gaseous compounds using copper electrode. Experiments were performed in two-compartment electrolytic cells separated by a cationic membrane with nitrate model solutions prepared as a surrogate of concentrated brines from membrane desalination plants. The results show that the electroreduction process has potential for reduction of nitrate and that it is influenced by the operational conditions. The best conditions found for the treatment - with satisfactory reduction of nitrate, formation of compounds and reproducibility - were at nitrate concentrations of 600 and 1000 mg.L-1, current density of 1.1 mA.cm-2 and without pH control, since in these conditions the production of gaseous compounds is higher than the production of nitrite. When Pd/In catalyst was used, the nitrate reduction was 50% after 6 hours of experiment and the predominant product were gaseous compounds. When compared to the experiment without the catalyst, the arrangement with Pd/In was the most efficient one.Fil: Beltrame, Thiago Favarini. Ufrgds Lacor; BrasilFil: Coelho, Vanessa. Ufrgds Lacor; BrasilFil: Marder, Luciano. Ufrgds Lacor; BrasilFil: Ferreira, Jane Zoppas. Ufrgds Lacor; BrasilFil: Marchesini, Fernanda Albana. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Investigaciones en Catálisis y Petroquímica ; ArgentinaFil: Bernardes, Andrea Moura. Ufrgds Lacor; Brasi

    Nitrate Reduction Approaches

    Get PDF
    Resource /Energy Economics and Policy, Q25,

    Mobility and removal of nitrate in heterogeneous Eocene aquifers

    Get PDF
    n a study of the principles of lateral and vertical nitrate mobility and removal in unconfined heterogeneous fine sandy Eocene aquifers by long-term observation, no significant nitrate reduction could be observed over short distances (90 m) in the lateral flow direction. Decreasing oxygen contents and limited flow velocity in a downward direction (caused by clay lenses and layers) resulted in a more efficient but incomplete nitrate removal with increasing depth. Chemo-organotrophic and chemo-lithotrophic denitrification coexist in the aquifers. Recharge input of organic matter and the reactivity of sedimentary organic sources, as well as the amounts of pyrite and Fe2+-bearing minerals, control which microbiologically catalysed process finally occurs. Sharp boundaries between different redox zones do not exist due to locally changing availability of organic and inorganic electron donors used for nitrate reduction. Furthermore, preferential flow paths result in a wide spread occurrence of low concentrations of nitrate below the main denitrification zone

    Effect of Nitrate, Acetate and Hydrogen on Native Perchlorate-reducing Microbial Communities and Their Activity in Vadose Soil

    Get PDF
    The effect of nitrate, acetate, and hydrogen on native perchlorate-reducing bacteria (PRB) was examined by conducting microcosm tests using vadose soil collected from a perchlorate-contaminated site. The rate of perchlorate reduction was enhanced by hydrogen amendment and inhibited by acetate amendment, compared with unamendment. Nitrate was reduced before perchlorate in all amendments. In hydrogen-amended and unamended soils, nitrate delayed perchlorate reduction, suggesting that the PRB preferentially use nitrate as an electron acceptor. In contrast, nitrate eliminated the inhibitory effect of acetate amendment on perchlorate reduction and increased the rate and the extent, possibly because the preceding nitrate reduction/denitrification decreased the acetate concentration that was inhibitory to the native PRB. In hydrogen-amended and unamended soils, perchlorate reductase gene (pcrA) copies, representing PRB densities, increased with either perchlorate or nitrate reduction, suggesting that either perchlorate or nitrate stimulates the growth of the PRB. In contrast, in acetate-amended soil pcrA increased only when perchlorate was depleted: a large portion of the PRB may have not utilized nitrate in this amendment. Nitrate addition did not alter the distribution of the dominant pcrA clones in hydrogen-amended soil, likely because of the functional redundancy of PRB as nitrate-reducers/denitrifiers, whereas acetate selected different pcrA clones from those with hydrogen amendment

    Nitrate elimination by denitrification in hardwood forest soils of the Upper Rhine floodplain – correlation with redox potential and organic matter

    Get PDF
    Denitrification in floodplains is a major issue for river- and groundwater quality. In the Upper Rhine valley, floodplain forests are about to be restored to serve as flood retention areas (polders). Besides flood attenuation in downstream areas, improvement of water quality became recently a major goal for polder construction. Redox potential monitoring was suggested as a means to support assessment of nitrogen elimination in future floodplains by denitrification during controlled flooding. To elucidate the relationship between redox potential and denitrification, experiments with floodplain soils and in situ measurements were done. Floodplain soil of two depth profiles from a hardwood forest of the Upper Rhine valley was incubated anaerobically with continuous nitrate supply. Reduction of nitrate was followed and compared with redox potential and organic matter content. The redox potential under denitrifying conditions ranged from 10 to 300 mV. Redox potential values decreased with increasing nitrate reduction rates and increasing organic matter content. Furthermore, a narrow correlation between organicmatter and nitrate reduction was observed. Experiments were intended to help interpreting redox potentials generated under in situ conditions as exemplified by in situ observations for the year 1999. Results obtained by experiments and in situ observations showed that monitoring of redox potential could support management of the flooding regime to optimize nitrogen retention by denitrification in future flood retention areas

    Nitrogen removal in marine environments: recent findings and future research challenges

    Get PDF
    Respiratory reduction of nitrate (denitrification) is recognized as the most important process converting biologically available (fixed) nitrogen to N2. In current N cycle models, a major proportion of global marine denitrification (50–70%) is assumed to take place on the sea floor, particularly in organic rich continental margin sediments. Recent observations indicate that present conceptual views of denitrification and pathways of nitrate reduction and N2 formation are incomplete. Alternative N cycle pathways, particularly in sediments, include anaerobic ammonium oxidation to nitrite, nitrate and N2 by Mn-oxides, and anaerobic ammonium oxidation coupled to nitrite reduction and subsequent N2 mobilization. The discovery of new links and feedback mechanisms between the redox cycles of, e.g., C, N, S, Mn and Fe casts doubt on the present general understanding of the global N cycle. Recent models of the oceanic N budget indicate that total inputs are significantly smaller than estimated fixed N removal. The occurrence of alternative N reaction pathways further exacerbates the apparent imbalance as they introduce additional routes of N removal. In this contribution, we give a brief historical background of the conceptual understanding of N cycling in marine ecosystems, emphasizing pathways of aerobic and anaerobic N mineralization in marine sediments, and the implications of recently recognized metabolic pathways for N removal in marine environments

    POLICY IMPLICATIONS ON THE REDUCTION OF NITROGEN FERTILIZER USE ON NON-IRRIGATED CORN-WINTER WHEAT PRODUCTION IN NORTH ALABAMA

    Get PDF
    Environmental and economic effects of nitrogen fertilizer reduction on North Alabama small farms are evaluated using GPFARM. GPFARM incorporates climate, soil data and management practices to simulate science and economic analysis for a farm/ranch management unit. Nitrate leaching, crop yield and profitability are evaluated and presented under different policy scenarios. Key words: nitrate leaching, profitability, management unit, GPFARMnitrate leaching, profitability, management unit, GPFARM, Crop Production/Industries,
    corecore