6 research outputs found

    Explain, Adapt and Retrain: How to improve the accuracy of a PPM classifier through different explanation styles

    Full text link
    Recent papers have introduced a novel approach to explain why a Predictive Process Monitoring (PPM) model for outcome-oriented predictions provides wrong predictions. Moreover, they have shown how to exploit the explanations, obtained using state-of-the art post-hoc explainers, to identify the most common features that induce a predictor to make mistakes in a semi-automated way, and, in turn, to reduce the impact of those features and increase the accuracy of the predictive model. This work starts from the assumption that frequent control flow patterns in event logs may represent important features that characterize, and therefore explain, a certain prediction. Therefore, in this paper, we (i) employ a novel encoding able to leverage DECLARE constraints in Predictive Process Monitoring and compare the effectiveness of this encoding with Predictive Process Monitoring state-of-the art encodings, in particular for the task of outcome-oriented predictions; (ii) introduce a completely automated pipeline for the identification of the most common features inducing a predictor to make mistakes; and (iii) show the effectiveness of the proposed pipeline in increasing the accuracy of the predictive model by validating it on different real-life datasets

    Outcome-Oriented Prescriptive Process Monitoring Based on Temporal Logic Patterns

    Full text link
    Prescriptive Process Monitoring systems recommend, during the execution of a business process, interventions that, if followed, prevent a negative outcome of the process. Such interventions have to be reliable, that is, they have to guarantee the achievement of the desired outcome or performance, and they have to be flexible, that is, they have to avoid overturning the normal process execution or forcing the execution of a given activity. Most of the existing Prescriptive Process Monitoring solutions, however, while performing well in terms of recommendation reliability, provide the users with very specific (sequences of) activities that have to be executed without caring about the feasibility of these recommendations. In order to face this issue, we propose a new Outcome-Oriented Prescriptive Process Monitoring system recommending temporal relations between activities that have to be guaranteed during the process execution in order to achieve a desired outcome. This softens the mandatory execution of an activity at a given point in time, thus leaving more freedom to the user in deciding the interventions to put in place. Our approach defines these temporal relations with Linear Temporal Logic over finite traces patterns that are used as features to describe the historical process data recorded in an event log by the information systems supporting the execution of the process. Such encoded log is used to train a Machine Learning classifier to learn a mapping between the temporal patterns and the outcome of a process execution. The classifier is then queried at runtime to return as recommendations the most salient temporal patterns to be satisfied to maximize the likelihood of a certain outcome for an input ongoing process execution. The proposed system is assessed using a pool of 22 real-life event logs that have already been used as a benchmark in the Process Mining community.Comment: 38 pages, 6 figures, 8 table

    Nirdizati 2.0: New Features and Redesigned Backend

    No full text
    Nirdizati is a dedicated tool for Predictive Process Monitoring, a field of Process Mining that aims at predicting how an ongoing execution of a business process will develop in the future using past process executions recorded in event logs. Nirdizati is a web application supporting users in building, comparing, and analyzing predictive models that can then be used to perform predictions on the future of an ongoing case. By providing a rich set of different state-of-the-art approaches, Nirdizati offers BPM researchers and practitioners a useful and flexible instrument for investigating and comparing Predictive Process Monitoring techniques. In this paper, we present a Nirdizati version with a redesigned backend, which improves its modularity and scalability, and with new features, which further enrich its capability to support researchers and practitioners to deal with different monitoring tasks

    Process Mining Handbook

    Get PDF
    This is an open access book. This book comprises all the single courses given as part of the First Summer School on Process Mining, PMSS 2022, which was held in Aachen, Germany, during July 4-8, 2022. This volume contains 17 chapters organized into the following topical sections: Introduction; process discovery; conformance checking; data preprocessing; process enhancement and monitoring; assorted process mining topics; industrial perspective and applications; and closing

    Measuring the impact of COVID-19 on hospital care pathways

    Get PDF
    Care pathways in hospitals around the world reported significant disruption during the recent COVID-19 pandemic but measuring the actual impact is more problematic. Process mining can be useful for hospital management to measure the conformance of real-life care to what might be considered normal operations. In this study, we aim to demonstrate that process mining can be used to investigate process changes associated with complex disruptive events. We studied perturbations to accident and emergency (A &E) and maternity pathways in a UK public hospital during the COVID-19 pandemic. Co-incidentally the hospital had implemented a Command Centre approach for patient-flow management affording an opportunity to study both the planned improvement and the disruption due to the pandemic. Our study proposes and demonstrates a method for measuring and investigating the impact of such planned and unplanned disruptions affecting hospital care pathways. We found that during the pandemic, both A &E and maternity pathways had measurable reductions in the mean length of stay and a measurable drop in the percentage of pathways conforming to normative models. There were no distinctive patterns of monthly mean values of length of stay nor conformance throughout the phases of the installation of the hospital’s new Command Centre approach. Due to a deficit in the available A &E data, the findings for A &E pathways could not be interpreted

    Research Paper: Process Mining and Synthetic Health Data: Reflections and Lessons Learnt

    Get PDF
    Analysing the treatment pathways in real-world health data can provide valuable insight for clinicians and decision-makers. However, the procedures for acquiring real-world data for research can be restrictive, time-consuming and risks disclosing identifiable information. Synthetic data might enable representative analysis without direct access to sensitive data. In the first part of our paper, we propose an approach for grading synthetic data for process analysis based on its fidelity to relationships found in real-world data. In the second part, we apply our grading approach by assessing cancer patient pathways in a synthetic healthcare dataset (The Simulacrum provided by the English National Cancer Registration and Analysis Service) using process mining. Visualisations of the patient pathways within the synthetic data appear plausible, showing relationships between events confirmed in the underlying non-synthetic data. Data quality issues are also present within the synthetic data which reflect real-world problems and artefacts from the synthetic dataset’s creation. Process mining of synthetic data in healthcare is an emerging field with novel challenges. We conclude that researchers should be aware of the risks when extrapolating results produced from research on synthetic data to real-world scenarios and assess findings with analysts who are able to view the underlying data
    corecore