493 research outputs found

    Influence of Strouhal number on pulsating methane–air coflow jet diffusion flames

    Get PDF
    Four periodically time-varying methane–air laminar coflow jet diffusion flames, each forced by pulsating the fuel jet's exit velocity Uj sinusoidally with a different modulation frequency wj and with a 50% amplitude variation, have been computed. Combustion of methane has been modeled by using a chemical mechanism with 15 species and 42 reactions, and the solution of the unsteady Navier–Stokes equations has been obtained numerically by using a modified vorticity-velocity formulation in the limit of low Mach number. The effect of wj on temperature and chemistry has been studied in detail. Three different regimes are found depending on the flame's Strouhal number S=awj/Uj, with a denoting the fuel jet radius. For small Strouhal number (S=0.1), the modulation introduces a perturbation that travels very far downstream, and certain variables oscillate at the frequency imposed by the fuel jet modulation. As the Strouhal number grows, the nondimensional frequency approaches the natural frequency of oscillation of the flickering flame (S≃0.2). A coupling with the pulsation frequency enhances the effect of the imposed modulation and a vigorous pinch-off is observed for S=0.25 and S=0.5. Larger values of S confine the oscillation to the jet's near-exit region, and the effects of the pulsation are reduced to small wiggles in the temperature and concentration values. Temperature and species mass fractions change appreciably near the jet centerline, where variations of over 2% for the temperature and 15% and 40% for the CO and OH mass fractions, respectively, are found. Transverse to the jet movement, however, the variations almost disappear at radial distances on the order of the fuel jet radius, indicating a fast damping of the oscillation in the spanwise direction

    Reacting Multi-Species Gas Capability for USM3D Flow Solver

    Get PDF
    The USM3D Navier-Stokes flow solver contributed heavily to the NASA Constellation Project (CxP) as a highly productive computational tool for generating the aerodynamic databases for the Ares I and V launch vehicles and Orion launch abort vehicle (LAV). USM3D is currently limited to ideal-gas flows, which are not adequate for modeling the chemistry or temperature effects of hot-gas jet flows. This task was initiated to create an efficient implementation of multi-species gas and equilibrium chemistry into the USM3D code to improve its predictive capabilities for hot jet impingement effects. The goal of this NASA Engineering and Safety Center (NESC) assessment was to implement and validate a simulation capability to handle real-gas effects in the USM3D code. This document contains the outcome of the NESC assessment

    Study of basic physical processes in liquid rocket engines

    Get PDF
    Inconsistencies between analytical results and measurements for liquid rocket thrust chamber performance, which escape suitable explanations, have motivated the examination of the basic phys ical modeling formulations as to their unlimited application. The publication of Prof. D. Straub's book, 'Thermofluid-dynamics of Optimized Rocket Propulsions,' further stimulated the interest of understanding the gas dynamic relationships in chemically reacting mixtures. A review of other concepts proposed by Falk-Ruppel (Gibbsian Thermodynamics), Straub (Alternative Theory, AT), Prigogine (Non-Equilibrium Thermodynamics), Boltzmann (Kinetic Theory), and Truesdell (Rational Mechanism) has been made to obtain a better understanding of the Navier-Stokes equation, which is now used extensively for chemically reacting flow treatment in combustion chambers. In addition to the study of the different concepts, two workshops were conducted to clarify some of the issues. The first workshop centered on Falk-Ruppel's new 'dynamics' concept, while the second one concentrated on Straub's AT. In this report brief summaries of the reviewed philosophies are presented and compared with the classical Navier-Stokes formulation in a tabular arrangement. Also the highlights of both workshops are addressed

    Theoretical Investigation of Magnetohydrodynamic Radiative Non-Newtonian Fluid Flow over a Stretched Surface

    Get PDF
    The aim of this study is to investigate the heat and mass transfer in magnetohydrodynamic Newtonian and non-Newtonian fluid flow over a stretched domain in the presence of thermal radiation, chemical reaction, Soret and Dufour effects. In addition to this, we also considered the aligned magnetic field (i.e. the magnetic field applied at different angles) along the flow direction and dual solutions are executed for the transverse and aligned magnetic field cases. The governing system of equations is transformed as the system of ODEs with the help of suited similarity transforms. The resulting equations are solved numerically with the aid of the shooting process. The graphical and tabular results are explored to discuss the flow, thermal and concentration behavior along with the heat and mass transfer rate. Keywords: MHD, Aligned Magnetic field, Soret and Dufour effects, Radiation, Chemical reaction

    Autoignition in nonpremixed flow

    Get PDF
    The objective of this investigation has been to improve understanding of autoignition processes in nonpremixed flow fields of the types encountered in Diesel-engine ignition, through theoretical analyses that employ asymptotic methods of applied mathematics. The work was intended to develop formulas and equations that can be used in activities of applied research, such as code development, aimed at providing tools useful for the design of Diesel engines. The formulas may also be used directly for ignition estimates.Characteristic time scales were identified for these ignition problems. Their relative magnitudes were employed to define different regimes of ignition and to obtain simplified partial differential equations that describe ignition in these regimes. Effects of turbulence on ignition were addressed. Special attention was devoted to unsteady mixing layers, involving both variable strain and variable pressure, for which ignition-time formulas were derived. In addition, ignition analyses were completed for variable-volume chambers with arbitrary initial spatial variations of temperature and composition, to determine pressure histories produced by ignition-front propagation. These studies were based on one-step, Arrhenius approximations for the chemical kinetics and were restricted to ignition stages that precede ordinary flame propagation. Additional work considered triple-flame propagation that can odcur in mixing layers after ignition, with this same chemical-kinetic description, and asymptotic analysis of n-heptane ignition on the basis of a four-step, semi-empirical model for the chemical kinetics. In this latter study, the region of negative effective overall activation energy, between 800 K and 1100 K, was identified as exhibiting unusual ignition dynamics, and the asymptotic ignition-time formulas were shown to give good agreement with predictions of numerical integrations. This research has helped to strengthen the foundations of ignition theory for nonuniform media. It provided simplified descriptions of ignition processes that can be employed in studies of Diesel combustion that are oriented more towards development than are the present investigations. The asymptotic methods employed in this work thus appear capable of providing quite useful results

    Effects of curvature and strain on a lean premixed methane-hydrogen-air flame

    Get PDF
    Thesis (S.M.)--Massachusetts Institute of Technology, Dept. of Mechanical Engineering, 2006.Includes bibliographical references (leaves 74-77).The elemental flame is a subgrid model for turbulent combustion, parameterized by time-varying strain rate and curvature. This thesis develops the unsteady one-dimensional governing equations for the elemental flame incorporating detailed chemical kinetics and transport and a robust and efficient numerical method for solving the governing equations. Hydrogen enrichment of some hydrocarbon fuels has been shown to improve stability and extend flammability limits of lean premixed combustion in a number of recent experiments. It is suggested that these trends may be explained by the impact of hydrogen on the flame response to stretch and curvature. The elemental flame model is used to simulate premixed hydrogen-enriched methane flames in positively curved, negatively curved and planar configurations at varying strain rates. Curvature and stretch couple with non-unity species Lewis numbers to affect the burning rates and flame structure. Hydrogen addition is found to increase burning rate and resistance to flame stretch under all conditions. Positive curvature reinforces the effect of hydrogen enrichment, while negative curvature diminishes it.(cont.) The effects of strong curvature cannot be explained solely in terms of flame stretch. Hydrogen enriched flames display increases in radical concentrations and a broadening of the reaction zone. Detailed analysis of the chemical kinetics shows that high strain rates lead to incomplete oxidation; hydrogen addition tends to mitigate this effect.by Raymond Levi Speth.S.M

    Computational fluid dynamics

    Get PDF
    An overview of computational fluid dynamics (CFD) activities at the Langley Research Center is given. The role of supercomputers in CFD research, algorithm development, multigrid approaches to computational fluid flows, aerodynamics computer programs, computational grid generation, turbulence research, and studies of rarefied gas flows are among the topics that are briefly surveyed

    Experimental evaluation of a subsonic expansion tube

    Get PDF
    Subsonic expansion tube evaluation as device for studying particle drag in subsonic compressible slip flo

    The effect of flow and mixture inhomogeneity on the dynamics of strained flames

    Get PDF
    Thesis (S.M.)--Massachusetts Institute of Technology, Dept. of Mechanical Engineering, 1999.Includes bibliographical references (leaves 76-80).by Youssef Mohamed Marzouk.S.M

    Dynamics of Numerics & Spurious Behaviors in CFD Computations

    Get PDF
    The global nonlinear behavior of finite discretizations for constant time steps and fixed or adaptive grid spacings is studied using tools from dynamical systems theory. Detailed analysis of commonly used temporal and spatial discretizations for simple model problems is presented. The role of dynamics in the understanding of long time behavior of numerical integration and the nonlinear stability, convergence, and reliability of using time-marching approaches for obtaining steady-state numerical solutions in computational fluid dynamics (CFD) is explored. The study is complemented with examples of spurious behavior observed in steady and unsteady CFD computations. The CFD examples were chosen to illustrate non-apparent spurious behavior that was difficult to detect without extensive grid and temporal refinement studies and some knowledge from dynamical systems theory. Studies revealed the various possible dangers of misinterpreting numerical simulation of realistic complex flows that are constrained by available computing power. In large scale computations where the physics of the problem under study is not well understood and numerical simulations are the only viable means of solution, extreme care must be taken in both computation and interpretation of the numerical data. The goal of this paper is to explore the important role that dynamical systems theory can play in the understanding of the global nonlinear behavior of numerical algorithms and to aid the identification of the sources of numerical uncertainties in CFD
    • …
    corecore