42,119 research outputs found

    Conversations on a probable future: interview with Beatrice Fazi

    Get PDF
    No description supplie

    Applying autonomy to distributed satellite systems: Trends, challenges, and future prospects

    Get PDF
    While monolithic satellite missions still pose significant advantages in terms of accuracy and operations, novel distributed architectures are promising improved flexibility, responsiveness, and adaptability to structural and functional changes. Large satellite swarms, opportunistic satellite networks or heterogeneous constellations hybridizing small-spacecraft nodes with highperformance satellites are becoming feasible and advantageous alternatives requiring the adoption of new operation paradigms that enhance their autonomy. While autonomy is a notion that is gaining acceptance in monolithic satellite missions, it can also be deemed an integral characteristic in Distributed Satellite Systems (DSS). In this context, this paper focuses on the motivations for system-level autonomy in DSS and justifies its need as an enabler of system qualities. Autonomy is also presented as a necessary feature to bring new distributed Earth observation functions (which require coordination and collaboration mechanisms) and to allow for novel structural functions (e.g., opportunistic coalitions, exchange of resources, or in-orbit data services). Mission Planning and Scheduling (MPS) frameworks are then presented as a key component to implement autonomous operations in satellite missions. An exhaustive knowledge classification explores the design aspects of MPS for DSS, and conceptually groups them into: components and organizational paradigms; problem modeling and representation; optimization techniques and metaheuristics; execution and runtime characteristics and the notions of tasks, resources, and constraints. This paper concludes by proposing future strands of work devoted to study the trade-offs of autonomy in large-scale, highly dynamic and heterogeneous networks through frameworks that consider some of the limitations of small spacecraft technologies.Postprint (author's final draft

    Factors shaping the evolution of electronic documentation systems

    Get PDF
    The main goal is to prepare the space station technical and managerial structure for likely changes in the creation, capture, transfer, and utilization of knowledge. By anticipating advances, the design of Space Station Project (SSP) information systems can be tailored to facilitate a progression of increasingly sophisticated strategies as the space station evolves. Future generations of advanced information systems will use increases in power to deliver environmentally meaningful, contextually targeted, interconnected data (knowledge). The concept of a Knowledge Base Management System is emerging when the problem is focused on how information systems can perform such a conversion of raw data. Such a system would include traditional management functions for large space databases. Added artificial intelligence features might encompass co-existing knowledge representation schemes; effective control structures for deductive, plausible, and inductive reasoning; means for knowledge acquisition, refinement, and validation; explanation facilities; and dynamic human intervention. The major areas covered include: alternative knowledge representation approaches; advanced user interface capabilities; computer-supported cooperative work; the evolution of information system hardware; standardization, compatibility, and connectivity; and organizational impacts of information intensive environments

    Language technologies and the evolution of the semantic web

    Get PDF
    The availability of huge amounts of semantic markup on the Web promises to enable a quantum leap in the level of support available to Web users for locating, aggregating, sharing, interpreting and customizing information. While we cannot claim that a large scale Semantic Web already exists, a number of applications have been produced, which generate and exploit semantic markup, to provide advanced search and querying functionalities, and to allow the visualization and management of heterogeneous, distributed data. While these tools provide evidence of the feasibility and tremendous potential value of the enterprise, they all suffer from major limitations, to do primarily with the limited degree of scale and heterogeneity of the semantic data they use. Nevertheless, we argue that we are at a key point in the brief history of the Semantic Web and that the very latest demonstrators already give us a glimpse of what future applications will look like. In this paper, we describe the already visible effects of these changes by analyzing the evolution of Semantic Web tools from smart databases towards applications that harness collective intelligence. We also point out that language technology plays an important role in making this evolution sustainable and we highlight the need for improved support, especially in the area of large-scale linguistic resources

    Toward a collective intelligence recommender system for education

    Get PDF
    The development of Information and Communication Technology (ICT), have revolutionized the world and have moved us into the information age, however the access and handling of this large amount of information is causing valuable time losses. Teachers in Higher Education especially use the Internet as a tool to consult materials and content for the development of the subjects. The internet has very broad services, and sometimes it is difficult for users to find the contents in an easy and fast way. This problem is increasing at the time, causing that students spend a lot of time in search information rather than in synthesis, analysis and construction of new knowledge. In this context, several questions have emerged: Is it possible to design learning activities that allow us to value the information search and to encourage collective participation?. What are the conditions that an ICT tool that supports a process of information search has to have to optimize the student's time and learning? This article presents the use and application of a Recommender System (RS) designed on paradigms of Collective Intelligence (CI). The RS designed encourages the collective learning and the authentic participation of the students. The research combines the literature study with the analysis of the ICT tools that have emerged in the field of the CI and RS. Also, Design-Based Research (DBR) was used to compile and summarize collective intelligence approaches and filtering techniques reported in the literature in Higher Education as well as to incrementally improving the tool. Several are the benefits that have been evidenced as a result of the exploratory study carried out. Among them the following stand out: • It improves student motivation, as it helps you discover new content of interest in an easy way. • It saves time in the search and classification of teaching material of interest. • It fosters specialized reading, inspires competence as a means of learning. • It gives the teacher the ability to generate reports of trends and behaviors of their students, real-time assessment of the quality of learning material. The authors consider that the use of ICT tools that combine the paradigms of the CI and RS presented in this work, are a tool that improves the construction of student knowledge and motivates their collective development in cyberspace, in addition, the model of Filltering Contents used supports the design of models and strategies of collective intelligence in Higher Education.Postprint (author's final draft

    A collective intelligence approach for building student's trustworthiness profile in online learning

    Get PDF
    (c) 2014 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other users, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works for resale or redistribution to servers or lists, or reuse of any copyrighted components of this work in other works.Information and communication technologies have been widely adopted in most of educational institutions to support e-Learning through different learning methodologies such as computer supported collaborative learning, which has become one of the most influencing learning paradigms. In this context, e-Learning stakeholders, are increasingly demanding new requirements, among them, information security is considered as a critical factor involved in on-line collaborative processes. Information security determines the accurate development of learning activities, especially when a group of students carries out on-line assessment, which conducts to grades or certificates, in these cases, IS is an essential issue that has to be considered. To date, even most advances security technological solutions have drawbacks that impede the development of overall security e-Learning frameworks. For this reason, this paper suggests enhancing technological security models with functional approaches, namely, we propose a functional security model based on trustworthiness and collective intelligence. Both of these topics are closely related to on-line collaborative learning and on-line assessment models. Therefore, the main goal of this paper is to discover how security can be enhanced with trustworthiness in an on-line collaborative learning scenario through the study of the collective intelligence processes that occur on on-line assessment activities. To this end, a peer-to-peer public student's profile model, based on trustworthiness is proposed, and the main collective intelligence processes involved in the collaborative on-line assessments activities, are presented.Peer ReviewedPostprint (author's final draft

    Social Machines

    No full text
    The term ‘social machine’ has recently been coined to refer to Web-based systems that support a variety of socially-relevant processes. Such systems (e.g., Wikipedia, Galaxy Zoo, Facebook, and reCAPTCHA) are progressively altering the way a broad array of social activities are performed, ranging from the way we communicate and transmit knowledge, establish romantic partnerships, generate ideas, produce goods and maintain friendships. They are also poised to deliver new kinds of intelligent processing capability by virtue of their ability to integrate the complementary contributions of both the human social environment and a global nexus of distributed computational resources. This chapter provides an overview of recent research into social machines. It examines what social machines are and discusses the kinds of social machines that currently exist. It also presents a range of issues that are the focus of current research attention within the Web Science community
    corecore