311 research outputs found

    MGF Approach to the Analysis of Generalized Two-Ray Fading Models

    Full text link
    We analyze a class of Generalized Two-Ray (GTR) fading channels that consist of two line of sight (LOS) components with random phase plus a diffuse component. We derive a closed form expression for the moment generating function (MGF) of the signal-to-noise ratio (SNR) for this model, which greatly simplifies its analysis. This expression arises from the observation that the GTR fading model can be expressed in terms of a conditional underlying Rician distribution. We illustrate the approach to derive simple expressions for statistics and performance metrics of interest such as the amount of fading, the level crossing rate, the symbol error rate, and the ergodic capacity in GTR fading channels. We also show that the effect of considering a more general distribution for the phase difference between the LOS components has an impact on the average SNR.Comment: 14 pages, 8 Figures and 2 Tables. This work has been accepted for publication at IEEE Transactions on Wireless Communications. Copyright (c) 2014 IEEE. Personal use of this material is permitted. However, permission to use this material for any other purposes must be obtained from the IEEE by sending a request to [email protected]

    The Fluctuating Two-Ray Fading Model: Statistical Characterization and Performance Analysis

    Get PDF
    (c) 20xx IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other users, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works for resale or redistribution to servers or lists, or reuse of any copyrighted components of this work in other works.We introduce the fluctuating two-ray (FTR) fading model, a new statistical channel model that consists of two fluctuating specular components with random phases plus a diffuse component. The FTR model arises as the natural generalization of the two-wave with diffuse power (TWDP) fading model; this generalization allows its two specular components to exhibit a random amplitude fluctuation. Unlike the TWDP model, all the chief probability functions of the FTR fading model (PDF, CDF, and MGF) are expressed in closed-form, having a functional form similar to other state-of-the-art fading models. We also provide approximate closed-form expressions for the PDF and CDF in terms of a finite number of elementary functions, which allow for a simple evaluation of these statistics to an arbitrary level of precision. We show that the FTR fading model provides a much better fit than Rician fading for recent small-scale fading measurements in 28 GHz outdoor mm-wave channels. Finally, the performance of wireless communication systems over FTR fading is evaluated in terms of the bit error rate and the outage capacity, and the interplay between the FTR fading model parameters and the system performance is discussed. Monte Carlo simulations have been carried out in order to validate the obtained theoretical expressions.Universidad de Málaga. Campus de Excelencia Internacional. Andalucía Tech

    The κ - μ shadowed fading model with arbitrary intercluster correlation

    Get PDF
    In this paper, we propose a generalization of the well-known κ-μ shadowed fading model. Based on the clustering of multipath waves as the baseline model, the novelty of this new distribution is the addition of an arbitrary correlation for the scattered components within each cluster. It also inherits the random fluctuation of the dominant component, which is assumed to be the same for all clusters. Thus, it unifies a wide variety of models: Rayleigh, Rician, Rician shadowed, Nakagami- m, κ-μ and κ-μ shadowed as well as multivariate Rayleigh, Rician and Rician shadowed. The main statistics of the newly proposed model, i.e. moment generating function, probability density function and cumulative density function, are given in terms of exponentials and powers, and some numerical results are provided in order to analyze the impact of the arbitrary intercluster correlation.Universidad de Málaga. Campus de Excelencia Internacional Andalucía Tec

    The Fluctuating Two-Ray Fading Model for mmWave Communications

    Get PDF
    We introduce the Fluctuating Two-Ray (FTR) fading model, a new statistical channel model that consists of two fluctuating specular components with random phases plus a diffuse component. The FTR model arises as a natural generalization of the two-wave with diffuse power (TWDP) fading model proposed by Durgin, Rappaport and de Wolf; in this extended model, the two specular components exhibit a random amplitude fluctuation. Unlike in the TWDP model, we show that all the chief probability functions of the FTR fading model (PDF, CDF and MGF) can be expressed in closed-form. We also show that the FTR fading model provides a much better fit than the Rician fading model for recent small-scale fading measurements of the 28 GHz outdoor millimeter-wave channels.Universidad de Málaga. Campus de Excelencia Internacional Andalucía Tech

    The κ-µ Shadowed Fading Model with Integer Fading Parameters

    Get PDF
    (c) 20xx IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other users, including reprinting/ republishing this material for advertising or promotional purposes, creating new collective works for resale or redistribution to servers or lists, or reuse of any copyrighted components of this work in other works. DOI: 10.1109/TVT.2017.2678430We show that the popular and general κ-μ shadowed fading model with integer fading parameters μ and m can be represented as a mixture of squared Nakagami- m̂ (or Gamma) distributions. Thus, its PDF and CDF can be expressed in closed-form in terms of a finite number of elementary functions (powers and exponentials). The main implications arising from such connection are then discussed, which can be summarized as: (1) the performance evaluation of communication systems operating in κ-μ shadowed fading becomes as simple as if a Nakagami- m̂ fading channel was assumed; (2) the κ-μ shadowed distribution can be used to approximate the κ-μ distribution using a closed-form representation in terms of elementary functions, by choosing a sufficiently large value of m; and (3) restricting the parameters μ and m to take integer values has limited impact in practice when fitting the κ-μ shadowed fading model to field measurements. As an application example, the average channel capacity of communication systems operating under κ-μ shadowed fading is obtained in closed-form.Universidad de Málaga. Campus de Excelencia Internacional. Andalucía Tech

    On Some Unifications Arising from the MIMO Rician Shadowed Model

    Get PDF
    This paper shows that the proposed Rician shadowed model for multi-antenna communications allows for the unification of a wide set of models, both for multiple-input multiple-output (MIMO) and single- input single-output (SISO) communications. The MIMO Rayleigh and MIMO Rician can be deduced from the MIMO Rician shadowed, and so their SISO counterparts. Other more general SISO models, besides the Rician shadowed, are included in the model, such as the κ-μ, and its recent generalization, the κ-μ shadowed model. Moreover, the SISO η-μ and Nakagami-q models are also included in the MIMO Rician shadowed model. The literature already presents the probability density function (pdf) of the Rician shadowed Gram channel matrix in terms of the well-known gamma- Wishart distribution. We here derive its moment generating function in a tractable form. Closed- form expressions for the cumulative distribution function and the pdf of the maximum eigenvalue are also carried out.Universidad de Málaga. Campus de Excelencia Internacional Andalucía Tech

    A Tractable Line-of-Sight Product Channel Model: Application to Wireless Powered Communications

    Get PDF
    We here present a general and tractable fading model for line-of-sight (LOS) scenarios, which is based on the product of two independent and non-identically distributed κ- μ shadowed random variables. Simple closed-form expressions for the probability density function and cumulative distribution function are derived, which are as tractable as the corresponding expressions derived from a product of Nakagami-m random variables. This newly proposed model simplifies the challenging characterization of LOS product channels, as well as combinations of LOS channels with non-LOS ones. Results are used to analyze performance measures of interest in the context of wireless powered communications.Universidad de Málaga. Campus de Excelencia Internacional Andalucía Tech
    corecore