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The estuarine nitrogen cycle can be substantially altered due to anthropogenic activities

resulting in increased amounts of inorganic nitrogen (mainly nitrate). In the past,

denitrification was considered to be the main ecosystem process removing reactive

nitrogen from the estuarine ecosystem. However, recent reports on the contribution of

dissimilatory nitrate reduction to ammonium (DNRA) to nitrogen removal in these systems

indicated a similar or higher importance, although the ratio between both processes

remains ambiguous. Compared to denitrification, DNRA has been underexplored for the

last decades and the key organisms carrying out the process in marine environments

are largely unknown. Hence, as a first step to better understand the interplay between

denitrification, DNRA and reduction of nitrate to nitrite in estuarine sediments, nitrogen

reduction potentials were determined in sediments of the Paulina polder mudflat

(Westerschelde estuary). We observed high variability in dominant nitrogen removing

processes over a short distance (1.6m), with nitrous oxide, ammonium and nitrite

production rates differing significantly between all sampling sites. Denitrification occurred

at all sites, DNRA was either the dominant process (two out of five sites) or absent,

while nitrate reduction to nitrite was observed in most sites but never dominant. In

addition, novel nitrate-to-ammonium reducers assigned to Thalassospira, Celeribacter,

and Halomonas, for which DNRA was thus far unreported, were isolated, with DNRA

phenotype reconfirmed through nrfA gene amplification. This study demonstrates

high small scale heterogeneity among dissimilatory nitrate reduction processes in

estuarine sediments and provides novel marine DNRA organisms that represent valuable

alternatives to the current model organisms.
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INTRODUCTION

The rate of terrestrial nitrogen input has more than doubled
over the past century, mostly through fossil fuel combustion and
increased use of agricultural fertilizers.When it is not biologically
removed from streams and rivers, excess, anthropogenically-
derived nitrogen ends up in estuaries and coastal areas, where
it is implicated in eutrophication, alteration of food webs, and
hypoxia (Martinetto et al., 2006; Paerl et al., 2006; Diaz and
Rosenberg, 2008). Nitrate can be lost from these systems via
anaerobic ammonium oxidation (anammox) to dinitrogen gas
or denitrification, i.e., the respiratory reduction of nitrate to
either the potent greenhouse gas nitrous oxide or dinitrogen gas.
Alternatively, it can be retained in the system as biologically
available ammonium via dissimilatory nitrate reduction to
ammonium (DNRA), with possible nitrogen losses via trace
amounts of nitrous oxide (Smith, 1982; Cruz-García et al.,
2007; Giblin et al., 2013). For a long time, it was thought that
denitrification was the main nitrate/nitrite removing process in
coastal ecosystems (Burgin and Hamilton, 2007), outcompeting
anammox and DNRA in dynamic, eutrophic estuaries (Trimmer
et al., 2003; Rich et al., 2008; Dale et al., 2009; Giblin
et al., 2013). Since, the first reports on DNRA in estuarine
environments approximately 40 years ago (Buresh and Patrick,
1978), an increasing number of studies indicated that DNRA is
more relevant in nitrate/nitrite turnover in these systems than
previously assumed (Gardner et al., 2006; Koop-Jakobsen and
Giblin, 2010; Dong et al., 2011; Giblin et al., 2013). However, in
contrast to denitrification, DNRA has been underexplored for the
last decades and, despite some attempts (Bonin, 1996; Yoon et al.,
2015b), the key organisms carrying out this process inmarine and
estuarine environments, their response to varying environmental
conditions and how the DNRA process itself relates to other
nitrogen removing processes remain largely unknown.

DNRA is a facultative, two-step anaerobic process involving
nitrate reduction to nitrite followed by the 6-electron reduction
of nitrite to ammonium (Einsle et al., 1999), of which two
different modes of energy conservation have been described.
The respiratory mode generates a proton motive force by
electron transport from non-fermentable organic substrates to
nitrite resulting in ATP production (Simon, 2002), while in
the fermentative mode, nitrite is an electron-sink allowing re-
oxidation of NADH with the generation of one extra ATP by
substrate level phosphorylation for each acetate produced (Cole
and Brown, 1980; Polcyn and Podeszwa, 2009). Respiratory
DNRA can also contribute to chemolithoautotrophic growth
when coupled to the oxidation of reduced inorganic sulfur
forms (hydrogen sulfide, sulfide, or elemental sulfur; Dalsgaard
and Bak, 1994; Brunet and Garciagil, 1996). Nitrite reduction
to ammonium can be catalyzed by the cytoplasmic NADH-
dependent nitrite reductase NirB or its to two-subunit variant
NirBD (Harborne et al., 1992) and/or the periplasmic pentaheme
cytochrome c nitrite reductase NrfA (Einsle et al., 1999),
depending on the organism and growth conditions. Escherichia
coli and Bacillus vireti were shown to harbor and express
genes for both enzymes (Cole, 1996; Mania et al., 2014), while
other DNRA organisms such as Wollinella succinogenes (Simon,

2002), Bacillus subtilis (Nakano and Zuber, 1998), and Archaea
(Rusch, 2013) contain either nrfA or nirB. Furthermore, in E.
coli, differential expression of nrfA and nirB under low and
high nitrate concentrations respectively was observed (Wang
and Gunsalus, 2000). DNRA-related ecophysiology, enzymology,
gene expression and regulation have been extensively studied
in model organisms like E. coli, W. succinogenes, and B.
subtilis (Cole, 1996; Nakano and Zuber, 1998; Simon, 2002),
and more recently also in B. vireti (Mania et al., 2014)
and Shewanella loihica (Yoon et al., 2015a,b). Whole genome
sequence analyses, however, demonstrated that DNRA, similar
to denitrification, is phylogenetically very widespread, and can
be found in members of Bacteroidetes (Mohan et al., 2004),
Proteobacteria (Gamma-, Delta-, and Epsilon; Smith et al.,
2007), Actinobacteria, Firmicutes, Acidobacteria, Chloroflexi, and
Planctomycetes (Welsh et al., 2014). Some DNRA bacteria have
furthermore been shown to contain partial or complete suites
of genes for both DNRA and denitrification in their genome
(Heylen and Keltjens, 2012; Sanford et al., 2012; Yoon et al., 2013;
Mania et al., 2014). Functional capacity to carry out both nitrate
reducing processes and the environmental drivers of nitrate
partitioning to either process, like carbon-to-nitrogen ratios and
nitrite concentrations, have thus far only been demonstrated
for the marine strain Shewanella loihica PV-4 (Yoon et al.,
2015a,b). In addition to pure culture experiments, natural
prokaryotic communities have also been used for examining
these environmental drivers (Kraft et al., 2014; Van Den Berg
et al., 2015). To date, only limited cultured DNRA bacteria,
including only few from marine environments, are available
(Cole et al., 1974; Bonin, 1996; Hoffmann et al., 1998;Mania et al.,
2014; Yoon et al., 2015b), and no recent attempts have been made
to isolate new (marine) members.

The Westerschelde estuary is an eutrophied system
characterized by a nitrogen load of 5 × 109mol N yr−1

(Soetaert and Herman, 1995) with nitrate being the predominant
form of reactive nitrogen (Soetaert et al., 2006). Furthermore,
denitrification and not DNRA was previously reported to be
the predominant nitrate removing process (Dahnke et al., 2012;
Van Colen et al., 2012). To better comprehend the relative
importance of denitrification and DNRA in these estuarine
sediments, nitrogen reduction potentials were determined
of sediments obtained from the Paulina polder mudflat
(Westerschelde estuary, SW Netherlands). In addition, to
increase the knowledge on the organisms involved, nitrate
reducing bacteria were isolated from enriched sediment cultures.

MATERIALS AND METHODS

Sampling
Sediment samples were collected at the Paulina polder mudflat
(51◦ 21′ 24" N, 3◦ 42′ 51′′ E) in collaboration with NIOZ, which
provided the necessary permit for field sampling, issued by the
“Provincie Zeeland, The Netherlands; Directie Ruimte, Milieu
en Water.” They were taken using a plexiglas corer (Ø 6.2 cm).
Samples for isolation of nitrate reducing bacteria were collected
in October 2011 and samples for determination of the nitrogen

Frontiers in Microbiology | www.frontiersin.org 2 October 2015 | Volume 6 | Article 1124

http://www.frontiersin.org/Microbiology
http://www.frontiersin.org
http://www.frontiersin.org/Microbiology/archive


Decleyre et al. Estuarine dissimilatory nitrogen reduction

reduction potential in October 2014. The latter samples were
collected in triplicate at 5 different sampling sites over a distance
of 1.6m and stored at 4◦C until further processing. Back in the
lab, the upper cm of the sediment cores, containing the oxic-
anoxic border (Van Colen et al., 2012; Decleyre et al., 2015) and
main zone for dissimilatory nitrogen reduction was sampled.
Triplicate samples were pooled per sampling site to include as
much spatial variation as possible and subsequently stored in
sterile falcon tubes at −80◦C. Physico-chemical characteristics
of samples collected in October 2014 were determined as
described previously (Decleyre et al., 2015). Statistical differences
in physicochemical parameters between all five sampling sites
were evaluated using One-way ANOVA and post hoc tests in SPSS
21 (IBM SPSS Statistics for Windows, Version 21.0. Released
2012. Armonk, NY: IBM Corp.).

Determination of Nitrogen Reduction
Potential
Nitrogen reduction potential was measured in triplicate using the
acetylene inhibition technique according to Sørensen (Sørensen,
1978). Briefly, a 15ml serum vial was filled with 2 g (ww)
sediment (thawed at 37◦C for 8min) and 2ml sterilized natural
seawater (NSW). To prevent nitrogen limitation, the NSW
was supplemented with 5mM KNO3. No additional carbon
source was added as preliminary experiments (data not shown)
demonstrated that sediment/NSW contained sufficient carbon
to support anaerobic respiration and/or fermentation. Synthesis
of new enzymes was inhibited using 0.1mM chloramphenicol
allowing potential activity measurement of in situ expressed
nitrogen reducing enzymes (Murray and Knowles, 1999). The
vials were sealed with black butyl stoppers and aluminum crimps,
and flushed five times with helium to remove oxygen. After
adding 10% or 101.3 hPa acetylene, the vials were incubated
in the dark at 15◦C and at a constant stirring rate of 100 rpm.
The nitrous oxide and carbon dioxide concentrations of all
replicates were measured every hour (T1 to T5). Initial and final
nitrite/ammonium concentrations were determined for each vial.
Denitrification, DNRA, and nitrate to nitrite reduction rates were
calculated using linear regressions (Table S1). No corrections
were done for potential (i) overestimation of DNRA rates due
to ammonium release by remineralization of organic matter
during denitrification, and (ii) underestimation of denitrification
rates due to incomplete inhibition of nitrous oxide reductase
by acetylene (Groffman et al., 2006). Statistical differences in
production rates between all five sampling sites were assessed
using the non-parametric Kruskal–Wallis H-test in SPSS 21.

Growth Media
Growth conditions used in this study were defined by a
set of variable and fixed parameters (Table 1) and growth
media were prepared with sterile NSW collected form the
Westerschelde estuary (Paulina polder) in an attempt to mimic
natural conditions. They were based on the mineral medium
of Stanier (Stanier et al., 1966) with slight modifications.
Hepes (10mM) was used as buffering agent, while phosphate
was limited to 300µM KH2PO4 based on the Redfield
ratio (Redfield, 1934), to avoid decreased culturability as a

TABLE 1 | Fixed and variable parameters of the growth conditions.

Fixed parameter Variable parameters

Incubation

temperature

15◦C Medium 1/10 MB

pH 7.2 Stanier mineral medium

Buffering agent Hepes C-sources Glucose

NH+

4 background

concentration

4mM Succinate-ethanol-

glycerol

Fe(III)Na EDTA 40µM Pyruvate-acetate

Vitamin solution 1ml/L N-sources KNO3

Medium NSW KNO3/KNO2

N concentration 5mM C:N ratio (Molar C:N) 5 or 25

Atmosphere anaerobic Signaling factor cAMP

consequence of high phosphate concentration (Bartscht et al.,
1999). Iron, proven to be an essential element necessary
for optimal growth of marine bacteria (D’Onofrio et al.,
2010), was added as Fe(III)Na EDTA in a concentration
(40µM) mimicking the in situ concentrations found in the
Westerschelde estuary (based on Schelde Monitoring database,
http://www.scheldemonitor.be). Agarose (0.8%) was used as
solidifying agent to eliminate potential growth inhibiting effects
of agar (Tanaka et al., 2014). Other media components varied:
signaling compound cyclic adenosine monophosphate (cAMP)
at 0 or 10µM; molar C/N ratio at 5 or 25, either with
KNO3 or a combination of KNO3/KNO2 as nitrogen source
(always with a total N concentration of 5mM); glucose
(designated as DNR2 media), a combination of sodium succinate
dibasic hexahydrate/ethanol/glycerol (DNR3 media) or sodium
pyruvate/ sodium acetate anhydrous (DNR4 media) as carbon
source (Table 1). In addition, 10-fold diluted marine broth (MB)
(BD Difco) (DNR1 media) supplemented with 5mM of nitrate
was also included as complex medium. Incubation temperature
was set at 15◦C as this approximates the yearly averaged
temperature in the Westerschelde estuary. A detailed overview
of all 26 growth media used in this study is given in Table S2.

Enrichment, Isolation, and
Cryopreservation of Marine Isolates
Enrichment cultures were set up in liquid medium under
anaerobic, nitrate-reducing conditions. Sediment (1 g) was
vortexed with 9ml NSW for 15min, and subsequently diluted
10-fold up to 10−10 in 120ml serum vials for each growth
medium. The vials were sealed with black butyl stoppers and
aluminum crimps, and flushed five times with helium to remove
oxygen (overpressure of 0.3 bar). For each dilution series, an
additional vial was prepared without inoculum to check for
potential nitrosation reactions in sterile medium (Mania et al.,
2014). After adding 10% acetylene and 10% carbon dioxide to the
headspace, the vials were incubated in the dark at 15◦C and at
a constant stirring rate of 100 rpm. Headspace concentrations of
nitrous oxide and carbon dioxide were determined weekly.

The two highest dilutions of each growth medium producing
nitrous oxide for two consecutive weeks were used for isolation,
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because (i) DNRA bacteria also produce nitrous oxide as a
side product, (ii) denitrifying DNRA bacteria were not to be
excluded and (iii) ammonium production as proxy for DNRA in
enrichments is hampered by remineralization of organic matter.
For each enrichment, dilutions were made in sterile NSW (10−1,
10−2, and 10−3 dilution, if necessary 10−4 and 10−5) and 100µl
of diluted culture was plated on solidmedia. Incubation was done
at 15◦C in an anaerobic gas container (BD Gaspack Container
System) with an anaerobic indicator (Microbiology Anaerotest)
and anaerobic BD Gaspack sachets. Colony formation was
checked weekly. If no additional colonies were formed for two
consecutive weeks, five isolates with different colony morphology
were picked from each medium, and subsequently purified on
identical solid medium. Finally, isolates were dereplicated based
on their 16S rRNA gene identity and the type of medium they
were isolated from, i.e., a representative of each group of highly
related isolates was retained for further analyses.

All isolates were preserved at −80◦C as described previously
(Vekeman and Heylen, 2015). In short, isolates obtained from
defined media were preserved in 10% DMSO prepared with
NSW. For DNR1 and DNR2 type media, 1/10 MB or glucose
(4.17mM or 20.83mM) was additionally added to the respective
10% DMSO-NSW solution as an extra cryoprotectant.

Determination of Dissimilatory Nitrogen
Metabolism
To test whether the obtained isolates were strictly dependent
on nitrate/nitrite as electron acceptor in the absence of oxygen
or, alternatively, could use other non-defined electron acceptors
present in NWS, media without added nitrogen were used. To
determine the nitrogen reducing metabolism of each individual
isolate, standardized growth experiments were performed in
duplicate for each isolate with start- and endpoint determination
of concentrations of nitrite, ammonium, nitrous oxide, and
carbon dioxide. A 120ml serum vial containing 19.8ml liquid
medium was inoculated with 200µl cell suspension of OD 0.1
from each selected isolate (for slow growing isolates OD 0.05
was used). All isolates were tested in both complex (1/10 MB)
and mineral media (for DNR1 isolates, DNR3mineral media
were used) to take into account the effect on our measurements
of undefined N-compounds in marine broth. Blanks for
each medium type were also included to detect potential
nitrosation reactions (Mania et al., 2014). Positive controls for
denitrification (Paracoccus denitrificans LMG 4049) and DNRA
(E. coli LMG 5584) were included for all media. Incubation
was performed at 15◦C under anaerobic headspace with 10%
acetylene and 10% carbon dioxide. Time of endpoint sampling
was determined based on visual assessment of growth. An isolate
was considered a denitrifier when 80% conversion of nitrate
to nitrous oxide coincided with growth (Mahne and Tiedje,
1995) and a DNRA bacterium if the sum of nitrate reduction
products (nitrite and nitrous oxide) was less than 70% of the
consumed nitrate (Bonin, 1996) with concomitant ammonium
production.

Analytical Methods
Nitrous oxide and carbon dioxide were detected and quantified
using a Compact GC (Global Analyzer Solutions, Belgium)

equipped with two columns (oxygen/nitrogen and carbon
dioxide/nitrous oxide separation) connected to a thermal
conductivity detector. The change in pressure due to nitrous
oxide/carbon dioxide production was monitored with an infield
seven pressure meter (UMS, Germany). Values obtained by
gas chromatography were converted toµmol gas L−1

Liquid
by

compensating for change in gas pressure (measured with the
Infield seven pressure meter) and taking the solubility of
the gases into account. Samples for colorimetrics (500µl of
liquid culture) were pretreated using KCl to avoid inhibition
of amines (Keeney and Nelson, 1987). Nitrite was determined
using the Griess reaction (Griess, 1879) and ammonium using
the salicylate-nitroprussidine method (Baethgen and Alley,
1989).

16S rRNA and nrfA Gene Sequence
Analyses
DNA was extracted from each isolate by the guanidium-
thiocyanatelectronEDTA-sarkosyl method (Pitcher et al., 1989).
Amplification and sequencing of the complete 16S rRNA gene
was performed as described previously (Heyrman and Swings,
2001). Sequences were assembled using the BioNumerics 7.0
software (Applied Maths). Finally, the EzTaxon server [http://
www.ezbiocloud.net/eztaxon; (Kim et al., 2012)] was used
to taxonomically assign each isolate to a genus. Maximum
likelihood analyses of 16S rRNA genes of the isolates obtained
in this study together with previously identified DNRA bacteria
(phenotypically characterized or based only on the presence
of the nrfA gene) were performed to assess the diversity of
DNRA bacteria obtained. Therefore, the nrfA_Welsh data set
in the Fungene database containing nrfA sequences obtained
from whole genomes was used to select representatives of
each genus of the currently known taxonomic diversity (Fish
et al., 2013). After checking the nrfA genes for the presence
of the key KXRH or KXQH motifs and 5 heme groups—
this to prevent inclusion of closely related octaheme nitrite
reductase (ONR) or othermultiheme cytochrome c proteins—the
corresponding 16S rRNA gene sequence of each representative
was obtained from the NCBI database for inclusion in the
comparison. A profile-based multiple sequence alignment of the
obtained 16S rRNA gene sequences was subsequently achieved
using the SILVA Incremental Aligner (SINA v1.2.11; Pruesse
et al., 2012). Maximum likelihood analysis was performed
in RaxML 7.4.2 using a general time reversible model with
gamma distributed rates (GTR+G; Stamatakis, 2006; Ott et al.,
2010).

In addition, nrfA gene amplification was performed on all
isolates using primer sets F1-7R1 (Mohan et al., 2004), F2-7R1
(Mohan et al., 2004), and nrfAF2aw-nrfAR1 (Welsh et al., 2014).
To prevent interference of non-specific amplification during
sequencing, amplicons obtained with Mohan primers (Mohan
et al., 2004) were extracted from an agarose gel and subsequently
used for sequencing. The nrfA identity of obtained amplicons was
verified by checking for the presence of NrfA diagnostic motifs,
i.e., KXRH or KXQH, as all three primer sets targeted the region
between the third and the fourth heme binding motif (Mohan
et al., 2004; Welsh et al., 2014).
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Nucleotide Accession Numbers
The nucleotide sequences of the 16S rRNA and nrfA data
generated in this study have been deposited in the GenBank
database under accession numbers KT185111-KT185193 and
KT159169-KT159180 respectively.

RESULTS AND DISCUSSION

Nitrogen Reduction Potential of
Westerschelde Sediment at Meter Scale
Despite their ecological importance, knowledge on DNRA
processes in marine environments remains scarce. In the
past, denitrification was considered the dominant marine
nitrogen reduction pathway, while DNRA contributions were
minimalized or even ignored (Burgin and Hamilton, 2007).
Recent studies in marine and estuarine environments, however,
have demonstrated that DNRA can also be the predominant
nitrogen reduction pathway. Giblin et al. (2013) showed DNRA
dominated total nitrogen reduction in approximately one-third
of 55 coastal sediment sites examined. Similarly, Song et al. (2014)
found benthic DNRA to be responsible for almost half of the
nitrogen removal across the New River estuary, with DNRA
rates exceeding those of denitrification (Lisa et al., 2014). Spatial
variation in nitrogen removal rates is often assessed on a regional
or local scale (Song et al., 2014; Smith et al., 2015), but not on
meter or even smaller scale. Here, potential nitrogen removal
rates, i.e., nitrate reduction to nitrite, denitrification (nitrous
oxide measured with the acetylene method as a proxy) and
DNRA, were measured across a 1.6m scale, with five sampling
sites approximately 9 cm from each other (Figure 1). Strikingly,
we found significant differences in rate and dominance of the
three processes at this small scale. Denitrification was observed at
all sites, with significantly different rates (p < 0.05). In contrast,

FIGURE 1 | Averaged nitrite, ammonium, and nitrous oxide production

rates (± SD) per sampling site (n = 3) over a period of 5 h (=T1–T5). For

clarity, one sided error bars are shown. Black bars: nitrate reduction to nitrite,

light gray bars: dissimilatory nitrate reduction to ammonium (DNRA), dark gray

bars: denitrification. Total distance between all five sampling sites (1.60m) and

individual distance between all sampling sites is represented. Detailed

information on the physico-chemical composition of these five sites is found in

Table S3.

DNRA was limited to sites 1 and 5, located at a distance of 1.6m,
and appeared to be the dominant nitrogen removal process,
with higher rates than denitrification (sites 1 and 5) and nitrate
reduction to nitrite (site 1). Nitrite production was observed at
all sites except site 5, with rates differing significantly between
the five sampling sites (p < 0.05; Figure 1). The averaged nitrite,
ammonium and nitrous oxide production rates were 0.0047 ±

0.0013µmol N-NO−

2 /g.h, 0.01 ± 0.002µmol N-NH+

4 /g.h, and
0.0058 ± 0.0003µmol N-N2O/g.h respectively (individual rates
in Table S4). Production rates of N-N2O observed in this study
were not consistent with previous reports in marine sediments,
they were either approximately one order of magnitude higher
(Dul’Tseva et al., 2000; Magalhães et al., 2011) or nearly three
orders of magnitude lower (Stock et al., 2014). Differences in the
experimental set-up in these studies compared to ours, such as
the non-inhibition of enzyme synthesis (Murray and Knowles,
1999) or the addition of extra carbon source, both leading to
overestimation of denitrification rates (Bernot et al., 2003), are
plausible explanations for the lower potential rates observed here.
Furthermore, seasonal variability in time of sampling might also
contribute to these observed differences. Nevertheless, potential
rates of DNRA observed in sampling site 5 agreed with previous
observations based on isotopic labeling experiments in estuarine
sediments, while those of sampling site 1 were approximately 2-
fold higher (Kelly-Gerreyn et al., 2001; An and Gardner, 2002;
Song et al., 2014).

In addition to significantly different rates between the five
sites for all three nitrogen removal processes, their occurrence
was also site-dependent. Carbon to nitrogen ratio has long been
considered the determining factor for nitrate partitioning to
either DNRA or denitrification (Tiedje, 1988), which was recently
confirmed in long-term incubations of marine sediments (Kraft
et al., 2014) as well as chemostat experiment with S. loihica, a
gammaproteobacterium containing the gene inventory for both
DNRA and denitrification (Yoon et al., 2015b). Based on the
significant differences in nitrate concentration in pore water and
similar total organic carbon content (Table S3), denitrification
is expected to be favored at sites 1 and 2 (low C:N ratio)
while DNRA would dominate the three other sites. In contrast,
DNRA was limited to sites 1 and 5, with low and high C:N
ratio respectively and denitrification contributed to nitrogen
removal at all sites. While nitrate sufficiency (bulk addition of
5mM at the start of the experiment) may explain the overall
occurrence of denitrification, C:N ratio was clearly not the
main driver differentiating between both processes. Previous
reports on the effect of pH on DNRA and denitrification were
inconclusive (Stevens et al., 1998; Rutting et al., 2011), although
DNRA was favored over denitrification at elevated pH in S.
loihica (Yoon et al., 2015b). We did not monitor the pH on-
site, but know from previous work that pH can be variable at
the meter scale in the Paulina tidal flat (Decleyre et al., 2015).
Additional key environmental controls that could explain the
observed small scale variation were either not relevant, such
as microbial generation time (Kraft et al., 2014) and supply of
nitrite relative to nitrate (Kraft et al., 2014; Yoon et al., 2015a),
or undetermined, such as the presence of free sulfides (hydrogen
sulfide, sulfide) or elemental sulfur (Burgin and Hamilton, 2007).
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Site 1 with the highest DNRA rate did, however, contain the
highest chl a concentration (Table S3), i.e., proxy for diatom
biomass, although it was not significantly different from the four
other sites. Nevertheless, it is plausible that diatoms, which are
known to store nitrate intracellularly and us it as a dark survival
strategy (Kamp et al., 2011), contribute to the high DNRA rate
at that site. In addition, higher trophic levels like meiofauna can
influence removal processes and rates but are rarely considered
(Stock et al., 2014; here for example because of limited sample
size). Nevertheless, the presence of meiofauna can directly
(Frangoulis et al., 2005) or indirectly (Nascimento et al., 2012)
increase organic matter, with subsequent stimulation of sulfate
reduction (Berner and Westrich, 1985) resulting in hydrogen
sulfide production, known to favor DNRA and autotrophic
denitrification (Burgin and Hamilton, 2007; Moraes et al., 2012).
Taken together, we expect that the combination of complex
interactions between different trophic levels, the resulting
microscale physico-chemistry and the highly dynamic nature of
intertidal sediments might contribute to the observed significant
variation in nitrogen removing processes at the meter scale.

Marine Dissimilatory Reducers of Nitrate
to Ammonium
With the advance of whole genome sequencing, the ability
to carry out DNRA was shown to be phylogenetically more
widespread than originally thought. Still, key organisms involved
in DNRA in marine ecosystems and their ecophysiology
remain largely unknown. Macfarlane and colleagues were the
first to report DNRA capabilities of a Vibrio sp. and a
Clostridium butyricum strain obtained from estuarine sediments
(Keith et al., 1982; Macfarlane and Herbert, 1982). Years
later, Bonin (1996) confirmed the DNRA capability of two
other Gammaproteobacterial strains isolated from estuarine
sediments and reported that nitrate limitation (1mM) resulted in
ammonium production while high nitrate levels (10mM) caused
nitrite accumulation and less efficient ammonium production.
Recent studies on the marine strain S. loihica PV-4 that is able
to perform both denitrification and DNRA, indicated that nitrate
limitation (high C:N), high nitrite-to-nitrate ratio, alkaline pH
and high temperatures favor DNRA over denitrification activity
(Yoon et al., 2015a,b). These Gammaproteobacterial strains
form the basis for our current knowledge of DNRA in marine
ecosystems, yet their limited number underline the urgent need
for new cultured marine representatives to further explore the
ecophysiology of phylogenetically distinct DNRA organisms.
Therefore, we enriched estuarine sediments under anaerobic,
nitrate reducing conditions using 26 different growth media
(under 10% acetylene), mimicking in situ physico-chemical
conditions, and subsequently performed isolations. In total, 83
isolates, belonging to 27 genera of Actinobacteria, Firmicutes,
Bacteroidetes, Alpha,- and Gammaproteobacteria (Table S5)
were obtained. This partially agreed with available 16S rRNA
pyrosequencing data from the same site (Decleyre et al., 2015),
in which Gammaproteobacteria and Bacteroidetes were found to
be most dominant. Although we did not apply an exhaustive
isolation approach and only picked up five isolates per medium
after elective enrichment, it is striking that only four of the 27

genera (Martellela, Pseudoruegeria, Roseovarius, andVibrio) were
found via both isolation and pyrosequencing. As for denitrifiers
(Heylen et al., 2006), elaborate medium optimization is necessary
to increase cultivated representatives for DNRA bacteria.
Nevertheless, our study clearly showed that either diluted
complex medium (representatives of 8 genera) or combined non-
fermentable carbon sources (9 genera) are preferred over glucose
(2 genera) (Table S5). Furthermore, addition of KNO3 as electron
acceptor yielded twice as much diverse isolates compared to
media supplemented with KNO3/KNO2 as nitrogen source (18
vs. 9 genera), the latter probably caused by organism-dependent
nitrite intolerance (Table S5). Nevertheless, inclusion of nitrite
(at low concentrations, i.e., 2mM in this study) as electron
acceptor is necessary to target bacteria lacking the genes for
nitrate reductase but capable of nitrite reduction to ammonium
or denitrification. Paraoerskovia, Citrobacter, Shigella, and
Halomonas were only isolated from media containing both
KNO3 and KNO2 (Table S5). None of the isolates appeared solely
dependent on nitrate or nitrite as electron acceptor in the absence
of oxygen. Growth was still observed without added electron
acceptors suggesting that natural seawater, used to prepare the
growth media to mimic in situ physico-chemical conditions,
provided all isolates with alternative electron acceptors (e.g.,
manganese, iron, sulfate) to support growth. This made it
impossible for us to recognize dissimilatory nitrogen reducers,
i.e., isolates that are capable of nitrate or nitrite reduction to
ammonium or dinitrogen, based solely on growth in nitrogen
oxide amended media.

Therefore, unique representatives of each closely related
group of isolates were selected based on their 16S rRNA gene
identity and isolation medium, yielding 35 isolates for detailed
determination of their dissimilatory nitrogen metabolism. In
batch experiments, isolates were grown in their isolation
medium and 10-fold diluted marine broth supplemented with
5mM KNO3 or KNO3/KNO2 (depending on original isolation
conditions). Concentrations of potential end-products nitrite,
ammonium and nitrous oxide were determined at end-point.
Fifteen out of the 35 isolates were shown to actually reduce nitrate
as electron acceptor. No denitrifying bacteria were isolated
[confirmed by negative results of nirK and nirS PCR (data
not shown)], but rather all isolates had a DNRA phenotype,
capable of producing ammonium from nitrate. For 12 out of 15
nitrate reducers, the DNRAphenotype was re-confirmedwith the
detection and sequencing of the nrfA gene (Table 2 and Figure
S1). The three remaining isolates either contained divergent
nrfA genes not targeted by the primers used or harbored nirB.
The nirB gene is unfortunately a poor marker gene because of
its role in both assimilatory and dissimilatory nitrate reduction
to ammonium and general primers are currently lacking. The
lack of denitrifiers among the isolates was initially surprising,
as growth media were nitrate sufficient (>1mM) and nitrous
oxide producing dilutions were selected for isolation (note that
nitrous oxide production was used as a selection criterion
because DNRA bacteria also produce nitrous oxide as side
product, denitrifying DNRA bacteria were not to be excluded and
ammonium production as proxy for DNRA in enrichments is
hampered by remineralization of organic matter). When looking
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at the data in more detail however, this makes sense. The amount
of nitrous oxide produced by the enrichment cultures ranged
from 0.09 to 0.6mM, i.e., between 3.6 and 24% of all nitrate was
converted to nitrous oxide. This is higher than one would expect

from a pure culture DNRA bacterium (from 0.1 to 5%, depending
on the organism; Streminska et al., 2012), but much lower than
expected for a denitrifier (80–100%; Mahne and Tiedje, 1995).
So, this range of nitrous oxide production from the enrichment

FIGURE 2 | Maximum likelihood phylogenetic analysis of 16S rRNA genes of previously known DNRA bacteria as determined by the presence of a

nrfA gene. Genera found during this study are indicated in bold.
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cultures suggested a mix of denitrifiers and DNRA bacteria.
The exclusive isolation of DNRA bacteria might point toward
numerical dominance of DNRA bacteria in the enrichments, but
this was not verified in additional tests.

Our data reconfirms the ability of members of Vibrio (Liu
et al., 1988), Shewanella (Yoon et al., 2015b), and Citrobacter
(Smith, 1982) to perform DNRA, while demonstrating for
the first time this capability for members of Halomonas,
Thalassospira, and Celeribacter, previously only reported to
perform nitrate reduction and/or (partial) denitrification (Peyton
et al., 2001; Liu et al., 2007; González-Domenech et al., 2010).
Llamas and colleagues suspected DNRA in Halomonas maura
(Llamas et al., 2006), but did not test it physiologically. NrfA
amplicons were obtained from Halomonas sp. R-52914 and
in Celeribacter sp. R-52651, while this was not the case for
Thalassospira sp. R-52913 and R-52699. In silico analysis of all
six publically available genome sequences of Thalassospira strains
revealed nirB genes instead of nrfA, which might explain why
all three nrfA primer sets failed to render an amplicon. This
might also be the case for Vibrio sp. R-52669, although the
closely related R-52688 did render a nrfA amplicon. Still, strain-
dependent differences in dissimilatory nitrogen reduction geno-
and phenotype are not uncommon (Kloos et al., 2001; Falk et al.,
2010; Liu et al., 2013).

All DNRA isolates obtained in this study belonged to the
Gammaproteobacteria and Alphaproteobacteria (Table 2). An
overview of diverse phyla reported to harbor DNRA bacteria,
either tested phenotypically or by nrfA gene amplification, can
be found in Figure 2. In contrast to previous reports of DNRA
phenotype predominantly being found in Gammaproteobacteria
(Forsythe et al., 1988; Liu et al., 1988; Bonin, 1996; Yoon et al.,
2015b), here a wide variety was found of phylogenetically
unrelated microorganisms belonging to 11 different phyla
harboring the potential to perform DNRA. Such a broad
taxonomic distribution was also previously observed for
denitrifying organisms (Philippot, 2002). Furthermore, the
observed diversity contrasts enormously with the number
of physiologically tested representatives, i.e., limited to
Gammaproteobacteria (Smith, 1982; Keith and Herbert,
1983; Liu et al., 1988; Yoon et al., 2015b), Firmicutes (Keith
et al., 1982; Hoffmann et al., 1998; Mania et al., 2014) and
Alphaproteobacteria (this study), underlining the previous
underestimation of DNRA organism diversity.

CONCLUSION

Denitrification in marine environments is generally accepted
to contribute substantially to nitrogen removal. Reports on
the comparable or higher contribution of DNRA to nitrogen
removal have revived the scientific interest in DNRA, physico-
chemical parameters determining nitrate partitioning to
denitrification and DNRA, the relative importance of the key
players in situ and their ecophysiology. Here, we demonstrate
that small scale heterogeneity in intertidal sediments influences
the occurrence and rates of dissimilatory nitrogen reduction
processes. Whereas, denitrification rates were comparable
at the cm to m scale, DNRA and nitrate reduction to
nitrite was site-specific and could vary significantly within
25 cm. Key environmental drivers partitioning nitrate among
these processes could not be identified but did not relate
to carbon to nitrogen ratio. Furthermore, 15 DNRA strains
were obtained from estuarine sediments, including members
of Thalassospira, Celeribacter, and Halomonas previously
unrecognized DNRA organisms. These novel environmental
strains are now available for further ecophysiological studies on
DNRA.
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